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One of the overarching goals in nuclear science is to
understand how the nuclear chart emerges from the
underlying fundamental interactions. The description
of the structure of nuclei from first principles, utilizing
ab initio methods for the solution of the many-
nucleon problem with inputs from chiral effective
field theory, has advanced dramatically over the
past two decades. We present an overview over the
available ab initio tools with a specific emphasis
on electromagnetic observables, such as multipole
moments and transition strengths. These observables
still pose a challenge for ab initio theory and are
one of the most exciting domains to exploit synergies
with modern experiments. Precise experimental data
is vital for the validation of the theory predictions
and the refinement of ab initio methods. We discuss
some of the past and future experimental efforts
highlighting these synergies.
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1. Introduction
Atomic nuclei are finite quantum systems consisting of protons and neutrons. Their structure, i.e.,
how protons and neutrons arrange themselves and how they interact among each other to form
complex nuclei, has a decisive impact on everyday life, from the very existence of carbon-based
life on earth to critical nuclear physics applications such as carbon dating. Describing the nuclear
structure from first principles, i.e., from fundamental interactions between its constituents based
on the theory of the strong interaction, quantum chromodynamics (QCD), is hence pivotal in our
understanding of the physical world and has been a focus of nuclear science for many decades.
Despite the fact that nuclei and their structure have been the subject of vigorous studies for more
than a century, their understanding is still mostly based on phenomenological considerations.
The understanding of nuclei from first principles (rooted in QCD) will offer strong predictive
power with direct implications to other science frontiers, such as neutrino physics (tackling the
nuclear matrix element uncertainties) and astrophysics (determining astrophysical reaction rates
and understanding the origin of the elements).

A theoretical concept that brings nuclear structure physics closer to reaching this goal exploits
chiral effective field theories (EFTs) of the strong interaction, as first proposed by Steven Weinberg
[1], to derive nuclear interactions [2–4]. These interactions are the foundation of modern ab initio
methods, such as Nuclear Lattice EFT, the No-Core Shell Model (NCSM), and different medium-
mass methods, like the Coupled Cluster approach or In-Medium Similarity Renormalization
Group. Built on the same foundation, these methods allow for a complementary access to nuclear
structure observables, as illustrated in Figure 1, allowing for a validation of the methods by direct
comparison of observables. Moreover, a broad range of systems can be targeted with the various
methods, ranging from stable and neutron-rich nuclei to the equation of state for neutron-star
matter [5]. The three-nucleon (3N) forces play a prominent role in neutron-rich nuclear systems [6]
and they emerge naturally in EFT allowing for a systematic study of their effect in the evolution
of nuclear structure towards the limits of nuclear existence.

Key to further advancing the frontiers of ab initio theory are pioneering experiments on
atomic nuclei that confront ab initio predictions and provide unparalleled benchmarks for the
development and refinement of the theoretical approaches. In this contribution, we highlight
some of the developments at the ab initio frontier and we put forward selected experimental
efforts (both past and future) that aim at validating these calculations, with a particular focus on
experimental work that has been fostered from robust synergies of experiment and theory. We
focus on electromagnetic observables, which present a particular challenge for ab initio theory, as
will be discussed in the following.

2. Ab initio theory towards electromagnetic observables

(a) Background—The early days
The ab initio description of nuclear structure in a modern sense started more than two decades
ago with the first calculations using realistic nucleon-nucleon (NN) and three-nucleon (3N)
interactions. While initial calculations were limited to few-body systems [7], two different ab
initio many-body methods paved the way towards heavier systems: The Green’s Function Monte-
Carlo (GFMC) approach [8,9] and the No-Core Shell Model (NCSM) [10,11]. With these methods
the focus expanded from ground-state observables and continuum processes, which are the
main targets in few-body studies, to spectroscopy, i.e., the description of excitation spectra and
electromagnetic moments and transitions.

These methods encounter the need to introduce controlled approximations and truncations.
While in few-body calculations the consensus is that all technical discretizations and truncations
hidden in the numerical treatment are sufficiently converged to consider the results to be quasi-
exact, the GFMC and NCSM always have to fight for convergence. In GFMC the noise associated
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Figure 1. Connecting nuclear structure with low-energy QCD. The direct route is through lattice QCD calculations,

however, these calculations are computationally demanding, are currently limited to few-nucleon systems and their

accuracy is insufficient for precision nuclear physics. Chiral Effective Field Theory of the strong interaction allows us

to derive nuclear interactions and Hamiltonians that can be used in a suite of different many-body methods and link

nuclear structure observables with low-energy QCD.

with Monte-Carlo sampling and the convergence of the observables in the imaginary time
propagation limit the final precision. For the NCSM the truncation to a finite model space and
the convergence of observables with increasing model-space dimension set the limits.

In both cases, the convergence limitations rapidly get worse with increasing particle number
and effectively restrict the range of nuclei that can be addressed. Even today, the limit for the
original formulations of GFMC and NCSM are in the regime of p-shell nuclei, with 12C being
among heaviest nuclei that has been studied in detail [9,12].

A first cornerstone of modern advances of ab initio nuclear structure theory is, therefore,
the development of new and improved many-body methods to extend the ab initio domain to
heavier nuclei. Some of these new methods build on the basic ideas of the first-generation ab
initio methods, i.e., GMFC and NCSM, and tackle the convergence limitations in different ways.
We will discuss examples for NCSM-based methods in section 2(b). Other methods attack the
many-body Schrödinger equation from a different angle, leading to the so-called medium-mass
approaches. We will go into more detail on these second-generation ab initio methods in section
2(c).

Besides the advances on the formal approach to the nuclear many-body problem, a second
cornerstone is the rapid developments in algorithms and computing power. From the beginning,
ab initio calculations were limited by computational capabilities and capacities. Improvements
in algorithms and implementations, the use of massively parallel computing architectures and
graphics processing units, and the general growth of computing power available with modern
supercomputers all translate into an extension of the reach of ab initio methods.

A third cornerstone for modern ab initio theory is chiral effective field theory (EFT). All
ab initio solutions of the many-body problem need a well-defined Hamiltonian as a starting
point. Since we are working with nucleons as effective degrees of freedom in our many-
body approach, the Hamiltonian and the inter-nucleon interactions contained in it represent
the link to the underlying theory of the strong interaction. As such, the nucleonic interactions
encapsulate all the complexity of the quark-gluon-physics of quantum chromodynamics (QCD).
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It is a formidable task to construct the nucleonic interactions based on the dynamics. The first-
generation ab initio calculations used phenomenological interactions, such as the Argonne or
Bonn family of interactions [13,14], which accurately reproduced two-nucleon scattering phase
shifts but were rather ad hoc in their construction. Practically all of today’s ab initio calculation
use interactions from chiral EFT as starting point and typically two-nucleon (NN) and three-
nucleon (3N) interaction are being included [2–4]. Chiral EFT offers two decisive advantages
over phenomenological approaches: systematicity and consistency. Just like the many-body
approaches, chiral EFT employs a truncation to render an infinite expansion finite. The expansion
and truncation is implemented via a power counting in a small expansion parameter connected
to the momentum scale of the system. With increasing order of the chiral truncation we expect
a convergence of the interactions implying a convergence of observables computed with these
interactions. Therefore, chiral EFT offers a systematic way to improve the description by going
to higher orders of the expansion—this is what we refer to as systematicity. Consistency refers to
the possibility to extract interactions of different particle rank (NN, 3N, and beyond) as well as
electromagnetic and weak operators in a coherent and consistent framework. We are only starting
to exploit these features of chiral EFT today.

The fourth and final cornerstone of todays ab initio theory is uncertainty quantification. For
a long time, many theoretical results and predictions in nuclear structure theory were presented
as raw numbers for a given nuclear observable without any qualification of their reliability. In
some cases, these numbers are supplemented by statements about expected error bars, based on
vague general arguments and expectations (expert assessment). In some cases, a more systematic
uncertainty quantification is applied for one specific source of uncertainty, e.g., the model-
space truncation of the many-body approach. However, the preceding discussion shows that an
observable extracted from an ab initio calculation is subject to a number of different choices and
truncations. Already the many-body methods themselves employ one or more truncations plus
varying approximations. A classical NCSM calculation is probably the simplest example, being
built on just a single many-body truncation and no additional approximations. For the medium-
mass methods several truncation and approximations are involved. Also the formulation of the
chiral EFT interactions utilizes truncations, mainly the chiral order, and choices, such as the
regular scheme and scale, and experimental uncertainties through the fit to data in few- and
many-body systems. All of theses uncertainties are correlated and a comprehensive uncertainty
quantification is challenging and subject of present research [15–17].

(b) No-core shell model
As a baseline for a more detailed discussion and a first glimpse at the special difficulties we
encounter with electromagnetic observables, we will present the NCSM in a little more detail.

Hamiltonian. We start with a Hamiltonian H which includes the kinetic energy T of the
nucleons and the chiral interactions mentioned earlier, for simplicity we restrict ourselves to
NN and 3N interactions, VNN and V3N. A detail already relevant at this stage is translational
invariance—all intrinsic nuclear properties should be independent of the center-of-mass motion
of the nucleus. In the ideal case the many-body state resulting from the ab initio solution should
factorize into a product of an intrinsic and a center-of-mass state. This can be achieved in
a classical NCSM calculation using the harmonic-oscillator basis, however, general basis sets
or other many-body truncations destroy this exact factorization. A minimal requirement for
all ab initio calculations is that the operator representing the observables are formulated in
a translationally invariant manner. This is relevant for all the observables that appear in the
calculation. For the Hamiltonian it implies that we have to use the intrinsic kinetic energy
Tint = T − Tcm which results from the subtraction of the kinetic energy of the center-of-mass
motion Tcm from the total kinetic energy. The generic Hamiltonian thus reads

H = Tint + VNN + V3N , (2.1)
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where the Coulomb interaction among protons is absorbed in the NN interaction operator.

Many-Body Schrödinger Equation. For this Hamiltonian, we aim to solve the eigenvalue
problem in an A-nucleon Hilbert space, i.e., the many-body Schrödinger equation

H |Ψn ⟩=En |Ψn ⟩ (2.2)

with nuclear eigenstates |Ψn ⟩ and the corresponding energy eigenvalues En. All ab initio
methods are tackling this equation in some form, often by reformulating the eigenvalue problem
in a computationally more convenient form. The NCSM attacks the eigenvalue problem directly
as such, using a computationally accessible basis representation. In its standard formulation the
NCSM uses A-body Slater determinants |Φν ⟩ of discrete single-particle harmonic oscillator (HO)
states for a specific oscillator frequency ℏΩ. This infinite basis is truncated with respect to the total
HO excitation energy NmaxℏΩ of the basis determinants above the energetically lowest A-body
Slater determinant. For any finite value of Nmax the basis determinants span a finite model space
M(Nmax) and thus lead to a finite matrix eigenvalue problem∑

ν′∈M(Nmax)

⟨Φν |H |Φν′ ⟩Cn
ν′(Nmax) =En(Nmax)C

n
ν (Nmax) for all ν ∈M(Nmax) . (2.3)

The numerical solution of this matrix eigenvalue problem for fixed Nmax yields energy
eigenvalues En(Nmax) and, via the eigenvectors, the expansion coefficients for the eigenstates

|Ψn(Nmax) ⟩=
∑

ν∈M(Nmax)

Cn
ν (Nmax) |Φν ⟩ . (2.4)

Note that we explicitly indicated the dependence of the energy eigenvalues and the eigenstates
on the truncation parameter Nmax.

Convergence. In the limit Nmax →∞, i.e., the model space aproaches the full Hilbert space,
these quantities are guaranteed to coincide with the formally exact solutions of the many-body
Schrödinger equation (2.2), i.e.,

En(Nmax)→En and |Ψn(Nmax) ⟩→ |Ψn ⟩ for Nmax →∞ . (2.5)

The approach to this limit is what we call the model-space convergence. It is a great advantage
of the NCSM that there is a single control parameter, Nmax, which governs the precision and
allows for a systematic improvement of the calculation. For the energy eigenvalues, the NCSM
at any Nmax constitutes a variational approximation and the convergence of the eigenvalue with
increasing Nmax proceeds monotonically from above. This provides an additional level of control
and facilitates extrapolation schemes that aim to improve the results beyond the precision reached
at the largest attainable Nmax truncation.

While we obtain ground- and excited-state energies directly from the eigenvalues, other
observables like radii, electromagnetic moments, or transition strengths have to be computed
as expectation values or off-diagonal matrix elements from the eigenvectors |Ψn(Nmax) ⟩. They
will also exhibit an observable-specific convergence pattern, which often is very different from
and more complicated than the energy.

The crucial question in all practical application is: Can we reach sufficiently converged
observables within the computational limits for Nmax? Due to the low-energy or low-momentum
character of the Hamiltonian, which is built with interactions that use an explicit momentum
cutoff, we expect that observables will converge to their exact value well before the formal limit
Nmax →∞. However, due to the factorial growth of the model-space dimension and, thus, the
size of the matrix eigenvalue problem, we will be computationally limited to a rather limited
range of Nmax; for a mid-p-shell nucleus Nmax = 10 is typically the maximum that can be reached
even with supercomputer resources. For heavier nuclei this computational limit drops even lower
and hampers the applicability of the NCSM. Even with soft cutoff-regularized chiral interactions,
it is not possible to reach a sufficiently converged result within these limits. Therefore, several
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additional measures are being used to improve the scheme. They can be grouped in three
categories: pre-processing, optimization, and post-processing.

Pre-Processing. One option to improve on the convergence limitations of the NCSM and of
many other ab initio method is a pre-processing of the Hamiltonian. Already the first ab initio
applications of the NCSM used a similarity transformation in the form of the Okubo-Lee-Suzuki
approach [11,18] to implement a decoupling of the model space to accelerate the convergence.
A more flexible and universal approach and the present default for implementing a generic pre-
diagonalization of the Hamiltonian is the similarity renormalization group (SRG) [19–22]. The
SRG is built on a unitary transformation with a continuous parameter, the flow parameter, which
is implemented via a Heisenberg-like differential equation, the flow equation,

dH(α)

dα
=
[
η(α), H(α)

]
. (2.6)

The flow equation defines an initial value problem, with the initial Hamiltonian H(α= 0) given
by (2.1). The change of the Hamiltonian throughout the flow evolution is governed by the
generator η(α) which can be designed to achieve specific decoupling patterns. The standard
choice for the pre-processing is

η(α)∝
[
Tint, H(α)

]
, (2.7)

which effects a pre-diagonalization of the Hamiltonian in momentum space [21,22]. Note
that all these expressions are operator equations, just like the initial many-body Schrödinger
equation (2.2). In order to solve them numerically, we again use a truncated basis representation.
In addition we use a cluster decomposition, i.e., we decompose the evolved Hamiltonian
into irreducible one-, two-, three- and many-body contributions and compute the individual
contributions separately. This cluster expansion has to be truncated as well, since beyond the
three-body contribution the solution of the flow equation in sufficiently large basis sets becomes
prohibitive.

The unitarity of the transformation guarantees that the eigenvalues of the transformed
Hamiltonian are the same as for the initial operator. Likewise the expectation values of other
observables computed with the eigenstates of the transformed Hamiltonian remain invariant
if the observable is transformed consistently with the Hamiltonian. The correlations that
are removed from the eigenstates through the pre-diagonalization show up as additional
contributions to the operators of the observables. This unitary invariance of eigenvalues and
expectation values holds as long as the SRG transformation does not involve additional
truncations. The restriction of the transformed operators to two- or three-body rank, however,
formally breaks unitarity at the A-body level and induces uncertainties.

Optimization. We can also improve the NCSM calculation itself to reach better convergence
without increasing the computational cost. We can, for example, consider a different single-
particle basis than the HO. The HO oscillator basis has unique properties from the formal point
of view, in that it allows for the exact factorization of the center of mass and, related to that,
an analytic transition from single-particle to relative coordinates through the Talmi-Moshinsky
transformation. These tools are extensively used in the computation of matrix elements, therefore,
the first steps in an NCSM-type calculation will benefit from using the HO basis. However, the
HO wave functions, particularly regarding their long-range Gaussian fall-off, are not optimal for
the description on a self-bound nuclear system, where we expect an exponential asymptotic for
the wave function. We could imagine an optimized single-particle basis, which takes the correct
asymptotic behavior and gross properties of the many-body system, e.g., its size, into account
in a nucleus and interaction-specific way. The so-called natural-orbital basis [23] provides these
benefits and was shown to yield an optimal convergence rate for energies.

Another way to optimize an NCSM calculation is to further reduce the basis dimension within
a given M(Nmax) model space. When we analyze the contribution of individual basis states to
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low-lying eigenstates of the Hamiltonian for a specific nucleus, we find that many basis states
exhibit very small or vanishing coefficients in (2.4). Omitting these basis states from the beginning
would not change the eigenstates significantly, but reduce the dimension of the matrix eigenvalue
problem to be solved. We can estimate the expected coefficients of individual basis states using
perturbation theory, which leads to a state-selective a priori importance measure. By introducing
a truncation threshold on this importance measure we can define an importance-truncated model
model space, which is significantly smaller than the full M(Nmax). Eventually this importance
truncated NCSM [24,25] enables us to go beyond the Nmax limits of the standard NCSM.

Post-Processing. In order to assess the convergence behavior of an NCSM calculation we always
perform multiple eigenvalue solutions for a range of Nmax truncation parameters. Thus we
will obtain a sequence of values for any of the observables within a certain range of Nmax. In
many cases, we will not reach complete convergence within these sequences, but we can use
them to predict or extrapolate a converged value of an observable. Particularly for energies, with
their monotonic convergence pattern, heuristic extrapolation schemes based on, e.g., exponential
parametrizations have been used routinely [26]. Attempts have been made to explain the behavior
of converging sequences within an effective theory to obtain physics-based model for the
dependence of an observable on the model-space parameters [27–30]. Still, the extrapolations
of observables other than the energies are difficult because of their more complex and varied
convergence patterns.

A recent development is the use of machine learning and artificial neural networks for the
prediction of converged observables [31–33]. In these data-driven approaches large sets of actual
NCSM calculations are being used to train an artificial neural network to predict the converged
vales of the observable. Unlike the extrapolation schemes, which rely on a physically motivated
parametrization of the model-space dependence of the observable, the neural networks learn this
behavior from the actual calculations. We have designed a universal class of neural networks
which uses NCSM data from light nuclei, where the exact, i.e., fully converged results are
accessible, for the training process. We have shown that the trained networks can then be applied
for arbitrary nuclei and provide robust predictions with statistically meaningful uncertainties
[33]. For the first time, this scheme allows for robust and accurate predictions for nuclear radii
also in cases with difficult convergence patterns [34].

(c) Medium-mass methods
Despite all the improvements, the range of nuclei accessible to the NCSM is limited to the p
or lower sd-shell and the fundamental reason for this limitation is the factorial growth of the
problem dimension with particle number. Such a drastic scaling is the curse of all approaches
that build on a direct basis expansion, including the so-called full configuration interaction (CI)
approaches that use a truncation of the underlying single-particle basis. In order to counteract
this curse of dimensionality, one can employ a more drastic basis truncation on the number of
particle-hole excitations on top of a reference state. The reference state |Φref ⟩ can be thought of
a rough approximation of the ground state of the nucleus and, in many cases, might be limited
to a single Slater determinant suitable for the description of closed-shell systems. We can define
particle-hole excitations on top of |Φref ⟩ and in this way organize the complete many-body basis
of a full CI calculation. With second quantization creation and annihilation operators, we can
write the particle-hole expansion of a CI eigenstate as

|ΨCI ⟩=C |Φref ⟩=
(
C0 + C1 + C2 + ...

)
|Φref ⟩

=

(
C0 +

∑
ph

Cph a†pah +
∑

pp′hh′

Cpp′hh′ a†pa
†
p′ah′ah + ...

)
|Φref ⟩

(2.8)

with coefficients sets C0, Cph, Cpp′hh′ , ... determined from the eigenvalue solution. This basis
organization enables an additional truncation with respect to the particle-hole rank, e.g., by
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omitting all terms beyond the two-particle-two-hole (2p2h) level. This will drastically reduce
the basis dimension and tame the scaling, but will also significantly limit the ability of the basis
to capture many-body correlations, particularly collective correlations build from multi-particle-
multi-hole excitations.

Therefore, a central theme for the many-body methods discussed in the following is to enhance
the ability to capture the many-body correlations as compared to a simple particle-hole truncated
basis expansion without increasing the problem dimension. As a result, the numerical character of
the problem changes—from a matrix eigenvalue problem to coupled sets of nonlinear equations
or differential equations. This is were we enter the realm of the so-called medium-mass methods.

In the following we discuss the basic conceptual ideas for a selection of medium-mass
methods. This selection cannot be exhaustive, and we will not address propagator-based and
perturbative methods, such as self-consistent Green’s function methods [35], quantum Monte
Carlo methods [36–38], or advanced implementations of many-body perturbation theory [39].
We also do not cover symmetry-driven methods, such as the symmetry-adapted NCSM [40],
and methods based on symmetry breaking and restoration, e.g., generator coordinate methods
combined with the in-medium SRG [41] or multi-reference many-body perturbation theory
[42,43]. However, it should be noted that these methods hold great potential for the description
of electromagnetic properties for heavier nuclei.

Coupled-Cluster Theory. Coupled cluster theory nicely illustrates the step away from a linear
basis expansion of the eigenstates (2.8) to a more powerful ansatz for the many-body ground-
state. Starting from a single-determinant reference state |Φref ⟩, correlations are added through
the application of an exponential wave operator

|ΨCC ⟩= exp(T ) |Φref ⟩= exp(T1 + T2 + ...) |Φref ⟩ . (2.9)

The linear excitation operator of particle-hole CI is promoted into the exponent and becomes an
amplitude operator T that is again organized by particle-hole rank. A truncation of the T operator
at the 2p2h level defines the coupled cluster singles-doubles (CCSD) approach. The amplitudes
Tph, Tpp′hh′ , ... contained in the T operator have to be determined from the solution of a set on
coupled nonlinear equations, which results for inserting |ΨCC ⟩ into the many-body Schrödinger
equation and projecting on the individual basis states [44].

The resulting coupled-cluster equations can also be interpreted as a specific decoupling
condition for the similarity transformed Hamiltonian

HCC = exp(−T )H exp(T ) , (2.10)

which schematically can be written as

⟨Φref |HCC |Φref ⟩=ECC , ⟨Φ1p1h |HCC |Φref ⟩= 0 , ⟨Φ2p2h |HCC |Φref ⟩= 0 , ... , (2.11)

where |Φnpnh ⟩ represents any of the npnh excited basis states. Thus the similarity transformation
described by the wave operator exp(T ) suppresses all pieces of the Hamiltonian that couple the
reference state to particle-hole excitations, i.e., the transformation decouples the reference state
from particle-hole excitations.

In-Medium Similarity Renormalization Group. The concept of decoupling was already
present in the discussion of the SRG transformation of the Hamiltonian in few-body spaces that
we discussed as part of the pre-processing for an NCSM calculation. As we already emphasized,
the concept of the SRG is very general and flexible and we can use it to define a stand-alone
many-body method [45,46]. We use the flow equation at the A-body level and write all operators
in second quantization creation and annihilation operators normal-ordered from with respect to
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a single-determinant reference state |Φref ⟩. As a result the operator-valued flow equation

dH(s)

ds
=
[
η(s), H(s)

]
(2.12)

can be rewritten as a set of coupled differential equations for the matrix elements of the
normal ordered Hamiltonian. All the initial normal-ordered operators as well as the commutator
expressions on the right-hand-side of the flow equation have to be truncated at a relatively low
particle-rank—the particle-hole or cluster truncation of the previous approaches enters the in-
medium SRG through this back-door. Typically all normal-ordered terms beyond the two-body
level are discarded, defining the IM-SRG(2) scheme. Three and multi-body operators are still
captured at this truncation level, but only in an average sense through their normal-ordered zero,
one, and two-body contributions.

Note that CI(2p2h), CCSD and IM-SRG(2) all deal with a similar number of unknowns and
they are all built on some kind of two-particle truncation. Although CCSD and IM-SRG(2) also
capture some specific correlations beyond the two-particle level, they do not offer the flexibility
to represent all possible three-particle (and beyond) correlations. All three methods lead to a
different category of numerical problem: from a matrix eigenvalue problem, a nonlinear coupled
system of equations, to a coupled system of first-order differential equations.

Valence-Space Shell Model. Both, coupled-cluster and in-medium SRG are limited to the
description of ground states of closed-shell nuclei in their basic formulation. The step towards
excited states and open-shell systems requires either a nontrivial generalization of the formalism
or the use of a secondary many-body method for processing the many-body decoupled
Hamiltonian. One option for this secondary many-body calculation is the valence-space shell
model. Both, coupled cluster and in-medium SRG can be adapted to a valence-space decoupling
pattern [47–51]—starting from the closed-shell core as reference space, the matrix elements of the
Hamiltonian that connect the valence states to either core or excluded states are suppressed. In
this way, the Hamiltonian matrix assumes a block-diagonal from and a solution of the eigenvalue
problem within the valence space is sufficient to extract the ground state and low-lying excited
states.

In-medium SRG and coupled cluster provide an ab initio foundation for the traditional
valence-space shell model as well as a practical and efficient scheme to derive a valence space
Hamiltonians from a realistic free-space interaction, e.g., from chiral EFT. The range of these
calculations is the same as for valence-space shell model calculations with phenomenological
Hamiltonians, i.e., the computational limitations result from the shell-model diagonalization
and not from the in-medium SRG or coupled-cluster calculation that defines the decoupled
Hamiltonian. They also share the same limitations as the conventional shell model, e.g., when
it comes to the description of collective phenomena. We will come back to this point in Section
2(e).

Multi-Reference Approaches. One can improve on this situation by generalizing the
decoupling idea to a so-called multi-reference scenario. We do not start from a single Slater
determinant as reference state, but rather a superposition of multiple Slater determinants that
span the reference space. The decoupling aims to suppress all matrix elements that connect
states form the reference space with the rest of the Hilbert space. The resulting Hamiltonian
then serves as input for a subsequent many-body calculation that covers the reference space and
extracts the relevant observables. This multi-reference generalization can be readily implemented
in the in-medium SRG context, and it has been employed in different settings. One option
is to use angular-momentum projected deformed Hartree-Fock-Bogoliubov states as reference
space [50,52,53]. In this way, intrinsic deformation can be built into the reference space from the
beginning and the decoupling takes care of particle-hole excitation on top of the intrinsically
deformed reference. Another option is to use a general CI calculation in a small model space to
define the reference state. In this way, all the static and dynamic correlations that are captured
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in the reference space are treated exactly and the decoupling only accounts for the admixtures of
high-lying excitations beyond the reference space.

In-Medium No-Core Shell Model. The latter scheme is the basis for the in-medium NCSM
(IM-NCSM) [54]. We start from an NCSM calculation in a small model space, typically Nmax =

Nref ≤ 4. The ground state obtained in this calculation defines the reference state for the multi-
reference in-medium SRG decoupling. The generator is defined such that matrix elements
connecting the reference space with higher-lying basis states are suppressed, i.e., we decouple
the small-Nref reference space from the rest of the Hilbert space. The output of the multi-reference
IM-SRG evolution are the matrix elements of the transformed Hamiltonian and of consistently
transformed operators of all relevant observables. These matrix elements are the input for a final
NCSM calculation that provides access to the observables of interest. There are three main control
parameters involved in the IM-NCSM: The truncation Nref for the reference NCSM calculation,
the flow parameter for the IM-SRG evolution, and the Nmax truncation of the final NCSM
calculation. All three parameters can be varied to assess the many-body uncertainties inherent
to the approach, mainly because of the truncation of the multi-reference IM-SRG evolution at
the normal-ordered two-body level. Because of the decoupling of the reference space, the final
NCSM calculation is essentially converged at Nmax ≈Nref if the target states are well represented
in the initial reference space. Note that with growing Nref the reference space covers more of the
relevant Hilbert space and the decoupling has less effect. Thus, despite the truncation of the IM-
SRG to normal-ordered two-body operators, the precision of calculation systematically improves
with increasing Nref and becomes formally exact in the limit Nref →∞. The option to vary or
design the reference space according to the specific structure of the problem is a great advantage
of multi-reference approaches. This will become particularly important for the description of
electromagnetic observables, as discussed later.

(d) Present status
Ab initio nuclear structure theory with all the ingredients discussed in the preceding sections has
reached a remarkable level of maturity in a relatively short amount of time.

Today we have different families of NN+3N interaction from chiral EFT available that serve as
a universal starting point for a wide range of ab initio methods and applications. The differences
in the available sets of interaction lie in the choice of regulator scheme and scale, the available
range of chiral orders, and the way the low-energy constants are fit to data from few or many-
body systems. Most interactions rely on a chiral EFT formulation with explicit nucleon and pion
degrees of freedom, while some also include intermediate delta excitations. While the latter are
typically limited to next-to-next-to-leading order (N2LO) in the chiral expansion for the NN and
3N interaction [55], the former reach order N4LO and beyond for the NN interaction [56–58] and
order N3LO for the 3N interaction. Moreover, the full sequence of chiral orders from LO to the
maximum order, e.g., N3LO, is available and allows for a direct investigation of the convergence
of the chiral expansion at the level of observables [59–61]. In addition the convergence pattern
of observables can be used to quantify uncertainties of the observables resulting from the
truncation of the chiral expansions for the interaction and sophisticated Bayesian schemes have
been developed for this purpose [15,16,61,62].

All state-of-the-art chiral interactions reproduce ground-state energies of light and medium
mass nuclei in good agreement with experiment. Obviously, ground-state energies are the first
benchmark when assessing the performance of new chiral interactions as well as new many-body
methods. Systematic benchmark calculations employing different many-body methods with the
same chiral NN+3N Hamiltonian have played an important role in validating ab initio methods
and assessing their uncertainties.

The next ground-state observables typically studied after the energies are root-mean-square
(rms) radii. For all of the early chiral NN+3N interactions, there are systematic deviations of the
calculated point-proton rms radii in the medium-mass regime compared to experiment. Only the
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Figure 2. Ground-state energies (top row) and point-proton rms radii (bottom row) of the even oxygen isotopes obtained

in the IM-NCSM using chiral NN+3N interactions up to N3LO with non-local regulators and different cutoffs Λ. The

uncertainty bands included for N2LO and N3LO indicated the combined many-body and interaction uncertainties. Figure

adapted from [63], see [59] for more details.

most recent generation of chiral NN+3N interactions has resolved this problem, however, the
detailed understanding of the source of this discrepancy is still missing [59]. An example of the
performance of recent chiral NN+3N interactions for the description of ground-state energies and
point-proton rms radii is shown in Figure 2 for the oxygen isotopic chain. The panels show the
ground-state energy and the point-proton rms radii obtained in the IM-NCSM for a family of
non-local NN+3N interactions from NLO to N3LO with three different values of the regulator
cutoff Λ. Based on the order-by-order behavior of the observables, uncertainties due to the chiral
truncation are estimated. The combination of those interaction uncertainties with the many-
body uncertainties assessed via a variation of the IM-NCSM truncations, as discussed earlier,
leads to the uncertainty bands depicted for N2LO and N3LO. Within these theory uncertainties,
we observe a robust agreement of the calculated ground-state energies with experiment. Also
the radii are in good agreement with experiment, particularly for the two lower cutoffs. The
agreement of the radii was a major problem in previous generations of chiral interactions.

Going beyond the ground-state, the excitation energies are the next target of interest. As
discussed earlier, for many of the medium-mass approaches this step requires extensions of
the the method, often leading to a hybrid scheme such as the valence-space shell model with
Hamiltonians from a coupled-cluster or IM-SRG decoupling. For NCSM-type methods, including
the IM-NCSM, the excitation spectrum is obtained without extra effort and on the same footing
as the ground state. Comparisons of excitation spectra obtained in ab initio calculations with
experimental data typically show a good agreement. Some excited states, however, might exhibit
a problematic convergence behaviour, e.g., because of prominent intrinsic α-clustering, which is
difficult to capture in many-body expansions build on a spherical basis. Another limitation is the
coupling to the continuum, which becomes relevant once the first particle-separation threshold
is approached. The proper inclusion of continuum degrees of freedom requires significant
extensions of the many-body framework, which we do not address here.
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(e) Challenges of electromagnetic observables
The previous discussion shows that ab initio theory has come a long way for the description of
ground-state energies and radii as well as the excitation spectrum. The natural next step is the
description of electromagnetic observables, thus, addressing the full spectroscopy of low-lying
states. This step is challenging, for a number of different reasons. Already from a general physics
point of view, we expect electromagnetic observables to probe the structure of the nucleus in
a different and more subtle way than, e.g., binding energies. Depending on their multipolarity,
they depend sensitively on the spin and angular momentum structure of the nucleus and, in
some cases, also on the long-range behavior of the nuclear wave functions. On the one hand, this
is a desired aspect, since it provides us with a more comprehensive and detailed picture of the
structure of nuclei. On the other hand, it poses new problems for precise ab initio calculations of
these observables.

No-Core Shell Model. The NCSM provides direct access to the excited states through the
solution of the Schrödinger equation as a matrix eigenvalue problem. Therefore, all expectation
values and transition matrix elements involving excited states can be readily computed. As
specific examples we consider the magnetic dipole (M1) operator and the electric quadrupole (E2)
operator, and the associated moments and reduced transition strengths. The majority of existing
calculations on electromagnetic properties of nuclei start from the simplest possible one-body
form of electromagnetic multipole operators. However, when approaching these observables
from an ab initio perspective, two complications have to be considered.

First, since we typically use a Hamiltonian that is pre-processed through a free-space SRG
evolution, all other operators that are used in conjunction with the eigenstates have to undergo a
consistent SRG transformation. As discusses earlier, such a unitary transformation induces many-
body terms beyond the particle-rank of the initial operator. If we use a simplistic one-body form
for the multipole operators, they will acquire two-body and multi-body contributions induced by
the SRG transformation. These contributions have to be included in the calculation to maintain the
unitary equivalence with the original many-body problem. For the induced two-body part this is
rather straight forward, but for three- and multi-body contributions this becomes computationally
challenging since we are dealing with non-scalar operators.

Second, the chiral EFT framework for constructing the nuclear interactions provides the means
for a consistent construction of two-body corrections to the electromagnetic multipole operators
based on two-body current and charge-density contributions. The inclusion of these correlations
allows for a fully consistent description of electromagnetic observables based on chiral EFT. The
simple single-particle form of electromagnetic multipole operators only constitutes the leading-
order contribution to this chiral expansion.

At present, these two aspects are rarely taken into account in ab initio calculations beyond the
few-body domain. An example for the inclusion and study of both aspects are the precision NCSM
calculations for M1 observables in 6Li reported in Ref. [64]. This is a particularly well suited
system for a precision NCSM study. First of all, 6Li is sufficiently light so that NCSM for relatively
large Nmax truncation parameters are possible. Second, the M1 observables typically show a
robust convergence pattern, since the M1 operators only probe the spin and angular momentum
structure of the system, which can already be captured in NCSM model spaces of moderate
size. Therefore, the many-body uncertainties resulting from the model-space convergence of
the observables are well under control and we can focus on the influence of chiral two-body
currents and the consistent SRG evolution. Figure 3(a) illustrates these effects for the ground-state
magnetic dipole moment µ(1+) and the B(M1, 0+ → 1+) transition strength from the excited 0+

state to the 1+ ground state for four different chiral NN+3N interactions. The error bars at the
individual data points indicated the NCSM convergence uncertainties. One set of calculations
uses the simple single-particle form of the M1 operator, which constitutes the leading order
in the chiral expansion, without a consistent SRG transformation — most NCSM calculations
of electromagnetic properties in the past have been performed at this level. The second set of
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state and the 0+ ground state in 12C. Here, NCSM results for different chiral interaction and model space truncation

Nmax predicit a strong correlation between the two observables, but, due to incomplete convergence, do not yield a

specific values. Figure adapted from [65].

calculations uses the M1 operator at LO but account for its SRG transformation at the two-body
level. The third set of calculations includes the chiral two-body corrections to the M1 operator
at NLO and the consistent SRG transformation. First of all, we observe that the many-body
and interaction uncertainties for this observable are well under control, i.e., the error based and
the scatter for the four different interactions are small and of similar size. Therefore, the small
effects of the SRG transformation, which changes the B(M1) by about 5% and µ by about 2.5%
are relevant. Similarly, the effect of the two-body current contributions to the M1 operator are
visible, they change the B(M1) by about 8% and have very little effect on µ. This last step
brings the calculation into excellent agreement with the high-precision experiment. Thus, for M1
observables we are in the position to perform precision studies with well controlled uncertainties.

For E2 observables, the situation is much more difficult. In principle, the chiral two-body
current contributions to the E2 operator and the consistent SRG evolution have to be considered
as well. However, the major source of theory uncertainties in this case is the model-space
convergence of E2 observables, which is much worse than for M1 observables. Already in its
leading-order or single-particle form, the E2 operator probes the angular momentum structure
of the nuclear states as well as the long-range behavior of the wave functions. This leads to a
significantly slower convergence compared to, e.g., energies. Therefore, model-space truncations
are the dominant limitation in all types of ab initio calculations of E2 observables.

In the NCSM, the situation is rather well controlled since we only deal with Nmax as single
truncation parameter. However, for mid-p-shell nuclei we are not able to provide converged
NCSM calculations for electric quadrupole moments or transition strengths. As an example we
consider 12C and the E2 transition from the first 2+ state to the ground state as well as the
quadrupole moment of the 2+ state. Within the range of Nmax truncations that is computationally
accessible, no complete convergence can be obtained for these observables. Moreover, model-
space extrapolations of these observables are very difficult and introduce large uncertainties
[66].
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One way to extract meaningful information on E2 observables despite the incomplete
convergence is to exploit correlations among different observables. Even non-converged many-
body calculations might reveal such correlations and can be used to extract precise and accurate
values for one observable based on a known experimental value for a second, correlated
observable. An example for the application of such a scheme is the quadrupole moment Q of
the first excited 2+ state in 12C. Ab initio NCSM calculations show a strong correlation of this
quadrupole moment with the B(E2) transition strength to the ground state. Irrespective of the
Nmax truncation parameter and the specific chiral interaction used, all calculations fall onto a
well-defined line in Q-B(E2)-plane, as shown in Figure 3(b). Note that this include very small
NCSM model spaces, e.g., Nmax = 2, 4 which are far from convergence. For a given interaction at
the specific ℏΩ value shown here, both, Q and B(E2) increase with increasing Nmax and, thus,
move upwards along the correlation line.

The correlation can be nicely parametrized by a modified rotor model, as discussed in Ref.
[65]. With the experimentally well known value for the B(E2) transition strength and using the
correlation predicted by the ab initio NCSM we can extract a value for the quadrupole moment
that is much more precise than any extrapolation of the NCSM results could. Similar correlations
have also been identified for pairs of other observables, e.g., the charge radius and the quadrupole
moment [67].

Medium-Mass Methods. Given the difficulties with converging E2 observables in the
NCSM, one might think that many-body schemes that cover larger single-particle spaces are
advantageous. Medium-mass methods, such as coupled-cluster and the in-medium SRG, fall into
the categories of many-body approaches which can access large single-particle spaces, however,
they have to use an additional truncations with respect to the particle rank of the excitations or
operators.

In order to address electromagnetic observables in these approaches, we have to go beyond the
ground state of closed-shell nuclei. One option are valence-space calculations, where coupled-
cluster or in-medium SRG are used to construct a valence-space interaction for a subsequent
shell-model diagonalization. As discussed earlier, the decoupling transformation has to be
applied not only to the Hamiltonian, but to all observables consistently. Thus, in the case
of electromagnetic observables, the electromagnetic multipole operators get modified by the
transformation. This modification is important—since the decoupling transformation drastically
simplifies the many-body states and thus eliminates correlations, the transformation of the
operators has to compensate for this. There is some analogy to phenomenological effective
charges in the traditional shell model, which also simulate the effect of missing correlations
by limiting the problem to a small valence space. However, there are important differences as
well. There is no phenomenology in the consistent transformation of electromagnetic operators
in the decoupling approaches—the transformed operators are completely determined by the
decoupling procedure and there are no free parameters. Furthermore, the transformation changes
the structure of operators significantly. When starting from the simplistic one-body electric
or magnetic multipole operators, the transformation will induce two-, three- and multi-body
contributions to these operators. Unlike effective charges, which amount to a simple scaling of
the one-body operators, the consistent transformation leads to a much more complicated operator
structure with contributions for all particle ranks. This complexity at the level of the operators is
necessary to capture all the multi-particle correlations that are eliminated from the many-body
states by the decoupling transformation.

At this point a problem emerges: In practical calculations we cannot include all the many-
body contributions generated by the transformations, neither for the Hamiltonian nor for the
electromagnetic operators. In most practical calculations all operators are truncated at the
(normal-ordered) two-body level. This approximation is acceptable as long as the contributions of
the higher-rank operators is below the desired precision of the calculation. For simple observables
like energies or radii, this is often the case. However, for electromagnetic operators this can
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cause problems and once again E2 observables are a particularly difficult case. This has been
analyzed in Ref. [68] in detail for the valence-space calculations coupled with the IM-SRG.
Generally, the E2 observables connected to collective effects, e.g., intrinsic deformation, are
strongly underestimated in the truncated calculations.

This problem is not limited to the valence-space-version of the IM-SRG, it also appears
in multi-reference IM-SRG approaches such as the IM-NCSM. An intrinsic advantage of the
multi-reference approaches is the flexibility to choose the reference space. Since all correlations
that can be represented in the reference space are treated explicitly and are not subject to the
decoupling, the choice of the reference space provides an extra level of control. Simply speaking,
if the reference space captures all the relevant correlations for the description of a specific
electromagnetic observable, then the decoupling will not affect this observable too much.

In Figures 4 and 5 we provide a summary of results obtained in the IM-NCSM for the even
carbon isotopes from 10C to 20C. The left-hand panels provide an overview of the systematic
behaviour of the ground-state energy, the excitation energy of the first 2+ state, the B(E2)

transition strength from the first 2+ to the ground state, and the quadrupole moment of the first
2+ state throughout the chain. The right-hand panel shows the excitation spectra for the different
isotopes.
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Figure 4. Summary of the ab initio IM-NCSM results for the ground-state energy, the 2+1 excitation energy, the

B(E2, 2+1 → 0+1 ) transition strength, and the quadrupole moment Q(2+1 ) for the even carbon isotopes from 10C to
20C using non-local chiral NN+3N interactions up to N3LO. The bands indicate the theory uncertainties. The adopted

experimental values [69] are also presented, where known. Newer experiments are discussed below (see, e.g., section

3(a)).

3. Experimental efforts to guide the theoretical developments
The theoretical developments have to be confronted with experimental investigations that
deliver key spectroscopic information on isotopic chains accessible to well-established ab initio
approaches as well as new medium-mass methods. As described above, a prediction extracted
from an ab initio calculation is subject to a number of different choices and truncations, from
the many-body methods themselves to the formulation of the chiral EFT interactions that are
employed.
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the chiral interaction uncertainties.

An ideal experimental arena for the refinement of the theory, especially in its effort to extend its
applicability to heavier systems, is the carbon and oxygen isotopic chains. These nuclei can serve
as a benchmark for testing chiral EFT interactions used in well-established ab initio approaches
(e.g., NCSM, GFMC) by measuring for the first time or with improved accuracy properties that
are sensitive to the underlying interaction. At the same time, these isotopic chains allow for
test of new medium-mass approaches (e.g., IM-SRG), which start to become competitive in this
mass region. The carbon and oxygen isotopic chains occupy a unique position in the hierarchy
of ab initio methods—they are at the upper end of the domain of applicability of quasi-exact
methods like the NCSM and at the lower end of the domain, where medium-mass methods
provide sufficiently accurate results 1. From the experimental perspective, these isotopic chains
can be studied up to the (proton and neutron) driplines and can provide a wealth of experimental
information, avoiding additional complications of coupling to the continuum as is the case for
lighter systems. Therefore, this specific region of the nuclear chart provides unique opportunities
for precision tests of different types of ab initio approaches.

In this section we focus our attention on selective experimental efforts to extract E2
observables, which have been highlighted as notoriously difficult quantities to be described by
ab initio theory (see section 2(e)), along the carbon and oxygen isotopic chains. There are two
fronts that need to be addressed experimentally. The precision frontier, for transitions that were
known experimentally but not to an accuracy that would allow any meaningful comparison with
ab initio calculations, and the discovery frontier, measuring E2 matrix elements in key nuclei for
the first time.

The experimental cases that are presented in this contribution are not exhaustive (see,
e.g., [70–74]), however, they have emerged from the cultivation of robust synergies between
the experimental and theoretical activities over numerous years, which is the essence of this
contribution.

1Note that for lighter systems, additional truncations typically used in the medium-mass methods, e.g., the normal-ordered
two-body approximation of three-body contributions, lead to larger relative uncertainties.
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(a) The 2+ state of 12C and its spectroscopic quadrupole moment
Electromagnetic diagonal matrix elements < I||Ôλ||I > are very sensitive to the details of the
nuclear wavefunction, as they depend on the one state that is being investigated describing
transitions between magnetic sub-states. Experimentally these can be accessed for example
through the spectroscopic quadrupole moment Qs. The influence of the diagonal matrix element
is important in low-energy Coulomb excitation and is due to second-order transitions between
magnetic sub-states, the so-called re-orientation effect, which results in the sensitivity of the
Coulomb excitation cross section to the quadrupole moment.

Although measurement of the Qs(2
+) in several carbon isotopes would be highly desirable,

see, e.g., Figure 4 and the variability of this observable along the carbon isotopic chain, the
difficulty of extracting carbon (and in general light) isotopes as low-energy and high-purity
radioactive ion beams (RIB) with sufficient intensity, makes 12C the only candidate for studying
experimentally the Qs(2

+) in this isotopic chain presently. In the future, this would be possible
in state-of-the-art radioactive-ion-beam facilities that are being developed now, e.g., the re-
accelerated exotic ion beams at the FRIB facility [75] will offer unique opportunities to perform
such experiments.

Figure 6(a) summarizes the experimental results to date of the spectroscopic quadrupole
moment of the 2+ state of 12C and how they compare with theory. The high energy of the 2+ → 0+

γ-ray transition (4.44 MeV) and the low Coulomb-excitation cross section make this a very
challenging measurement, reflected in the limited number of experiments that have attempted
this measurement [76–78]. It is interesting that the ab initio calculations [65,79–81] firmly predict
Qs(2

+)≈+6 efm2. This lies at the very edge (within 2σ) of the experimental value.
When trying to benchmark the theoretical predictions, it is important to consider also the

calculated B(E2) transition strength, and the dimensionless ratio B(E2)/Q2
s , which offers an

appealing indicator to extract structural information on even-even nuclei [82]. This ratio is
important to assess any convergence limitations that the ab initio calculations face given the
sensitivity of the E2 operator to the long-range behaviour (tails) of the wavefunctions involved.
In fact, several studies [65,83,84] have shown the robustness of this ratio, that converges
faster than the two observables individually. The comparison in Figure 6(b) could suggest that
the microscopic interactions need to be revisited, if, to some extent, the ratio minimizes the
convergence issues.

(b) The puzzle of 16C
Large-scale no-core shell model (NCSM) calculations, starting from realistic Hamiltonians
without adjustable parameters or effective charges, have been performed for low-lying states of
even-even carbon isotopes with A=10–20 (see [66] and Figure 4) in order to understand their
structural evolution with increasing neutron number. In these calculations two striking features
have been observed; the quadrupole moment of the first 2+ state in 16C is negative, unlike for all
other neutron-rich carbon isotopes, and the electromagnetic transition strengths exhibit a strong
sensitivity to the details of the nuclear interaction.

In particular, a strong suppression of the 2+2 → 0+g.s. transition has been predicted when the
3N interaction is included. Indeed, the 2+2 → 0+g.s. transition strength is suppressed by a factor
of ≈ 7 in the calculation with the chiral 3N compared to chiral NN only. At the same time the
CD-Bonn potential, a well-tested NN interaction constructed within meson exchange theory and
very successful in the description of p-shell spectroscopy, predicts a transition strength larger by
a factor of ≈ 20 than the chiral NN+3N interaction. In addition, a 40% change in the size of the
quadrupole moment of the first 2+ state is observed when using the chiral 3N interaction, as
opposed to 2N interactions.

An early experimental study of 16C [88] points to the inclusion of 3N forces in order to
reproduce the experimental branching ratios of the 2+2 → 2+1 and 2+2 → 0+g.s. transitions that have
been constrained to >91.2% and <8.8%, respectively. Since then, further experiments have been
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Figure 6. (Color online) Theoretical (blue filled squares) and experimental values (black filled triangles) for the (a) Qs(2
+
1 )

and (b) dimensionless ratio B(E2; 0+1 → 2+1 )/Q2
s(2

+
1 ) of 12C. From the left to the right: In Medium - No Core Shell

Model (IM-NCSM) and Importance Truncated - No Core Shell Model (IT-NCSM) using 2- (NN) and 3-body (3N) (NN+3N)

chiral Effective-Field-Theory (EFT) interactions [65,79], lattice EFT at Leading Order (LO) [80], no-core ab initio Monte

Carlo Shell Model (MCSM) using the Daejeon16 interaction [81], Algebraic Cluster Model [85], global Energy Density

Functionals [86], Shell-Model calculations using variable and fixed effective charges (eeff ) [87], experimental values

measured by Vermeer et al. [76], Raju et al. [77] and Saiz Lomas et al. [78]. The shaded area follows the experimental

values from the most recent experiment which delivered the most precise value to date for the Qs(2
+
1 ) [78]. The figure is

modified from [78].

performed with the goal to measure transition strengths in 16C and shed light on the role of
3N forces in the structure of this nucleus, see [74] and [89]. The work from [74] gives only a
lower lifetime limit for the 2+2 of 16C, not sufficient to confront modern ab initio calculations. The
work of [89], however, delivers a robust constraint to the lifetime of the 2+2 of 16C, which can be
translated into individual constraints for the three transitions dominating the de-excitation of the
2+2 state of 16C, i.e., B(E2; 2+2 → 2+1 ), B(M1; 2+2 → 2+1 ), and B(E2; 2+2 → 0+g.s.), see Figure 7.

No-Core Shell-Model calculations using state-of-the-art chiral NN+3N interactions at N3LO
for both the NN and the 3N contributions and a generalized natural-orbital basis (instead
of the conventional harmonic-oscillator single-particle basis) reproduce, for the first time, the
experimental findings remarkably well [90]. This is a clear demonstration of how theory advances
are triggered by challenging experimental results in a close, constructive interaction between
theory and experiment.

(c) The 2+ state of 20C and its lifetime
The spectroscopy of very neutron-rich systems is more sensitive to the neutron-neutron
interaction as well as the three-neutron interaction (T=3/2 isospin channel), which is currently a
frontier in the physics of nuclei for shell structure and its evolution to the driplines. Constraining
the neutron 3N interaction in chiral EFT has far-reaching implications beyond the physics of exotic
nuclei. 3N forces play a very important role in neutron stars and pure neutron matter, the latter
being a natural bridge between astrophysical observation of neutron stars and terrestrial nuclear
experiments. 20C, with proton-neutron asymmetry N/Z=2.3, is the most asymmetric nucleus for
which lifetime measurements can be performed, enhancing effects of the T=3/2 isospin channel
in the 3N interaction.

Given that E2 observables provide an excellent testing ground for chiral interactions and
many-body methods that goes beyond the aspects probed by the excitation energies alone, it is
of the utmost importance to pin down the lifetime of the 2+ state of 20C with high accuracy
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and precision. Results from In-Medium NCSM calculations with a consistent N3LO NN+3N
interaction for excitation energies, B(E2) and Q(2+) for 20C are shown in Figure 4 together
with the experimentally adopted value2. It is clear that from an experimental perspective the
data should be of the highest quality and accuracy for any meaningful comparison with theory.
Therefore new experiments should be designed with an aim of delivering a confirmation of the
accepted value and a reduction of the associated error bars.

20C can be accessed experimentally for spectroscopy in fragmentation facilities. The RIBF
facility at the Nishina Centre, RIKEN (Japan) [93] and the FRIB facility (USA) [75] are uniquely
positioned to deliver a high precision measurement of the lifetime of the first excited state in
20C. The capability of these facilities to deliver high-intensity radioacive ion beams coupled to
state-of-the-art γ-ray detection arrays, such as GRETA/GRETINA [94] and the future HYPATIA
array [95], enables detailed spectroscopy of 20C, a critical benchmark for ab initio developments.

(d) The neutron-rich oxygen isotopes, 21,22O
Neutron-rich oxygen isotopes are an ideal playground for testing ab initio theory, lying at the
interface of the light- and medium-mass regions. Indeed, these isotopes can be treated in quasi-
exact methods, such as extensions of the no-core shell model (NCSM), while due to their semi-
magic nature, having a closed proton shell at Z=8, they are accessible to many-body approaches
that can be applied to heavier systems. First valence-space calculations with NN+3N forces were
able to explain for the first time the so-called oxygen anomaly, i.e., the location of the oxygen
dripline at 24O [96]. More recently, large-space ab initio calculations have confirmed those early
results [52,97,98] treating all nucleons as explicit degrees of freedom and have extended dripline
predictions to the entire region [99]. Excitation spectra in oxygen isotopes have also been obtained
with NN+3N forces, generally yielding agreement with experiment [48,49,100,101]. A critical next
step is to benchmark ab initio theory against electromagnetic observables, with a particular focus
on E2 transition strengths.

2In the case of 20C, there are only two measurements available for the B(E2; 2+ → 0+) [91,92], which are in disagreement.
However, the more recent work from [91] represents the adopted value.
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A first experimental study to extract lifetimes of excited states in 21O was performed at
the National Superconducting Cyclotron Laboratory of Michigan State University [102]. This
isotope, with a neutron coupled to a 22O core, yielded varying results for the B(E2; 1/2+ →
5/2+) transition strength for different chiral NN+3N interactions calculated using the IM-NCSM
approach, demonstrating the sensitivity of the 3N forces to spectroscopic observables such as
level lifetimes. Figure 8 demonstrates beautifully how theoretical calculations can be confronted
by the experiment.

To further guide theory, a new experiment to measure the lifetimes of the higher excites states
in 21O is planned to be performed at the ATLAS facility of the Argonne National Laboratory [103].
A complete experimental picture for the transition strengths in 21O will be delivered, and will
serve as a critical benchmark for the development of the ab initio frontier.
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Figure 8. IM-NCSM calculations with four different chiral NN+3N interactions for the low-lying structure of 21O to

assess their sensitivity to the input Hamiltonian: (i) the N3LOEM+N2LOL,400 interaction using the NN force of [104] in

combination with a local 3N interaction at N2LO with reduced cutoff [105]; (ii) the N2LOSAT interaction [106]; (iii) the

N3LOEM+N2LONL,500 with the same NN force but an updated 3N interaction with a nonlocal regulator; and (iv) the

N4LOEMN+N2LONL,500 with a recent NN interaction at N4LO [56] plus a 3N interaction at N2LO with nonlocal regulator.

The lifetime of the first excited state (1/2+) is noted for both experimental results and theoretical calculations [102]; the

theoretical τ1/2+ is calculated using the experimental transition energy.

Another critical experimental step is to reach 22O and study transition strengths in the last
oxygen isotope where such information can be delivered experimentally. Indeed, 23,24O have no
bound excited states, while no bound oxygen isotope can be formed beyond 24O. The B(E2; 2+ →
0+) value of 22O has been measured only once before in a model-dependent way yielding large
uncertainty [107]. This precision is not sufficient to discriminate between different calculations
and calls for an improved measurement. A model-independent measurement of the B(E2; 2+ →
0+) of 22O, via measuring the lifetime of the 2+ state of 22O, can provide critical experimental
information to guide the development of theory towards the drip lines.

The expected lifetime for the 2+ state of 22O spans from τ ≈ 600 fs [107] to τ ≈ 2 ps; the latter
value for the lifetime arises from arguments on reduced effective charges as discussed in [102].
For this lifetime range, a measurement of the lifetime of the 2+ of 22O can be performed at a
fragmentation facility, e.g., Coulomb exciting a secondary 22O radioactive ion beam and using
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a very sensitive γ-ray spectrometer, such as GRETA/GRETINA [94,108] at the FRIB facility, to
detect the emitting γ rays. Another novel way to experimentally reach 22O and study lifetimes of
its excited states is by using a 10Be radioactive target and perform a Doppler-Shift Attenuation
Method experiment at a low energy facility that can deliver a 14C radioactive beam [109]. Indeed,
excited states in 22O can be populated through a fusion-evaporation reaction of a 14C beam on
the 10Be target. The development of a radioactive 10Be target is currently under way [110–112]
and could open up the way for low-energy experiments to study very neutron-rich light nuclei.

4. Future developments
The advances in ab initio theory have been pushing the mass frontier from the p-shell into
the medium-mass regime. Efforts are ongoing to extend the ab initio reach into the regime of
heavy nuclei. While first calculations typically target ground-state energies as simplest possible
observables, the extension to the full suite of nuclear structure observables has become more
important recently as a second frontier in ab initio theory. Once a specific observable can
be calculated, the quest to improve the precision of the ab initio prediction represents the
next frontier. For electromagnetic observables in particular, all ab initio methods are working
towards this precision frontier. For some observables, such as M1 transitions and moments,
precision calculations are possible today and reveal the role of two-body current contributions
of chiral EFT when compared to precision experiments. Here we already see the synergy of
precision experiments and theory in action. As we have discussed in detail, E2 transitions and
moments pose particular challenges, e.g., in terms of model-space convergence or sensitivity
to other truncations. Here, methodological improvements are still needed in order to reach the
reliability and precision that ab initio methods have already achieved for simple observables like
ground-state energies.

On the experimental side, we are still facing challenges in extracting key spectroscopic
information in the interface of the light- to medium-mass regime, as has been already discussed
in the particular cases presented in Section 3. For example, measurement of spectroscopic
quadrupole moments of excited states are not currently possible in the carbon isotopic chain due
to the unavailability of low-energy radioactive beams with sufficient intensity. Such experimental
data would be extremely helpful for constraining ab initio calculations of the quadrupole
moments (cf. Figure 4), particularly for structurally challenging cases like 16C. For very neutron-
rich oxygen isotopes, e.g. 22O, where properties of the interaction at extreme isospin are probed,
information on lifetimes of excited states can be delivered with the development of innovative
approaches, such as the use of radioactive targets. The development at the same time of
very sensitive detection systems [94,95] and new techniques, e.g. [113], are critical in enabling
measurements of lifetimes of excited states. Experiments on medium-mass nuclei, e.g., [114,115],
and extensions to other electromagnetic operators, e.g., M3 transitions [116], will be critical in
pushing the theoretical advances further.

Moving in parallel with the theoretical developments towards the prediction of heavier (and
far from stability) nuclei, the availability of radioactive-ion beams is another critical aspect
of experimental investigations. The nuclear science community is eagerly waiting for new or
upgraded facilities to come online that can deliver high-intensity radioactive ion beams and
expand the current reach of experimental investigations. The FRIB facility [75], for instance, has
started operations in 2022 with reduced primary beam power (of 5 kW), and with the plan to
continuously increase beam intensities until they reach their beam power ramp-up goal of 400
kW in 2028. The RIBF facility [93], currently the frontier facility for the study of exotic nuclei,
has already planned its upgrade, delivering 2µA of 238U primary beam by 2030. In Europe,
the FAIR facility [117] is at the final stages of completion, and will be able to deliver high-
energy exotic nuclei in a suite of different experimental setups. All these facilities, coupled to
the development of new, more sensitive and sophisticated detection systems, set the stage for
high discovery potential as well as detailed nuclear structure investigations, that will deliver
unparalleled benchmarks to the ab initio frontier.
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More importantly, what will decisively drive future developments and breakthroughs in
our understanding of the atomic nucleus from first principles is the strong synergy between
experiment and theory. We need to identify experimental benchmarks that can sensitively guide
the theoretical developments, while the latter are trying to reproduce the nuclear landscape in a
holistic approach, addressing as many observables as possible simultaneously. Such continuous
feedback can only flourish within a strong nuclear science community, where experimentalists
and theorists are working hand in hand to address overarching questions in physics and
ultimately for mankind.
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86. Marević P, Ebran JP, Khan E, Nikšić T, Vretenar D. 2019 Cluster structures in 12C from global
energy density functionals. Phys. Rev. C 99, 034317. (10.1103/PhysRevC.99.034317)

87. Yuan C, Suzuki T, Otsuka T, Xu F, Tsunoda N. 2012 Shell-model study of boron, carbon,
nitrogen, and oxygen isotopes with a monopole-based universal interaction. Phys. Rev. C 85,
064324. (10.1103/PhysRevC.85.064324)

88. Petri M, Paschalis S, Clark RM, Fallon P, Macchiavelli AO, Starosta K, Baugher T, Bazin D,
Cartegni L, Crawford HL, Cromaz M, Datta Pramanik U, de Angelis G, Dewald A, Gade A,
Grinyer GF, Gros S, Hackstein M, Jeppesen HB, Lee IY, McDaniel S, Miller D, Rajabali MM,
Ratkiewicz A, Rother W, Voss P, Walsh KA, Weisshaar D, Wiedeking M, Brown BA, Forssén C,
Navrátil P, Roth R. 2012 Structure of 16C: Testing shell model and ab initio approaches. Phys.
Rev. C 86, 044329. (10.1103/PhysRevC.86.044329)

89. Mathy M. 2020 Electromagnetic Properties of Light Neutron-Rich Nuclei - Lifetime
Measurements of 16C and 23Ne. PhD thesis Technischen Universität Darmstadt, Germany.

90. Mathy M, Petri M, Roth R, Wagner L, Heil S et al.. 2024 Lifetimes of excited states in 16C as a
benchmark for ab initio developments. submitted to Eur. Phys. J A.

91. Petri M, Fallon P, Macchiavelli AO, Paschalis S, Starosta K, Baugher T, Bazin D, Cartegni L,
Clark RM, Crawford HL, Cromaz M, Dewald A, Gade A, Grinyer GF, Gros S, Hackstein M,
Jeppesen HB, Lee IY, McDaniel S, Miller D, Rajabali MM, Ratkiewicz A, Rother W, Voss P,
Walsh KA, Weisshaar D, Wiedeking M, Brown BA. 2011 Lifetime Measurement of the 2+1 State
in 20C. Phys. Rev. Lett. 107, 102501. (10.1103/PhysRevLett.107.102501)

92. Elekes Z, Dombrádi Z, Aiba T, Aoi N, Baba H, Bemmerer D, Brown BA, Furumoto T, Fülöp Z,
Iwasa N, Kiss A, Kobayashi T, Kondo Y, Motobayashi T, Nakabayashi T, Nannichi T, Sakuragi
Y, Sakurai H, Sohler D, Takashina M, Takeuchi S, Tanaka K, Togano Y, Yamada K, Yamaguchi
M, Yoneda K. 2009 Persistent decoupling of valence neutrons toward the dripline: Study of
20C by γ spectroscopy. Phys. Rev. C 79, 011302. (10.1103/PhysRevC.79.011302)

93. RIBF - Radioactive Isotope Beam Factory. https://www.riken.jp/en/collab/
resources/ribf/.

94. Gamma-Ray Energy Tracking Array. https://greta.lbl.gov/.
95. HYPATIA: HYbrid Photon detector Array To Investigate Atomic nuclei. https://www.

nishina.riken.jp/collaboration/SUNFLOWER/devices/hypatia/index.php.
96. Otsuka T, Suzuki T, Holt JD, Schwenk A, Akaishi Y. 2010 Three-Body Forces and the Limit of

Oxygen Isotopes. Phys. Rev. Lett. 105, 032501. (10.1103/PhysRevLett.105.032501)
97. Cipollone A, Barbieri C, Navrátil P. 2013 Isotopic chains around oxygen from

evolved chiral two- and three-nucleon interactions. Phys. Rev. Lett. 111, 062501.
(10.1103/PhysRevLett.111.062501)

98. Hebeler K, Holt JD, Menéndez J, Schwenk A. 2015 Nuclear forces and their impact on neutron-
rich nuclei and neutron-rich matter. Ann. Rev. Nucl. Part. Sci. 65, 457.

99. Stroberg SR, Holt JD, Schwenk A, Simonis J. 2021 Ab Initio Limits of Atomic Nuclei. Phys.
Rev. Lett. 126, 022501. (10.1103/PhysRevLett.126.022501)

http://dx.doi.org/https://doi.org/10.1016/j.physletb.2023.138114
http://dx.doi.org/10.1103/PhysRevC.102.011302
http://dx.doi.org/10.1103/PhysRevLett.109.252501
http://dx.doi.org/10.1038/s41467-022-29582-0
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2018.10.027
http://dx.doi.org/10.1103/PhysRevC.106.034320
http://dx.doi.org/10.1063/1.5124574
http://dx.doi.org/10.1103/PhysRevC.99.034317
http://dx.doi.org/10.1103/PhysRevC.85.064324
http://dx.doi.org/10.1103/PhysRevC.86.044329
http://dx.doi.org/10.1103/PhysRevLett.107.102501
http://dx.doi.org/10.1103/PhysRevC.79.011302
https://www.riken.jp/en/collab/resources/ribf/
https://www.riken.jp/en/collab/resources/ribf/
https://greta.lbl.gov/
https://www.nishina.riken.jp/collaboration/SUNFLOWER/devices/hypatia/index.php
https://www.nishina.riken.jp/collaboration/SUNFLOWER/devices/hypatia/index.php
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://dx.doi.org/10.1103/PhysRevLett.126.022501


27

royalsocietypublishing.org/journal/rsta
P

hil.
Trans.

R
.S

oc.
A

0000000
..........................................................................

100. Holt JD, Menéndez J, Schwenk A. 2013 Chiral three-nucleon forces and bound excited states
in neutron-rich oxygen isotopes. Eur. Phys. J. A 49, 39. (10.1140/epja/i2013-13039-2)

101. Caesar C et al.. 2013 Beyond the Neutron Drip-Line: The Unbound Oxygen Isotopes 25O and
26O. Phys. Rev. C 88, 034313. (10.1103/PhysRevC.88.034313)

102. Heil S, Petri M, Vobig K, Bazin D, Belarge J, Bender P, Brown B, Elder R, Elman B, Gade A,
Haylett T, Holt J, Hüther T, Hufnagel A, Iwasaki H, Kobayashi N, Loelius C, Longfellow B,
Lunderberg E, Mathy M, Menéndez J, Paschalis S, Roth R, Schwenk A, Simonis J, Syndikus I,
Weisshaar D, Whitmore K. 2020 Electromagnetic properties of 21O for benchmarking nuclear
Hamiltonians. Phys. Lett. B 809, 135678. (10.1016/j.physletb.2020.135678)

103. Petri M. 2024 Electromagnetic transition rates in 21O. ATLAS, Argonne National Laboratory,
Experiment #2044.

104. Entem DR, Machleidt R. 2003 Accurate charge-dependent nucleon-nucleon
potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001.
(10.1103/PhysRevC.68.041001)

105. Roth R, Binder S, Vobig K, Calci A, Langhammer J, Navrátil P. 2012 Medium-Mass
Nuclei with Normal-Ordered Chiral NN+3N Interactions. Phys. Rev. Lett. 109, 052501.
(10.1103/PhysRevLett.109.052501)

106. Ekström A, Jansen GR, Wendt KA, Hagen G, Papenbrock T, Carlsson BD, Forssén C, Hjorth-
Jensen M, Navrátil P, Nazarewicz W. 2015 Accurate nuclear radii and binding energies from a
chiral interaction. Phys. Rev. C 91, 051301. (10.1103/PhysRevC.91.051301)

107. Thirolf PG, Pritychenko BV, Brown BA, Cottle PD, Chromik M, Glasmacher T, Hackman G,
Ibbotson RW, Kemper KW, Otsuka T et al.. 2000 Spectroscopy of the 2+1 state in 22O and shell
structure near the neutron drip line. Phys. Lett. B 485, 16 – 22.

108. Paschalis S, Lee I, Macchiavelli A, Campbell C, Cromaz M, Gros S, Pavan J, Qian J,
Clark R, Crawford H, Doering D, Fallon P, Lionberger C, Loew T, Petri M, Stezelberger
T, Zimmermann S, Radford D, Lagergren K, Weisshaar D, Winkler R, Glasmacher T,
Anderson J, Beausang C. 2013 The performance of the Gamma-Ray Energy Tracking In-
beam Nuclear Array GRETINA. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 709, 44–55.
(https://doi.org/10.1016/j.nima.2013.01.009)

109. Petri M. 2021 Electromagnetic transition rates in 22O and 23F. ATLAS, Argonne National
Laboratory, Experiment #1732.

110. Tetley L. 2022 The Structure of the Neutron-Rich 22O and 23F Nuclides. PhD thesis
University of York, UK.

111. Tetley L, Maugeri EA, Petri M, Schumann D. 2021 Preparation of a thin 10Be target for nuclear
structure experiments. Annual Report 2021, Laboratory of Radiochemistry, Paul Scherrer
Institut.

112. Tetley L, Maugeri EA, Petri M, Schumann D, Lagoyannis A. 2019 Preparation of a 10Be target
on a carbon backing for nuclear structure measurements. Annual Report 2019, Laboratory of
Radiochemistry, Paul Scherrer Institut.

113. Wimmer K LISA: LIfetime measurements with Solid Active targets. ERC Consolidator Grant
101001561-LISA.

114. Williams J, Ball GC, Chester A, Domingo T, Garnsworthy AB, Hackman G, Henderson J,
Henderson R, Krücken R, Kumar A, Launey KD, Measures J, Paetkau O, Park J, Sargsyan
GH, Smallcombe J, Srivastava PC, Starosta K, Svensson CE, Whitmore K, Williams M.
2019 Structure of 28Mg and influence of the neutron pf shell. Phys. Rev. C 100, 014322.
(10.1103/PhysRevC.100.014322)

115. Henderson J, Hackman G, Ruotsalainen P, Holt JD, Stroberg SR, Andreoiu C, Ball GC, Bernier
N, Bowry M, Caballero-Folch R, Cruz S, Diaz Varela A, Evitts LJ, Frederick R, Garnsworthy
AB, Holl M, Lassen J, Measures J, Olaizola B, O’Sullivan E, Paetkau O, Park J, Smallcombe
J, Svensson CE, Whitmore K, Wu CY. 2022 Coulomb excitation of the |Tz |= 1

2 , A= 23 mirror
pair. Phys. Rev. C 105, 034332. (10.1103/PhysRevC.105.034332)

116. Garnsworthy AB, Bowry M, Olaizola B, Holt JD, Stroberg SR, Cruz S, Georges S,
Hackman G, MacLean AD, Measures J, Patel HP, Pearson CJ, Svensson CE. 2017
Spectroscopy of 50Sc and ab initio calculations of B(M3) strengths. Phys. Rev. C 96, 044329.
(10.1103/PhysRevC.96.044329)

117. FAIR - Facilitiy for Antiproton and Ion Research. https://fair-center.eu.

http://dx.doi.org/10.1140/epja/i2013-13039-2
http://dx.doi.org/10.1103/PhysRevC.88.034313
http://dx.doi.org/10.1016/j.physletb.2020.135678
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1103/PhysRevC.91.051301
http://dx.doi.org/https://doi.org/10.1016/j.nima.2013.01.009
http://dx.doi.org/10.1103/PhysRevC.100.014322
http://dx.doi.org/10.1103/PhysRevC.105.034332
http://dx.doi.org/10.1103/PhysRevC.96.044329
https://fair-center.eu

	1 Introduction
	2 Ab initio theory towards electromagnetic observables
	(a) Background—The early days
	(b) No-core shell model
	(c) Medium-mass methods
	(d) Present status
	(e) Challenges of electromagnetic observables

	3 Experimental efforts to guide the theoretical developments
	(a) The 2+ state of 12C and its spectroscopic quadrupole moment
	(b) The puzzle of 16C
	(c) The 2+ state of 20C and its lifetime
	(d) The neutron-rich oxygen isotopes, 21,22O

	4 Future developments
	References

