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For light nuclei, ab initio many-body methods such as the no-core shell model are the tools of choice for
predictive, high-precision nuclear structure calculations. The applicability and the level of precision of these
methods, however, is limited by the model-space truncation that has to be employed to make such computations
feasible. We present a universal framework based on artificial neural networks to predict the value of observables
for an infinite model-space size based on finite-size no-core shell model data. Expanding upon our previous
ansatz of training the neural networks to recognize the observable-specific convergence pattern with data from
few-body nuclei, we improve the results obtained for ground-state energies and show a way to handle excitation
energies within this framework. Furthermore, we extend the framework to the prediction of converged root-
mean-square radii, which are more difficult due to the much less constrained convergence behavior. For all
observables robust and statistically significant uncertainties are extracted via the sampling over a large number
of network realizations and evaluation data samples.

I. INTRODUCTION

The challenge of solving the nuclear many-body problem
with realistic Hamiltonians is at the core of nuclear theory.
Throughout the past decades, the access to growing high per-
formance computing (HPC) resources has revolutionized nu-
clear structure physics and caused a paradigm shift from com-
putationally trivial to more demanding numerical models, giv-
ing rise to a range of successful ab initio methods such as
the no-core shell model (NCSM) [1–4], the coupled-cluster
(CC) theory [5], self-consistent Green’s function (SCGF) ap-
proaches [6], the in-medium similarity renormalization group
(IM-SRG) [7], or quantum Monte Carlo (QMC) methods [8].
While they have proven to provide realistic results for a range
of observables, their precision is limited by computational
constraints.

In a concurrent development, modern machine learning al-
gorithms have excelled in a variety of computational tasks
such as pattern recognition, interpolation, or optimization and
have naturally sparked the interest of researchers in many
fields including nuclear structure physics. This has led to var-
ious applications [9, 10] either through exploiting machine
learning features as done in neural-network quantum state
techniques [11–14], purely data driven approaches [15, 16],
or as supplemental tools for the aforementioned many-body
methods [17–19]. Focusing on the latter, machine learning is
of particular interest when it comes to extending the reach of
ab initio methods by circumventing their computational lim-
itations. As most of them are based on a basis expansion
of the many-body problem, a major restraint are the rapidly
growing model spaces that quickly exceed the capabilities of
even the largest HPC clusters available. Due to the nature
of ab initio methods, which employ systematically improv-
able truncations, the errors induced by these truncations can,
in principle, be controlled. However, accurately quantifying
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them or extrapolating results from finite model spaces to the
full many-body Hilbert space are extremely challenging tasks.
While ground-state energies are accessible with conventional
extrapolation schemes based on exponential fits [3, 20, 21],
there are no widely established methods for other observables
such as radii.

As shown in recent applications to NCSM or CC calcula-
tions of ground-state observables, artificial neural networks
(ANNs) are a promising tool to tackle this challenge [17–19].
The convergence behavior of these methods w.r.t the model
space size is controlled by a model-space truncation parameter
and the harmonic-oscillator (HO) frequency of the underlying
single-particle basis.

The ANN models for extrapolating such data separate into
two conceptually different categories. The first category at-
tempts to emulate the functional dependence of the observ-
able on the model-space size or, more precisely, the truncation
parameter and the HO frequency, thus, directly replacing ex-
ponential or polynomial extrapolation methods with an ANN
[17, 18]. Approximations for the full Hilbert space are then
given by the networks prediction for very large values of the
model-space truncation parameter. While this provides robust
extrapolations for well balanced sets of training data, the ap-
plicability of such an ANN is, by construction, limited to the
nucleus, interaction, state, and observable it was trained for.
Thus, the computation of a large and balanced sets of train-
ing data as well as the ANN training process itself has to be
repeated for each nucleus, interaction, state, and observable
under consideration. This is a major bottleneck as the gen-
eration of training data becomes very costly. Moreover, the
ANNs are used for a true extrapolation, i.e., an evaluation in
an input parameter regime they were never trained for.

We have introduced a different approach in Ref. [19], which
is more akin to a pattern recognition task. In our ANN model,
the observable in the full Hilbert space is directly predicted
from a set of converging sequences in small model spaces,
which share the same limit. Hence, the ANN attempts to cap-
ture the convergence pattern and predict the converged value,
similar to how an experienced practitioner would estimate it.
Since we need to specify the fully converged values for the
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training process, we can only use NCSM data from very light
systems with A ≤ 4 for the training set. Despite this limita-
tion, we can construct an extensive library of training data for
a specific observable by varying the underlying Hamiltonian
in addition to the nucleus and model-space parameters. In
this way the training data encompasses very diverse conver-
gence patterns so that, with a proper normalization, the ANN
has learned all possible convergence patterns during the train-
ing. This makes this ANN universally applicable to different
nuclei, interactions and states. This universality in a great ad-
vantage. The generation of training data and the training only
happens once and the resulting ANNs are then simply applied
with small sets of NCSM evaluation data for the systems of
interest.

While our previous work [19] has demonstrated the capa-
bilities of this universal ANN model for predicting ground-
state energies, this paper focuses on improvements of the pre-
cision of the ANN prediction and the generalization to other
observables, particularly excitation energies and root-mean-
square (rms) radii. The description of these observables is
more challenging because they show a much larger variety of
non-monotonous convergence patterns, since they are not pro-
tected by the variational principle. We will introduce a simple
normalization scheme that improves the precision of predic-
tions of converged ground-state and excited-state energies and
enables the robust prediction of converged radii. For all ob-
servables we will extract statistically meaningful uncertainties
for the ANN predictions. We will demonstrate the application
of the ANNs to a range of p-shell nuclei up to 9Be.

II. NO-CORE SHELL MODEL

While these ANN approaches can be adapted to various
many-body methods, we focus on the NCSM, which solves
the many-body stationary Schrödinger equation as a matrix
eigenvalue problem∑

j

⟨ϕi|H|ϕ j⟩ ⟨ϕ j|ψn⟩ = En ⟨ϕi|ψn⟩ ∀i, (1)

by expanding the Hamiltonian H as well as the eigenstates
|ψn⟩ in a complete basis. The basis {|ϕi⟩} is a set of Slater
determinants of single-particle basis states, in our case eigen-
states of the HO. To numerically solve this matrix eigenvalue
problem, a truncation to a finite model space is employed. The
so-called Nmax truncation limits the total number of HO exci-
tation quanta. The convergence behavior as function of Nmax
depends on the chosen HO frequency ℏΩ of the single-particle
basis, though in the limit Nmax → ∞ this dependency vanishes
and the exact solution is recovered.

Observables other than the energies En are easily accessi-
ble in the NCSM by constructing the matrix representation of
the corresponding operator in the many-body basis and eval-
uating the expectation value with the calculated eigenvectors.
Since the NCSM is a variational method, the energy eigen-
values converge monotonously from above to the exact value
with increasing Nmax. This powerful constraint on the conver-
gence pattern does, however, not hold for other observables,

e.g. radii, leading to more complex and less constrained con-
vergence patterns.

The Hamiltonian employed in the NCSM calculations con-
sists of a kinetic energy contribution and inter-nucleon in-
teractions, typically derived from chiral effective field the-
ory (EFT). The are several families of chiral nucleon-nucleon
(NN) plus three-nucleon (3N) interactions with different or-
der in the chiral power-counting and different cutoffs available
nowadays, which exhibit different NCSM convergence behav-
iors. Even for the softest, i.e., fastest converging, of the the in-
teractions very large Nmax are required to reach convergence.
Therefore, an additional pre-processing of the Hamiltonian
through a similarity renormalization group (SRG) transfor-
mation is used to accelerate the model space convergence
[20, 22–25]. The SRG transformation introduces the contin-
uous flow parameter α which provide direct control over the
convergence rate.

For few-body systems, which include 2H, 3H, and 4He, we
can use the Jacobi-NCSM [26], which is a efficient formu-
lation of the NCSM for very light nuclei. It uses a relative
basis instead of the typical m-scheme, which allows us to
obtain fully converged calculations at minimal computational
expense, ideal for generating large sets of training data. For
heavier nuclei in the p-shell, as they are used as test cases
for the network evaluation, we use the standard m-scheme
NCSM.

III. ARTIFICIAL NEURAL NETWORKS

For our purpose, artificial neural networks are an ideal tool,
as they excel at capturing patterns, especially in cases where
classical algorithms are hard to implement or where the exact
correlations between data points are unknown. At their core,
ANNs roughly emulate biological neural networks as present
in the brain. The type of network we use is called a dense feed-
forward neural network. It consists of neurons with inputs and
outputs, which are organized in layers. In this context dense
means that each neuron’s input is connected to the output of
every neuron in the preceding layer. Based on these inputs,
each neuron then calculates an output, which is fed to every
neuron in the subsequent layer. For example, the i-th neuron
in the n-th layer computes its output x(i)

n according to

x(n)
i = σ

Nn−1∑
j=0

x(n−1)
j w(n)

ji + b(n)
j

 , (2)

where Nn−1 is the number of connected neurons from the pre-
vious layer, w(n)

ji and b(n)
j are the weights and biases which

are optimized during training, and σ is the activation func-
tion which rescales the output and in general introduces non-
linearities. The weights and biases are initialized randomly
and are optimized during the training process via supervised
learning. This means that every network input in the training
data is labeled with the desired output.

The training process starts with a feed-forward pass, where
a batch of training samples are evaluated and a combined de-
viation of the network’s predictions from the desired results is
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FIG. 1. (a) Exemplary Jacobi-NCSM results for the mass rms radius of 4He. All training data sequences for this combination of nucleus and
interaction are shown in gray. Highlighted in color is one possible training sample, consisting of four radius results for consecutive Nmax values
for 3 different HO frequencies, and the fully converged target value (green). (b) Schematic representation of the fully connected feed-forward
network topology, where the colors of the input and output layer correspond to the colors of the sample in (a).

calculated with a so-called loss function. The following back
propagation step optimizes the weights and biases based on
the gradient of the loss function. Repeating this process leads
to an iterative improvement of the parameters of the network.
A validation data set that is distinct from the training data is
used to probe the performance of the network and the train-
ing progress and is usually used to adjust the step size in the
gradient descent, commonly called learning rate. In then end,
one should obtain a network that captures the patterns in the
training data, leading to accurate predictions on the training
data as well as previously unseen evaluation data.

So far we did not specify the choice of the so-called hy-
perparameters like the activation function, loss function, or
back propagation algorithm. These choices can have a signifi-
cant impact on the performance on both the training efficiency
as well as on the quality of the networks themselves. We
achieved the best results with a rectified linear unit (ReLU)
[27] activation function, a mean-square error (MSE) loss func-
tion, and the AdamW back-propagation algorithm [28] in
combination with an adaptive learning rate scheduler, that
halves the learning rate when the loss plateaus for two con-
secutive epochs, and a batch size of 512. Note that, while
the overall choice of hyperparameters is crucial for the per-
formance of the ANNs, the predictions are very robust under
reasonably small changes.

IV. CONCEPTS AND NETWORK DESIGN

As already mentioned, artificial neural networks are ideally
suited for situations where data is correlated, but where the
patterns are either too varied or the problem is too hard to
write down a functional dependence. This is exactly the case
for NCSM calculations, where the convergence with Nmax
clearly follows a certain pattern, that is hard to quantify. The

idea is to show the network multiple sequences of data points
which all must converge to the same value and have the net-
work output a prediction for the fully converged value of these
sequences. An illustration of converging NCSM sequences
for the rms-radius of 4He is shown in Fig. 1a.

To construct such ANNs, we first need to train them on
realistic NCSM convergence data. Since we use supervised
learning, the exact, fully converged observable is a require-
ment for every sequence in the training data, which limits us
to using few-body systems for the training as only these can
be converged to the required precision. However, since the
convergence patterns in heavier p-shell nuclei are very similar
to those in few-body systems, ANNs trained on the latter can
provide precise predictions for a broad range of p-shell nuclei.
The main benefit of this method is that the training only needs
to be done once and the trained ANNs can subsequently be
applied, as a universal tool, to convergence sequences from
any NCSM calculation.

Note that each observable needs its own set of networks, as
the convergence pattern can vary significantly between differ-
ent observables, though strongly related observables such as
the ground-state energy and excited-state energies or rms radii
and point-proton rms radii can use the same set of networks.

One important aspect we have not touched on yet is the ex-
act design of the ANN including the structure of the data sam-
ples, which defines the input and output layers, and the topol-
ogy, which determines the number of hidden layers. For our
application, the input for the network consists of X sequences
of NCSM calculations for different ℏΩwhich contain L values
of a specific observable for subsequent values of Nmax. This
sets the input layer to be X · L neurons wide, while the output
layer consists of a single neuron, which is supposed to be the
prediction for the fully converged value of the observable. We
found that three hidden layers with sizes 4X · L, 4X · L, and
8X work very well for our use case. Fewer or much smaller
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hidden layers lead to less precise predictions, while adding
more hidden layers or increasing their size yield diminishing
returns, adding computational cost and increasing the risk of
overfitting for only very marginal gains in precision. Figure 1
visualizes both a training sample (a) and the network topology
(b) for the input dimensions of X = 3 and L = 4, which is the
structure used for all results presented in this work. Note that
the input layer only accepts a subset of the available data in
the NCSM sequences—there are typically more than X = 3
different oscillator frequencies and more than L = 4 differ-
ent Nmax values available. This opens up the opportunity for
a random sampling of the input data, which will be important
for the training and statistical evaluation discussed below.

In order to evaluate the performance of our networks, it is
helpful to compare them with traditional extrapolation tech-
niques. For energy extrapolations we compare to an exponen-
tial fit scheme as described in Ref. [25] for both the ground-
state energy and excited-state energies. Radii are, due to be-
ing less constrained, more difficult to extrapolate. As there
is no widely used algorithm for the extrapolation of radii, we
forgo a comparison with a classical extrapolation technique
for this observable. An interesting point for a future compar-
ison are the effective-theory-based infrared extrapolations for
the NCSM [29, 30]. The applicability of these methods re-
lies on specific and often untypical combinations of Nmax and
ℏΩ, which require a large number of dedicated NCSM calcu-
lations and are not directly possible with the evaluation data
used here.

V. TRAINING DATA AND STATISTICAL EVALUATION

Our training data consists of 2H, 3H, and 4He Jacobi-
NCSM calculations up to Nmax = 50, 40, and 24, respec-
tively, for seven HO frequencies ℏΩ = 12, 14, 16, 20, 24, 28,
and 32 MeV. We use the non-local NN+3N interactions from
chiral EFT at orders N2LO, N3LO, and N4LO′ and for cutoffs
Λ = 450, 500, and 550 MeV introduced in [31, 32]. We ap-
plied these interactions bare and SRG evolved with three dif-
ferent flow parameters of α = 0.02, 0.04, and 0.08 fm4. All in
all, we obtain 756 converging sequences. To reduce artifacts
in the training set, we exclude Nmax = 0 data and remove se-
quences that are not sufficiently converged, which means that
the value of the observable at the largest available Nmax shows
a deviation of more than 5 % from the fully converged value.
The data that is left forms the basis from which we can con-
struct samples for training. Each sample consists of a subset of
the training data with a specific number of randomly selected
HO frequencies and a specific window in Nmax, together with
the fully converged value of the observable of choice.

We construct three disjoint subsets of samples: a large set
of training samples, and two smaller sets of test and validation
samples. The training consists of 20 epochs, iterating through
all training samples with a batch size of 512 each time, moni-
toring the average loss via the test set at every cycle. This in-
formation is used to adaptively adjust the learning rate, which
is initialized to 0.001. We evaluate the quality of the fully
trained networks by measuring their performance on the vali-

dation set and discard poorly performing networks.
When applying the trained ANNs to unseen data we rely on

a statistical evaluation for which we first construct evaluation
samples analogously to the sample generation done for the
training data, i.e., we construct all possible samples of X = 3
HO frequencies and their permutations with values for the ob-
servable at L = 4 consecutive Nmax. In addition to evaluating
multiple samples, we also evaluate these samples with 1000
networks, that have been initialized differently and trained in-
dividually, in order to suppress any errors from a single ANN.
This multitude of predictions is then incorporated into a his-
togram that describes the distribution of the individual predic-
tions, which usually shows a strong, single-peak structure that
is very similar to a normal distribution. For simplicity, we fit
a Gaussian to the distribution to obtain the mean and standard
deviation of the dominant peak structure. While the extracted
mean can be understood as the final ANN prediction for the
given observable, the width of the distribution provides an un-
certainty measure that incorporates not only all information
from the evaluation data, but also accounts for the uncertainty
of the individual ANNs. Hence, we can provide precise pre-
dictions, which are robust against outliers, along with reliable
1σ uncertainties.

To be able to gauge the quality and consistency of the
predictions, we group samples by the highest Nmax value
they contain, denoted by Nmax. Higher Nmax correspond
to larger model spaces and, therefore, better converged se-
quences, which should improve the ANN predictions of the
fully converged value. To emulate the situation in heavier p-
shell nuclei where we see the largest potential for this method,
we artificially limit the information for the evaluation in this
work to Nmax = 12 or less. This corresponds to evaluation
samples with Nmax ≤ 12. With increasing Nmax we expect
the distribution of network predictions to decrease in width,
corresponding to a smaller uncertainty, as well as improve in
accuracy. Furthermore, the predictions should be compatible
with each other within their uncertainty bands.

VI. INPUT MODES

There is some freedom when it comes to formatting the
data that is fed into the input layer of the networks. We
can formalize this by looking at the networks like a mapping
M : S → O∞, where O∞ is the converged observable and S is
the input sample. In our previous work [19], we compared two
distinct input modes. In the ABS mode, the data for a given
observable, e.g. the ground-state energy, is simply fed in as-is.
With our chosen network topology, a single ABS sample takes
the shape

SNmax
ABS = (ONmax−6

ℏΩ1
,ONmax−4
ℏΩ1

,ONmax−2
ℏΩ1

,ONmax
ℏΩ1

ONmax−6
ℏΩ2

,ONmax−4
ℏΩ2

,ONmax−2
ℏΩ2

,ONmax
ℏΩ2

(3)

ONmax−6
ℏΩ3

,ONmax−4
ℏΩ3

,ONmax−2
ℏΩ3

,ONmax
ℏΩ3

) .

This is the naı̈ve choice and gives the network all available
information, but also the maximum amount of flexibility to
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FIG. 2. Histogram of the dimensionless target values of all sam-
ples in the MINMAX input mode for ground-state energies (left) and
mass rms radii (right), separated by color: 2H (green), 3H (blue), and
4He (red). Values left of zero (right of one) belong to samples exclu-
sively converging from above (below), while target values between
zero and one belong to samples with a mixed convergence pattern.

look for patterns in the input data. A clear disadvantage is,
however, that this can lead to undesired training results, as the
networks just have to reproduce the few results for the nuclei
in the training data without learning the convergence pattern.
Previous work has further shown, that this input mode induces
a dependency on the respective energy range, which distorts
the predictions in nuclei beyond the training set. To circum-
vent this, we have introduced an additional step of scaling and
shifting the data before feeding it to the network to increase
variety in the target values and convergence patterns. This
slightly alleviates the effects of the large gap between the tar-
get value of the heaviest training nucleus and the heavier nu-
clei in the evaluation set.

The other mode we introduced in Ref. [19] is called DIFF
and feeds the differences between consecutive Nmax steps into
the networks. This inherently alleviates the difference in
scales between the nuclei in the training and the evaluation set,
though shifting the data obviously had no more effect so that
one source for inflating the initial training data pool was elim-
inated. Both of these modes were explored with the ground-
state energy as the target observable (for details see Ref. [19]).
Unfortunately, both exhibit significant shortcomings when ap-
plied to an observable with a different convergence structure
like the radius.

This leads us to look into another input mode called min-
max normalization, which we refer to as MINMAX. The min-
max normalization is a common normalization technique for
machine learning applications. In general, it normalizes the
input data per sample to an interval [a, b], though we exclu-
sively choose an interval of [0, 1] for our network input. A
single MINMAX sample can be defined via the ABS sample
and takes the form

SNmax
MINMAX =

SNmax
ABS −min(SNmax

ABS )

max(SNmax
ABS ) −min(SNmax

ABS )
. (4)

To recover the value of the predicted observable O∞ from the
network output O∞MINMAX, the inverse transformation has to be

applied:

O∞ = O∞MINMAX

(
max(SNmax

ABS ) −min(SNmax
ABS )
)
+min(SNmax

ABS ).
(5)

The goal is to get rid of scale dependencies and reduce the
information to the network in such a way that the recognition
and extrapolation of the convergence pattern is the only vi-
able strategy for the network due to a lack of other clues or
reference points contained within the data.

Figure 2 shows the distribution of the MINMAX-
normalized target values of all training samples for ground-
state energies and radii. The colors correspond to the three
training nuclei. Both normalized target values are dimension-
less, and the position on the x-axis determines if the value
belongs to a sample that converges exclusively from above
(below 0), exclusively from below (above 1), or one that has
a mixed convergence (between 0 and 1). As ground-state en-
ergies are constrained by the variational principle, all sam-
ples must naturally converge from above. Furthermore, the
ground-state energy usually converges rather fast, leading to
most target values being grouped closely below zero. Radii
on the other hand are, as previously mentioned, not very well
constrained. The direction of convergence mainly depends on
the specific HO frequency in conjunction with the nucleus and
the Nmax window. For both 2H and 3H, samples that converge
from below dominate in our training set, while 4He appears to
be much more balanced in that regard. However, we expect
this to be a good match for the situation of most nuclei we
are interested in, as a typical energy-guided selection of HO
frequencies leads to the majority of sequences for the rms-
radius to converge from below. For the training, we generate
1 000 000 training samples for the ABS and DIFF input modes
via random scaling and shifting, while we are limited to about
350 000 native samples for MINMAX.

The performance of the MINMAX input mode is compared
to ABS and DIFF in Fig. 3 for the 4He ground-state energy and
mass rms-radius. The left-hand panels show the evaluation
data for both observables, while the right-hand panels shows
histograms of the networks’ predictions together with the fit-
ted Gaussian for all 3 input modes at increasing Nmax. The
fully converged value obtained from large Nmax is depicted as
a horizontal green line.

Starting with the ground-state energies, all three input
modes perform well, though ABS gives slightly overbound
predictions, while both DIFF and MINMAX are very accu-
rate even at Nmax = 8. DIFF gives very small uncertainties
compared to both other modes, though the MINMAX uncer-
tainties decrease significantly with increasing Nmax down to
approximately the level of DIFF, while the ABS uncertainties
remain rather large. As the DIFF uncertainties can tend to be
somewhat underestimated, MINMAX seems to be a very good
alternative, retaining the accuracy of DIFF with the slightly
more realistic uncertainties. The radius results in the lower
panel show a much larger discrepancy between the different
modes. Both ABS and DIFF give rather inaccurate results,
especially for smaller Nmax. The uncertainties of both modes
also remain fairly large. The MINMAX input mode on the
other hand is already extremely accurate at Nmax = 8, and
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FIG. 3. Input data and network predictions for the ground-state energy and mass radius of 4He. The left column shows the input data, consisting
of NCSM calculations for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV (gray to red). The right column shows a histogram of the predictions
of the networks using the ABS, DIFF, and MINMAX input modes as as well as the fitted Gaussian and its mean and standard deviation. The
three segments labeled 8, 10, and 12 correspond to the Nmax of the evaluation samples.

subsequent Nmax increase the precision in a realistic and sys-
tematic way when compared to the raw data on the left.

Though not shown here, the different input modes show a
very similar behavior for other nuclei as well. This means that
MINMAX is clearly superior for radii, and at least compara-
ble if not better than both other input modes for ground-state
energies. Therefore, we will exclusively use the MINMAX
input mode for all following investigations.

VII. RESULTS FOR GROUND-STATE AND EXCITATION
ENERGIES

In order to evaluate the performance of the networks, we
will start with a look at ground-state energies of the few-body
systems 2H, 3H, and 4He, which are also used in the train pro-
cess. It is important to note that all evaluations shown in this
work use an entirely different family of interactions than the
non-local chiral interaction used during training. The evalua-
tion data is obtained with a semi-local NN+3N interaction de-
rived from chiral EFT at N2LO with a cutoff of Λ = 450 MeV
[25, 33], SRG evolved with a flow parameter of α = 0.08 fm4.
This ensures maximum independence of training and evalu-
ation data, even if the evaluation is performed for isotopes
contained in the training data. The specific selection of HO
frequencies for the NCSM evaluation data is given in the cap-
tion of the respective figure.

Figure 4 shows results for the few-body nuclei, the cor-
responding numerical values are summarized in Table I. As
before, the left-hand panels show the raw evaluation data,
while the right-hand panels show the distribution of the pre-

dictions together with a fitted Gaussian that defines the mean
and standard deviation. The dotted lines indicate the varia-
tional minimum for Nmax = 8, 10, and 12 truncating the data
fed into the networks. The results of traditional extrapolations
at Nmax = 8, 10, and 12 are given in red for comparison. The
green line is the fully converged result obtained at very large
Nmax.

As expected, the networks show excellent agreement with
the fully converged results and are well below the variational
minimum except when the sequences are already well con-
verged. The prediction using the smallest Nmax = 8 is in all 3
cases almost exactly on the fully converged value, indicating
that the networks can recognize the convergence pattern very
well and give accurate predictions. The uncertainties of the
predictions get systematically smaller with increasing Nmax,
and all predictions are well within the preceding uncertain-
ties indicating over-all consistency of the predictions and the
uncertainty estimated.

Compared to the classical extrapolation, the networks are
generally more accurate and precise in cases where the en-
ergy is not converged yet, which is the case for 2H and 3H,
especially at smallerNmax. Only the exceptionally well bound
4He nucleus converges so fast, that there is no advantage com-
pared to a classical extrapolation. It should be noted that for
2H at Nmax = 10 the uncertainty estimation of the classical
extrapolation breaks down (specifically the exponential fit for
ℏΩ = 12 MeV) due to a deuteron-specific artifact in the con-
vergence sequence, resulting in an unreasonably large uncer-
tainty.

Looking at slightly heavier nuclei, we are not only inter-
ested in the ground-state energy, but also in excited-state ener-
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FIG. 4. Input data and network predictions of the ground-state energy
for 2H, 3H, and 4He. The left hand panels show the NCSM input data
for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV (gray to red), while
the right hand panels show a histogram of the network predictions
together with a fitted Gaussian, which gives the mean and 1-σ uncer-
tainty. The variational minimum at each Nmax is given by the black
dashed lines, the classical extrapolation results in red with the associ-
ated uncertainty, and the fully converges value is given by the green
line.

gies or excitation energies. The energy of excited states can be
predicted in exactly the same way using the same pre-trained
networks as for the ground-state energy extrapolation, feeding
sequences of the converging excited state to the networks as
inputs instead. The upper panel of Fig. 5 shows the NCSM
data for the 1+ ground and 3+ excited state of 6Li, with the
corresponding network predictions on the right. There is no
discernible difference in the performance of the networks for
the two states, for both states the predictions are very stable
and consistent with each other. This is possible since there is
no qualitative difference in the convergence behavior of bound
excited states compared to the ground state.

To give predictions for excitation energies with our net-
works, we evaluate both the ground and the excited-state
energy separately, and subsequently subtract the predictions
sample-wise, i.e., we compute the difference between the pre-
dicted ground-state energy and the predicted excited-state en-
ergy of for each sample consisting of X = 3 different HO fre-
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FIG. 5. Input data and network predictions for the 1+ ground and
3+ excited state of 6Li (upper panel) and for the excitation energy
of the 3+ excited state (lower panel) with ℏΩ = 14, 16, 20, 24,
and 28 MeV (gray to red).

quencies and L = 4 subsequent model space truncations Nmax.
The resulting distribution tends to be approximately normal-
shaped, so that we can once again simply fit a Gaussian to
obtain the prediction for the excitation energy and its uncer-
tainty from the mean and standard deviation the Gaussian.

The lower panels of Fig. 5 show the result of the above
mentioned procedure for the 3+ excitation energy on the right-
hand side. The excitation energy sequences in the left-hand
panel are only shown to give an impression of the conver-
gence of the actual observable, as they are not used as input
data for the networks. We observe that the excitation energy
predictions are remarkably stable for the differentNmax, given
that this observable is a lot more challenging to predict, as
slight variations in the prediction of the absolute energies has
larger effects on the excitation energy. For this reason, we
use the aforementioned sample-wise subtraction method in-
stead of just taking the difference of the whole distributions.
This way, we can make exploit of correlations in the conver-
gence pattern of different states for the same HO frequency.
Typically, this improves the prediction and leads to smaller
uncertainties.

Figures 6 to 9 as well as Table I give a comprehensive
overview of the performance of the networks for ground-state
energies and the lowest few excitation energies of 6Li, 7Li,
8Li, and 9Be. These NCSM calculations for p-shell nuclei
have been discussed in detail in Ref. [34] and we reuse these
NCSM outputs here to benchmark the performance of the net-
works [35]. In these figures, the ground-state energy is shown
in the lower panel, while the excitation energy results are in
the upper panel. Additionally, classical extrapolations for both
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FIG. 6. Input data and network predictions for the ground state
and excitation energy of 6Li. The lower left hand panels shows the
NCSM input data for the ground-state prediction, while the upper
panel illustrated the convergence behavior of the exited states, with
data for ℏΩ = 14, 16, 20, 24, and 28 MeV (gray to red). The right
hand panels show the corresponding network predictions, together
with the classical extrapolation results and the variational minimum
for the ground-state energy (dashed line). Note that the ANN predic-
tions for the excitation energies are based on the sample-wise differ-
ence of absolute energy predictions. The corresponding convergence
patterns in the top left panel are only shown for comparison.

observables are depicted as a red bar, with the corresponding
uncertainty as a red band around it.

One major observation we want to highlight is that the ANN
predictions for the ground-state energies are remarkably stable
with increasing model-space sizes and generally significantly
outperform the classical extrapolations at Nmax = 8 across all
considered nuclei when compared with the values obtained for
large Nmax. The classical extrapolations are more susceptible
to a systematic downwards trend with increasing model-space
size, which has its roots in the fact that the convergence of
ground-state energies is not quite exponential. The networks
do not suffer from such a systematic, which facilitates a robust
and accurate prediction of the converged energy in smaller
model spaces.

Excitation energies are slightly more difficult, since the cor-
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FIG. 7. Input data and network predictions for the ground state and
excitation energy of 7Li with ℏΩ = 14, 16, 20, and 24 MeV (gray to
red), analogous to Fig. 6

relation between the convergence of the ground and the ex-
cited state are relevant. Furthermore, excited-state energies,
especially for more loosely bound states, converge slower than
the ground-state energy. Together, this makes the prediction
of the converged value much more challenging, especially
at Nmax = 8. Nevertheless, the ANN results for excitation
energies are generally very robust, in particular for the low-
est excited states. Higher-lying, more loosely bound excited
states like the 2+ state in 6Li or the 7

2
− state in 7Li require

Nmax = 10 to give accurate results. However, in these cases,
the convergence behavior of the sequences changes signifi-
cantly within the lower Nmax data points, so a slight influ-
ence on the ANN predictions is expected. For this reason,
we recommend checking for the robustness of the predictions
by comparing with predictions for other Nmax if available.

VIII. RESULTS FOR RADII

As already mentioned, the extrapolation of NCSM se-
quences for rms radii is very challenging, as their convergence
behavior is far less constrained than for the ground-state en-
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FIG. 8. Input data and network predictions for the ground state and
excitation energy of 8Li with ℏΩ = 14, 16, 20, 24, and 28 MeV
(gray to red), analogous to Fig. 6.

ergy. As a result a larger variety of convergence patterns can
be observed and the networks have to learn to cope with the
different patterns. Obviously, we have to train a new set of
networks to pick up the convergence patterns inherent to the
radius. We use the same network topology and input mode
(MINMAX) as for the ground-state energy training, but train
on data for mass rms radii instead. The evaluation step is per-
formed analogous to the ground-state energies.

The application of the radius networks to 2H, 3H, and 4He
is illustrated in Fig. 10 and the final ANN predictions are sum-
marized in Table I. The NCSM data for the mass rms radius,
which is fed into the networks, is shown in the left-hand pan-
els, while the ANN predictions are depicted on the right side,
together with the fully converged values (green lines). As be-
fore, we use the semi-local NN+3N interaction at N2LO with
Λ = 450 MeV [25, 33] and α = 0.08 fm4 for this evaluation,
which is not included in the training set.

We first observe that the convergence patterns for the radii
are really very different from the ground-state energies. The
radius is not constrained via the variational principle, which is
evident from the fact that convergence is not monotonous. De-
pending on the selection of HO frequencies, whole sequences
can converge from or from below. The convergence itself is
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FIG. 9. Input data and network predictions for the ground state and
excitation energy of 9Be with ℏΩ = 14, 16, 20, 24, and 28 MeV
(gray to red), analogous to Fig. 6.

also significantly slower compared to energies, and some se-
quences show a jagged pattern, particularly at Nmax values.

Despite of these characteristics, the ANN predictions for
the 2H and 4He mass rms radius are in very good agreement
with the fully converged value, even at Nmax = 8. These two
nuclei also demonstrate the two extremes of possible conver-
gence patterns: With a selection of HO frequencies around
the variational minimum for the ground-state energy, 4He ex-
hibits a very symmetric convergence, with some sequences
converging from above and some from below. 2H on the other
hand exhibits convergence exclusively from below, which is
the typical case for most nuclei we looked at. This reflects
the distribution of target values for all training samples men-
tioned earlier, and depicted in Fig. 2. The predictions for 3H
show a light drift, particularly the Nmax = 8 is slightly above
the exact radius, which might be related to the strong zig-zag
pattern for small Nmax values in the input data.

To assess the performance of the networks beyond of the
few-body systems used for training, we take a look at four p-
shell nuclei. Figure 11 shows input data and ANN predictions
for 6Li, 7Li, 8Li, and 9Be. The final predictions are summa-
rized in Table I. This data again is extracted from the NCSM
calculations performed for Ref. [34], which focused entirely
on energies. Therefore, the selection of HO frequencies avail-
able is optimized for the description of energies and not for
rms radii. As a result, the sequences predominantly converge
from below and, particularly for 6Li and 7Li, do not cover the
range around the optimum frequency for the radius.

Despite these deficiencies in the evaluation data, the predic-
tions are very stable across the board. For 6Li and 7Li a slight
trend towards larger radii, which is compatible with the de-
picted uncertainties, can be observed with increasing Nmax.
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FIG. 10. Mass rms radii input data and resulting network predictions
for few-body systems. The left hand panels show the NCSM data
for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV (gray to red), while
the right hand panels show the ANN predictions for Nmax = 8, 10,
and 12, with the green line indicating the fully converged value ob-
tained at a large Nmax.

This shift gets smaller for larger model spaces, and is less
pronounced for 8Li and 9Be, where the chosen HO frequen-
cies include more optimal values producing a flat convergence
curve. Therefore, we expect that an optimized selection of
HO frequencies in the NCSM calculations, leading to a more
symmetric convergence pattern, will improve the predictions
and alleviate the observed slight upwards trend. Another way
to tackle such a systematic might be to restrict the training
data set to sequences that converge exclusively from below,
thereby, obtaining networks that are specialized for this situ-
ation. However, even with a non-optimized frequency selec-
tion and the general set of training data, the ANNs provide
robust predictions for the converged rms radii with realistic
data-driven uncertainties based on a rather limited set of eval-
uation data.
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FIG. 11. Mass rms radius input data and network predictions for light
p-shell nuclei with ℏΩ = 14, 16, 20, 24, and 28 MeV (gray to red,
7Li without ℏΩ = 28 MeV), analogous to Fig. 10.

IX. CONCLUSIONS

We have extended our ANN architecture to high-precision
predictions of ground-state and excited-state energies and
radii from non-converged NCSM calculations. The core idea
of the framework is to learn convergence patterns from a large
pool of training data obtained from few-body systems such as
2H, 3H, and 4He with a range of different interactions, and ap-
ply the trained networks to NCSM data for a larger range of
nuclei. This includes a statistical evaluation scheme, where
many networks are trained and evaluated to obtain a distri-
bution of predictions that allows for the extraction of statisti-
cally meaningful uncertainties. With the new MINMAX input
mode we are able to extend this capability to radii as well, a
much less constrained observable compared to energies. Ad-
ditionally, we find improvements in accuracy coupled with
more realistic uncertainties in the case of energies when com-
pared with our previous generation of networks.

Based on these advances we are convinced that the ANN
architecture is capable of handling other observable as well,
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Nmax = 8 10 12 conv.
2H

Egs ANN −2.195(47) −2.223(27) −2.195(14) −2.200
Egs extr. −2.013(106) −2.147(*) −2.183(106) −2.200
Rrms ANN 1.995(46) 1.967(23) 1.979(26) 1.979

3H
Egs ANN −8.482(65) −8.509(33) −8.487(12) −8.481
Egs extr. −8.434(110) −8.480(109) −8.473(24) −8.481
Rrms ANN 1.726(20) 1.712(14) 1.703(8) 1.696

4He
Egs ANN −28.513(71) −28.526(25) −28.526(8) −28.524
Egs extr. −28.503(48) −28.528(24) −28.523(9) −28.524
Rrms ANN 1.461(10) 1.461(4) 1.460(2) 1.460

6Li
Egs ANN −31.98(17) −32.01(11) −32.10(6) –
Egs extr. −31.72(27) −31.91(19) −32.01(36) –
Eex(3+) ANN 2.44(12) 2.42(5) 2.40(4) –
Eex(3+) extr. 2.38(35) 2.41(19) 2.34(36) –
Eex(0+) ANN 3.91(10) 3.86(6) 3.79(6) –
Eex(0+) extr. 3.92(35) 3.76(19) 3.65(36) –
Eex(2+) ANN 4.74(15) 4.56(10) 4.46(7) –
Eex(2+) extr. 4.67(59) 4.38(19) 4.44(47) –
Rrms ANN 2.235(18) 2.284(22) 2.291(18) –

7Li
Egs ANN −39.46(19) −39.39(11) −39.40(6) –
Egs extr. −39.12(34) −39.24(13) −39.39(7) –
Eex(1/2−) ANN 0.37(5) 0.33(3) 0.32(1) –
Eex(1/2−) extr. 0.34(34) 0.33(15) 0.32(7) –
Eex(5/2−) ANN 5.01(13) 4.93(5) 4.88(3) –
Eex(5/2−) extr. 4.86(46) 4.91(13) 4.96(11) –
Eex(5/2−) ANN 6.95(13) 6.81(10) 6.71(7) –
Eex(5/2−) extr. 6.93(55) 6.81(25) 6.65(12) –
Eex(7/2−) ANN 8.14(3) 7.95(6) 7.88(3) –
Eex(7/2−) extr. 8.05(53) 7.94(23) 7.84(11) –
Rrms ANN 2.285(15) 2.307(15) 2.325(14) –

8Li
Egs ANN −41.35(21) −41.36(14) – –
Egs extr. −41.14(47) −41.23(16) – –
Eex(1+) ANN 1.22(9) 1.10(7) – –
Eex(1+) extr. 1.18(50) 1.11(19) – –
Eex(3+) ANN 2.53(8) 2.54(4) – –
Eex(3+) extr. 2.51(52) 2.54(16) – –
Eex(4+) ANN 7.05(17) 6.79(15) – –
Eex(4+) extr. 6.86(88) 6.80(24) – –
Rrms ANN 2.308(16) 2.327(17) – –

9Be
Egs ANN −58.91(26) −58.95(13) – –
Egs extr. −58.74(52) −58.82(21) – –
Eex(5/2−) ANN 2.59(4) 2.54(2) – –
Eex(5/2−) extr. 2.54(55) 2.53(23) – –
Rrms ANN 2.309(14) 2.324(13) – –

TABLE I. ANN predictions of ground state and excitation energies
[MeV] and the mass rms radius [fm] for all discussed nuclei. Clas-
sical extrapolation results for energies are given as a comparison.
Where available, the fully converged result is given as well. Uncer-
tainties denoted as (*) are unreasonably large due to a breakdown of
the classical extrapolation method.

especially electromagnetic moments and transition strengths.
For electric quadrupole observables we expect a correlation to
the rms radius, which can be exploited in the evaluation and
construction of the networks. Of course, for the training of
new ANN for such observables we need a sufficient amount of
training data in very light nuclei. This can become an issue,
since many electromagnetic observables, particularly transi-
tion strengths, do not naturally appear in bound few-nucleon
system. To remedy this issue, we are currently looking into
synthetic nuclei which emerge from modified Hamiltonians.
We can, for example, enhance the interaction to create addi-
tional bound states in these small systems, making more com-
plex observables accessible in few-body systems and to create
a large library of training data.
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Ormand, and J. P. Vary, Structure of p-shell nuclei using three-
nucleon interactions evolved with the similarity renormaliza-
tion group, Phys. Rev. C 87, 054312 (2013).

[25] P. Maris et al. (LENPIC Collaboration), Light nuclei with
semilocal momentum-space regularized chiral interactions up
to third order, Phys. Rev. C 103, 054001 (2021).
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