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Abstract Giant Resonances are, with nuclear rotations, the
most evident expression of collectivity in finite nuclei. These
two categories of excitations, however, are traditionally de-
scribed within different formal schemes, such that vibra-
tional and rotational degrees of freedom are separately treated
and coupling effects between those are often neglected. The
present work puts forward an approach aiming at a consitent
treatment of vibrations and rotations. Specifically, this paper
is the last in a series of four dedicated to the investigation
of the giant monopole resonance in doubly open-shell nu-
clei via the ab initio Projected Generator Coordinate Method
(PGCM). The present focus is on the treatment and impact
of angular momentum restoration within such calculations.
The PGCM being based on the use of deformed mean-field
states, the angular-momentum restoration is performed when
solving the secular equation to extract vibrational excitations.
In this context, it is shown that performing the angular mo-
mentum restoration only after solving the secular equation
contaminates the monopole response with an unphysical cou-
pling to the rotational motion, as was also shown recently
for (quasi-particle) random phase approximation calculations
based on a deformed reference state. Eventually, the present
work based on the PGCM confirms that an a priori angular
momentum restoration is necessary to handle consistently
both collective motions at the same time. This further pleads
in favor of implementing the full-fledged projected (quasi-
particle) random phase approximation in the future.

1 Introduction

Giant Resonances (GRs) [1–4] are collective nuclear excita-
tions that can best be pictured in terms of oscillations of the
nuclear surface in an effective liquid-drop model. GRs are, in

this respect, one of the clearest manifestations of collective
motion in finite nuclei. The other most evident collective
behaviour in nuclei is provided by rotational excitations [5].
These features have traditionally been described through em-
pirical models adopting various resolutions, e.g. the macro-
scopic Bohr-Mottelson collective models [6] and their micro-
scopic counterparts [7, 8], the Interacting Boson Model [9–
11], the Fermion Dynamical Symmetry Model [12], etc. In
a microscopic framework, a unified and rigorous treatment
of both rotations and vibrations is not amenable to simple
solutions of the Schrödinger equation. For this reason, the
two are often addressed separately. This is justified by the
fact that nuclear rotations and vibrations typically pertain to
different energy regimes. Indeed, rotations are low-energy
excitations, with ground-state rotational bands typically span-
ning few MeV’s above the nuclear ground state. Instead, GRs
typically appear above 10 MeV excitation energy with large
differences depending on the system and on the multipolarity
of interest.

When addressing doubly open-shell nuclei, both realms are
typically approached starting from mean-field reference states
breaking rotational symmetry, e.g. deformed Hartree-Fock-
Bogoliubov (HFB) vacua. Rotations are then extracted by
performing an angular momentum projection (AMP) acting
either on one deformed HFB vacuum [13] or on a linear
superposition of them, thus defining the projected genera-
tor coordinate method (PGCM) [14, 15]. Lately, rotational
spectra have also been generated starting from deformed cou-
pled cluster (CC) calculations with explicit AMP [16–18].
As for GRs, the (quasi-particle) random phase approxima-
tion ((Q)RPA) is the usual method of choice, where nuclear
vibrations are treated as harmonic fluctuations around the
deformed HFB minimum [19–22], without any AMP.
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In a recent work [23], an AMP in RPA calculations was
attempted a posteriori, i.e. after solving the RPA secular
equation based on the deformed reference state. The corre-
sponding monopole response was shown to be contaminated
with an unphysical coupling to the rotational motion and an
empirical method was designed to subtract it. On a conceptu-
ally similar ground, when U(1) symmetry is broken, QRPA
pair transfer probabilities have been demonstrated to overesti-
mate the exact results within the exactly solvable Richardson
model [24]. The most significant discrepancies occur near
the transition from the normal to the superfluid phase [25].
On the other hand, the present series of four papers [26–28]
addressing the giant monopole resonance (GMR) from an
ab initio standpoint has demonstrated the suitability of the
symmetry-conserving PGCM to address GRs. In this con-
text, the goal of the present paper, the fourth of the series, is
to investigate whether performing the AMP a posteriori on
top of the GCM solutions induces the same shortcomings as
those observed within the RPA framework and thus confirm
that the a priori AMP is mandatory to properly handling the
coupling between rotational and vibrational motions.

The present paper, denoted as Paper IV, is organized as fol-
lows1. First, the different strategies to perform a symmetry
restoration within the (P)GCM are formally introduced in
Sec. 2 before discussing the impact on the strength function
in Sec. 3. In Sec. 4, the empirical method used to remove the
spurious coupling due to the a posteriori AMP is detailed.
Numerical results are eventually presented in Sec. 5 whereas
conclusions are drawn in Sec. 6 .

2 Formalism

The (P)GCM formalism was introduced in detail in Paper
I [26]. The essential elements needed to discuss the effects of
the symmetry breaking and restoration in strength functions
are only briefly recalled below.

2.1 The generator coordinate method

The original GCM formulation is introduced first. The GCM
wave-function ansatz [29, 30] is a general superposition of
so-called generating functions reading as

|Ψν⟩ ≡
∑

q

fν(q) |Φ(q)⟩ , (1)

where q denotes a set of variables referred to as the gener-
ator coordinates. The index ν refers to a principal quantum
number while fν(q) is a weight function to be determined2.

1The first three papers of the series are denoted as Paper I [26], Paper
II [27] and Paper III [28], respectively.
2The mixing coefficients { fν(q), q ∈ [q0, q1]} are defined such that |Ψν⟩
is normalized.

The ensemble {|Φ(q), q ∈ [q0, q1]⟩} denotes a set of non-
orthogonal Bogoliubov states typically obtained as solutions
of constrained HFB calculations requiring that the solution
satisfies

⟨Φ(q)|Q|Φ(q)⟩ = q , (2)

where Q denotes a set of operators defining the collective
coordinates.

The unknown coefficients fν(q) are determined variationally
based on Ritz’ variational principle, namely by minimising
the energy associated with |Ψν⟩

δ
⟨Ψν|H|Ψν⟩
⟨Ψν|Ψν⟩

= 0. (3)

The variation with respect to the weights f ∗ν (q) eventually
leads to a generalised eigenvalue problem known as the
Hill-Wheeler-Griffin (HWG) secular equation [30] reading
as∑

q

[
H(p, q) − EνN(p, q)

]
fν(q) = 0 , (4)

where the so-called Hamiltonian and norm kernels are re-
spectively defined as

H(p, q) ≡ ⟨Φ(p)|H|Φ(q)⟩ , (5a)

N(p, q) ≡ ⟨Φ(p)|Φ(q)⟩ . (5b)

2.2 The projected generator coordinate method

Constrained HFB solutions typically break symmetries of the
Hamiltonian, so that restoring those symmetries is mandatory
to obtain approximations to exact eigentates carrying good
symmetry quantum numbers. The symmetry restoration is
achieved within the PGCM by adding a projection operator
onto good symmetry quantum numbers to the symmetry-
breaking GCM state. While presently focusing on rotational
symmetry associated with angular-momentum conservation,
the approach is general and consists of modifying Eq. (1)
according to3

|Ψσν ⟩ =
∑

q

f σν (q)Pσ |Φ(q)⟩ , (6)

where Pσ is the projection operator associated with the (a)
symmetry (sub)group G of the Hamiltonian. The projection
operator selects the components of each |Φ(q)⟩ carrying the
good symmetry quantum numbers σ ≡ (JMΠNZ), i.e. the
PGCM ansatz in Eq. (6) has good total angular momentum J
and angular momentum projection M, parity Π = ±1 as well

3The mixing coefficients { f σν (q), q ∈ [q0, q1]} are defined such that |Ψσν ⟩
is normalized.
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as neutron N and proton Z numbers. The projector Pσ can be
generically written as

Pσ =
∫

dφ gσ(φ)R(φ) , (7)

where gσ(φ) represents the irreducible representations of G
whereas R(φ) denotes the unitary symmetry transformation
operator changing the orientation of a state by an angle φ.
The PGCM ansatz can thus be expanded as

|Ψσν ⟩ =
∑

q

f σν (q)
∫

dφ gσ(φ)R(φ) |Φ(q)⟩

≡
∑

q

f σν (q)
∫

dφ gσ(φ) |Φ(q, φ)⟩ , (8)

where the φ-rotated Bogoliubov state |Φ(q, φ)⟩ ≡ R(φ) |Φ(q)⟩
has been introduced. Applying the variational procedure
based on the PGCM ansatz (Eq. (8)) leads now to a set of
σ-dependent HWG equations∑

q

[
Hσ(p, q) − EσνN

σ(p, q)
]
f σν (q) = 0 , (9)

where the so-called symmetry-restored Hamiltonian and norm
kernels are defined as

Hσ(p, q) ≡ ⟨Φ(p)|HPσ|Φ(q)⟩

=

∫
dφ gσ(φ) ⟨Φ(p)|H|Φ(q, φ)⟩ , (10a)

Nσ(p, q) ≡ ⟨Φ(p)|Pσ|Φ(q)⟩

=

∫
dφ gσ(φ) ⟨Φ(p)|Φ(q, φ)⟩ . (10b)

2.3 PAV-GCM

In the PGCM described above the secular equation (Eq. (9))
is solved in presence of the symmetry projection, i.e. the vari-
ational minimization is restricted to each irreducible repre-
sentation of the symmetry group. For this reason, this scheme
is presently denoted as the variation after projection GCM
(VAP-GCM).

In between the GCM and the VAP-GCM, a scheme can be
considered in which the symmetry projection is performed
only after the GCM solution based on a symmetry breaking
ansatz has been obtained. Such an intermediate approach
is naturally denoted as the projection after variation GCM
(PAV-GCM) scheme.

Projecting the GCM states solution of Eqs. (1)-(4), one works
with the set of projected states

|Ψ̃σν ⟩ ≡ Nσν Pσ |Ψν⟩ = Nσν
∑

q

fν(q)Pσ |Φ(q)⟩ , (11)

where Nσν is a normalising factor provided by the condi-
tion

1 = ⟨Ψ̃σν |Ψ̃
σ
ν ⟩ , (12)

such that

(Nσν )−2 =
∑
pq

f ∗ν (p) fν(q)Nσ(p, q) . (13)

2.4 Discussion

The PAV strategy assumes that rotational and vibrational
degrees of freedom are strictly decoupled, i.e. intrinsically
deformed solutions are first obtained assuming that rotational
degrees of freedom are frozen before adding the rotational
motion to each vibrational state thus obtained.

From a physical standpoint, such a decoupling presuppose
that vibrations and rotations relate to very different time
scales, such that they can be addressed separately in a Born-
Oppenheimer-like approximation. Specifically, rotations are
assumed to be infinitely slower than nuclear vibrations, which
is a direct consequence of the rotation being ideally associ-
ated with a zero-energy (Goldstone) mode.

However, nuclear rotations happen in fact at finite frequen-
cies, such that they cannot be decoupled a priori from vibra-
tional modes [6]. Thus, the variational/diagonalisation pro-
cess at play to determine physical states should be performed
in a Hilbert subspace simultaneously accounting for vibra-
tional and rotational degrees of freedom. This is achieved
in the VAP scheme that is the method of choice to consis-
tently treat the coupling effects between nuclear vibrations
and rotations. A schematic summary of the different levels
of symmetry breaking and restoration in the GCM and the
(Q)RPA is displayed in Table 1.

3 Transition strength

Generically, the ground-state strength function associated
with an arbitrary excitation operator O reads as

S F(ω) ≡
∑
νσ′

| ⟨Θσ0
0 |O|Θ

σ′

ν ⟩ |
2 δ(Eσ

′

ν − Eσ0
0 − ω) , (14)

where |Θσν ⟩ (Eσν ) denotes an eigenstate (eigenenergy) of the
nuclear Hamiltonian.

The present work focuses on the monopole response and on
the K = 0 component of the quadrupole response, respec-
tively associated with the excitation operators

O ≡ r2 ≡

A∑
i=1

r2
i . (15)
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Symmetry breaking
GCM (Q)RPA

Large-amplitude superposition
of deformed HF(B) states

Harmonic fluctuations
around a deformed HF(B) state

Status: available Status: available
PAV GCM PAV (Q)RPA

Angular-momentum projection
of deformed GCM states

Angular-momentum projection
of deformed (Q)RPA states

Status: developed in this work Status: developed in Refs. [23, 31, 32].
PGCM P(Q)RPA

Proper treatment of rotation-vibration
coupling within the GCM

Proper treatment of rotation-vibration
coupling within the (Q)RPA

Status: available Status: formalism available [33, 34]
Symmetry conserving

Table 1 Schematic representation of different projection levels based on symmetry-breaking GCM and (Q)RPA.

and

O ≡ Q20 ≡

A∑
i=1

r2
i Y20(ϑi, ϕi) , (16)

where (ϑi, ϕi) denote spherical angular coordinates. Below,
the ingredients entering Eq. (14) in GCM, PAV-GCM and
VAP-GCM calculations are specified.

3.1 GCM

The unprojected transition amplitude between the GCM
ground state and a GCM excited state reads as

⟨Ψ0|O|Ψν⟩ =
∑
pq

f ∗0 (p) fν(q) ⟨Φ(p)|O|Φ(q)⟩

≡
∑
pq

f ∗0 (p)O(p, q) fν(q) . (17)

Using more compact notations, the transition matrix element
between any two GCM states can be written as

⟨Ψµ|O|Ψν⟩ ≡
∑
pq

f ∗µpOpq fqν ≡ (f† ·O · f)µν , (18)

where the indices of the matrix O associated with the opera-
tor kernel O(p, q) run over the generator coordinates whereas
the linear coefficient matrix f indices run on the generator co-
ordinates for the lines and on the GCM states for the columns.
Naturally, the energies entering Eq. (14) are the GCM ener-
gies delivered by Eq. (4).

3.2 VAP-GCM

In PGCM calculations, the transition amplitude reads as

⟨Ψσ0
0 |O|Ψ

σ
ν ⟩ =

∑
pq

f σ0∗

0 (p) f σν (q) ⟨Φ(p)|Pσ0†OPσ|Φ(q)⟩

≡
∑
pq

f σ0∗

0 (p)Oσ0σ(p, q) f σν (q)

≡
∑
pq

f σ0∗

0p Oσ0σ
pq f σqν

≡ (fσ0† ·Oσ0σ · fσ)0ν , (19)

where the matrix Oσσ
′

associated with the projected kernel
Oσσ

′

(p, q) carries the symmetry quantum numbers of both
the bra and ket. Indeed, and contrary to the Hamiltonian,
the operator O is not necessarily a scalar under symmetry
transformations. Naturally, the energies entering Eq. (14) are
the PGCM energies delivered by Eq. (9).

3.3 PAV-GCM

Given the PAV-GCM states introduced in Eq. (11), the corre-
sponding transition amplitude reads as

⟨Ψ̃σ0
0 |O|Ψ̃

σ
ν ⟩ = Nσ0

0 Nσν
∑
pq

f0(p) fν(q) ⟨Φ(p)|Pσ0†OPσ|Φ(q)⟩

= Nσ0
0 Nσν (f† ·Oσ0σ · f)0ν . (20)

Up to a normalising factor, the PAV-GCM transition ampli-
tude combines the projected kernels introduced in Eq. (19)
with the mixing coefficients of the two involved GCM states.

In this scheme, the energies entering Eq. (14) are the PAV-
GCM energies delivered by

Ẽσν ≡
⟨Ψ̃σν |H|Ψ̃

σ
ν ⟩

⟨Ψ̃σν |Ψ̃
σ
ν ⟩
= |Nσν |

2(f† ·Hσσ · f)νν , (21)

where in fact a single projector is sufficient to compute the
kernel given that the Hamiltonian is a scalar under rota-
tion.
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4 Spurious coupling to rotational motion

In this section the concept of spurious coupling to the rota-
tional motion in theories breaking angular-momentum con-
servation is introduced. For the reasons mentioned in Sec. 2.2,
vibrational GCM excitations obtained without AMP may be
non-orthogonal to rotational states. This feature is considered
spurious given that the neglect of the rotational degrees of
freedom in the HWG equation precisely assumes that the
intrinsic GCM states are fully decoupled from them. Based
on this consideration, a method is now designed to subtract a
posteriori the spurious coupling between excited GCM states
and a pure rotational motion of the corresponding ground
state.

4.1 Subtracted GCM

Given the overlap between an arbitrary GCM excited state
|Ψν⟩ and the PAV-GCM ground state

aν ≡ ⟨Ψ̃
σ0
0 |Ψν⟩ , (22)

the spurious coupling can be subtracted by redefining the
excited state4 as [35]

|Ψ̆ν⟩ ≡ Nν̆
[
|Ψν⟩ − aν |Ψ̃

σ0
0 ⟩
]
. (23)

It is immediate to check that the orthogonalisation condition

⟨Ψ̃σ0
0 |Ψ̆ν⟩ = 0 (24)

is satisfied and that the normalisation constant Nν̆ is given by

(Nν̆)−2 = 1 − |aν|2 . (25)

Replacing |Ψν⟩ by |Ψ̆ν⟩ in Eq. (17), the subtracted GCM (sub-
GCM) transition strength can be computed.

4.2 Subtracted PAV-GCM

The subtraction method is extended to the PAV-GCM via the
introduction of

| ˘̃Ψσν ⟩ ≡ Nσν̆ Pσ |Ψ̆ν⟩ , (26)

where the coefficients aν are now defined to fulfill the orthog-
onalisation condition

⟨Ψ̃σ0
0 |

˘̃Ψσν ⟩ = 0 . (27)

In fact, | ˘̃Ψσν ⟩ differ from the PAV-GCM state |Ψ̃σν ⟩ only if it
carries the same symmetry quantum numbers as the ground

4The procedure can be applied to any many-body method accessing
symmetry-breaking ground and excited states.

state, i.e. σ = σ0, which in the case of present interest cor-
responds to J = 0 states. Correspondingly, the coefficient aν
satisfies Eq. (22) and the normalising factor Nσ0

ν̆ reads

(Nσ0
ν̆ )−2 = ⟨Ψν|Pσ0 |Ψν⟩ − |aν|2 = (Nσ0

ν )−2 − |aν|2 . (28)

Replacing |Ψ̃σν ⟩ by | ˘̃Ψσν ⟩ in Eq. (20), the subtracted PAV-GCM
(sub-PAV-GCM) transition strength can be computed.

5 Applications

The above considerations are illustrated below in the case of
28Si that acts as a typical example. The general conclusions
reached below have been checked to be valid in all the nuclei
studied in Papers I, II and III.

5.1 Numerical setting

Calculations whose results are presented below are realised
employing a spherical harmonic oscillator basis characterized
by ℏω = 12 MeV and emax = 10 and the chiral effective field
theory (χEFT) Hamiltonian of Ref. [36] built at next-to-next-
to-next-to-leading order (N3LO). Two-dimensional (P)GCM
calculations are performed in axial symmetry using (r, β2) as
generator coordinates. All details of the calculations can be
found in Paper II [27]. Specifically, here particle-number pro-
jection is always included such that GCM calculations only
omit the AMP, which is focus of the present work.

5.2 Levels of calculation

The different levels of calculations discussed in the present
work are

– GCM: no AMP.

– PAV-GCM: AMP performed a posteriori on GCM states.

– VAP-GCM: full PGCM with AMP a priori.

– sub-GCM: GCM with a posteriori subtraction of the
rotational coupling.

– sub-PAV-GCM: AMP performed a posteriori on sub-
GCM states.

5.3 Results

The monopole (quadrupole) GCM and VAP-GCM responses
in 28Si are compared in the upper (lower) panel of Fig. 1. The
GCM monopole response is fragmented among four peaks
in the interval [11, 23] MeV, the two dominant ones being
located around 18 MeV. These four peaks are fully correlated
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Fig. 1 Monopole (top) and quadrupole (bottom) responses for GCM
and VAP-GCM calculations in 28Si.

with those appearing in the quadrupole response, even though
their relative weights are different in the two cases. This
correlation is the fingerprint of the coupling between both
modes due to the intrinsic (oblate) deformation of 28Si. This
topic was discussed at length in Paper II [27].

The inclusion of the AMP in VAP-GCM calculations impacts
the responses in two ways. First, the excitation energy of
the four dominant peaks are shifted up by 1.4, 1.0, 1.5 and
0.7 MeV, respectively, in the J = 0 (monopole) channel and
by 2.4, 2.1, 2.5 and 1.7 MeV in the J = 2 (quadrupole) chan-
nel, i.e. the J = 0 and J = 2 states originating from the same
intrinsic state are no longer strictly degenerate. Second, the
intensity of the peaks is modified. The quadrupole response
is significantly suppressed, i.e. while the strength of the first
two peaks is divided by about a factor of three, the third
peak has entirely disappeared and the fourth peak has been
severely shrunk5. The intensity of the peaks in the monopole
response remains overall unchanged except that the relative
weight of the two main contributions near 18 MeV is strongly
modified. Overall, the a priori inclusion of the AMP impacts
the monopole and quadrupole responses non negligibly but it
does so in a way that maintains a close connection to their
intrinsic GCM counterparts.

5The third (fourth) peak visible in the VAP-GCM quadrupole response
corresponds to the fourth (fifth) peak in its GCM counterpart.
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Fig. 2 Monopole (top) and quadrupole (bottom) responses for VAP-
GCM and PAV-GCM calculations in 28Si. For the monopole response,
the overlap between excited GCM states and the PAV-GCM ground
state is also displayed, the corresponding scale being shown on the right
y-axis.

Next, VAP-GCM and PAV-GCM results are compared in
Fig. 2. The quadrupole responses are very similar except for
a shift up by about 1 MeV for the J = 2 VAP-GCM excitation
energies compared to the PAV-GCM ones. Contrarily, the
monopole responses differ very notably. As a matter of fact,
the a posteriori AMP impacts the monopole amplitudes much
more significantly6 than in the VAP-GCM calculation7. This
is particularly true beyond the first three peaks where the
originally subleading fourth peak is very strongly enhanced,
along with many significant peaks appearing at even higher
energies where no GCM strength was visible in the first
place. The anomalously large impact of the a posteriori AMP
compared to the VAP-GCM results makes the validity of the
PAV-GCM monopole response dubious.

In order to analyse the content of these results, the overlap aν
between excited GCM states and the PAV-GCM ground-state
is also displayed in Fig. 2. The PAV-GCM monopole strength
happens to be anomalously large8 for GCM excited states
that are strongly coupled to the PAV-GCM ground state, even

6Notice the rescaling of the PAV-GCM response by the factor 1/5.
7The J = 0 energies are little affected, i.e. PAV-GCM and VAP-GCM
energies typically differ by 0.5 MeV.
8The overlap reaches 0.05 in 28Si and is up to three times larger in other
studied nuclei such as 46Ti or 24Mg. In the studied cases, the coupling
is larger for low-energy (high-energy) states in prolate (oblate) nuclei.



7

28Si

0

200

400

600

S
0
0

[fm
4
M

eV
−
1
]

GCM
sub GCM

0 10 20 30 40 50
0

10

20

30

ω [MeV]

S
2
0

[fm
4
M

eV
−
1
]

GCM
sub GCM

Fig. 3 Monopole (top) and quadrupole (bottom) responses for GCM
and sub-GCM calculations in 28Si.
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Fig. 4 Monopole response for VAP-GCM and sub-PAV-GCM calcula-
tions in 28Si.

though no associated strength was originally present in the
GCM response.

As discussed in Sec. 4, the spurious coupling to the rota-
tional motion can be subtracted a posteriori from GCM and
PAV-GCM results. Figure 3 demonstrates that, even though
intrinsically-deformed GCM states carry such a spurious cou-
pling, it has no impact on the associated monopole strength
function. In particular, while the full AMP accomplished
via VAP-GCM eventually improve over GCM results the

latter still deliver a meaningful approximation of the former9.
Contrarily, the subtraction of the spurious coupling strongly
corrects the PAV-GCM strength function as seen in Fig. 4
such that the sub-PAV-GCM monopole response becomes
consistent with the VAP-GCM one. In fact, the sub-PAV-
GCM monopole response remains very close to the original
GCM one, i.e. once the spurious component is removed,
the effect of the AMP is underestimated when performed a
posteriori.

6 Conclusions

The impact of angular momentum projection (AMP) on the
monopole and quadrupole responses of doubly open-shell
nuclei has been investigated within the frame of the (pro-
jected) generator coordinate method ((P)GCM) based on
intrinsically deformed mean-field states. More specifically,
the objective was to investigate whether the AMP can be
safely performed a posteriori, i.e. solving the secular equa-
tion for intrinsic states within the GCM and projecting the
solutions on good angular momentum only afterwards. To
do so, results were confronted with results from full PGCM
calculations where the AMP is performed a priori, i.e. where
the secular equation is solved directly for good-symmetry
states.

Using 28Si as typical example, the angular momentum pro-
jection was shown to have a non-negligible impact on both
the monopole and quadrupole responses in full PGCM calcu-
lations. First, the position of the dominant peaks are shifted
up by about 1 MeV (2 MeV) in the J = 0 (J = 2) channel.
Second, while only the relative weight of certain monopole
transitions are modified, quadrupole transitions are strongly
suppressed.

Next, the a posteriori angular-momentum restoration was
shown to contaminate the monopole response with an un-
physical coupling to the rotational motion, a result that is
fully consistent with the one recently observed in (quasi-
particle) random phase approximation calculations based on
a deformed reference state [23]. Eventually, the present work
based on the PGCM confirms that an a priori angular momen-
tum restoration is necessary to handle consistently rotational
and vibrational collective motions at the same time, which
further pleads in favor of implementing the full-fledged pro-
jected (quasi-particle) random phase approximation in the
future.

9As discussed above in connection with Fig. 1, in 28Si the GCM
monopole strength actually provides a quantitatively satisfactory ap-
proximation to the VAP-GCM one.
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