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We investigate the influence of phenomenological thredemucinteractions on the systematics of ground-
state energies and charge radii throughout the whole nuelass range frorfiHe t02%Pb. The three-nucleon
interactions supplement unitarily transformed two-batgiiactions constructed within the Unitary Correlation
Operator Method or the Similarity Renormalization Groupra@ach. To be able to address heavy nuclei as
well, we treat the many-body problem in Hartree-Fock plusiyalaody perturbation theory, which isféigient
to assess the systematics of energies and radii, and linsiélves to regularized three-body contact interactions.
We show that even with such a simplistic three-nucleon &uon a simultaneous reproduction of the experi-
mental ground-state energies and charge radii can be achietich is not possible with unitarily transformed
two-body interactions alone.

PACS numbers: 21.30.Fe,21.45.Ff,21.60.Jz

I. INTRODUCTION gonne V18 high-precision two-nucleon potential [6], which
is still widely used although it does not have the same sys-

Nuclear structure theory is approaching an era of systematiematic link to QCD like the chiralféective field theory in-
many-body calculations using nuclear Hamiltonians based otéractions and is considered phenomenologicalin thiseasp
Quantum Chromodynamics (QCD). An important step alongVe then use the Similarity Renormalization Group [7-11] as
these lines is the formulation of nuclear interactions imith Well as the Unitary Correlation Operator Method [10, 12-14]
chiral effective field theory [1-3], leading to a consistent hier- 0 construct a transformed two-nucleon interaction, whiag
archy of two-, three- and many-nucleon interactions stgrti much better convergence behavior and allow us to use sim-
from the relevant degrees of freedom and symmetries for th@lified many-body schemes. At this level neither genuine nor
low-energy nuclear structure regime. The use of these twolinduced three-nucleon interactions are included. Fror var
three- and many-nucleon interactions in nuclear structake ~ OUS applications of these unitarily transformed two-nowle
culations is a formidable task. interactions we know that there are characteristic deniati

In addition to few-body calculations the most promising nu-Of Pasic nuclear observables from the experimental systema
clear structure calculations using the chiral two- plugéar €S that might be connected to three-body interactions. For
nucleon interaction consistently have been performedén th€xample, unitarily transformed two-body interactions ehi
no-core shell model (NCSM) for mid p-shell nuclei [4]. An yield a realistic systematlcs__for binding energies tendrie u
immense numerical fiort is needed to compute and man- derestimate the charge radii [10, 15]. Here we study to what
age the three-body matrix elements in these calculation§Xt€nd these systematic deviations can be cured by ingudin
which limits the range of applicability of these calculatio athree-body interaction. Note that we are not aiming at a pre

at present. Recently, the use of consistent two- plus threiSion description of individual nuclei but rathertrgge cdetp
nucleon interactions resulting from a Similarity Renorizeal ~ Systematics from light nucletHe, to heavy nuclef**Pb.
tion Group evolution of the chiral two- plus three-nucleon i 'Iz'oogfamhtate calculations for the full mass range frghie
teraction was demonstrated also in the context of the NCSNP " Pb we have to simplify the approach compared to the
[5]. This approach, a unitary transformation of the chiralconsistent. The first simplification consists in the use of a
Hamiltonian aiming at a pre-diagonalization that improtres ~ Phenomenological three-body interaction, which allowsio
convergence properties of NCSM substantially, holds grea@fficient computation of matrix elements but violates the con-
potential also for the use in other many-body schemes angiStency discussed above. The second S|mpI|f|cat|0n.denS|s
will play a significant role in the future. However, the com- in the use of Hartree-Fock plus many-body perturbation the-
putational ort for including those two- plus three-nucleon OrY for the approximate solution of the many-body problem.
interactions into many-body calculations, be it exact or ap Pespite of these simplifications, we will obtain valuablioin
proximate, is still the limiting factor for many applicatis. mation on t_he interplay ben_Neen re_allstlc two-body and phe-
In this paper we follow a more pragmatic route to eXp|0renome_nolog|cal three-body interactions and on how well the
the impact of three-body forces in connection with unigaril €XPerimental systematics of ground-state energies andeha

transformed two-nucleon interactions. We start from the Ar fadii can be reproduced. Furthermore, these studies grepar
the ground for calculations with consistently transforriveo-

plus three-nucleon interactions.
After a brief reminder of the basic concepts of the Unitary
*Electronic addressinneke. guenther@physik.tu-darmstadt.de Qorrelatlon Op_erator Method and the Slmlla_my Renormallz_
fElectronic addresstobert . roth@physik. tu-darmstadt . de tion Group we introduce the phenomenological three-body in



teraction and calculate the matrix elements in the harmoniand the tensor part of the nuclear interaction. Therefoge th
oscillator basis in the second section. In the third sectian  correlation operator is written as a product of two unitgpy o
discuss the inclusion of the three-body interaction in &t  erators,C; for the central correlations arck, for the tensor
Fock and many-body perturbation theory and discuss the sysorrelations. We choose an explicit form of the correlation
tematics of ground-state energies and charge rms-radisacr operators:

the whole nuclear mass range and its dependence on the two-

and three-nucleon interaction. C=CqC = exp( —i Z QQ,ik) exp( —i Z g,’jk) (4)
j<k j<k
1. FORMALISM with the following ansatz for hermitian generatgrsandgg:
A. Unitary Correlation Operator Method and Similarity o = %[qrs(r) +s(Ng] ,
Renor malization Group (5)

do = 3(o1-7)(02- q) + (01 ga)(o2-7)] .

The Unitary Correlation Operator Method and the Sim"ar‘whereqr = Y(T.q+q %), qo = g- =G, andg = 3[p1—p2]
2\r r/ r ' 2 )

ity Renormalization Group provide two conceptualifeient  The srengths and radial dependencies of the two transforma
but physically related approaches for the constructioroif s s are governed by the correlation functicss and¥(r)

phase-shift equivalent interactions. _ for the central and tensor correlations, respectively. €are
The Similarity Renormalization Group (SRG) [7-11] aims gpain these functions via an energy minimization in the-two
atthe pre-d|agonal_|zat|on of the Har_nllto_nlan for a givesiba body system [16]. Recently, we have also employed the SRG
by means of a unitary transformation implemented throughys o0 for the determination of the UCOM correlation func-
the renormalization-group flow equation: tions(r) andd(r) as discussed in Refs. [9, 10]. Here, we will
dH, use these SRG-optimized UCOM correlation functions only.
da [0, Hal 1) Though the SRG- and UCOM-transformations have a dif-
ferent formal background, they address the same physics of
short-range correlations. A first connection becomes dear
the level of the generators [8]—the SRG generator (2) in two-
body space at = O reveals the same operator structures that
appear in the UCOM-generators (5). At the level of matrix
elements, both the SRG- and UCOM-transformations lead to
a suppression of theffladiagonal momentum-space matrix el-
ements and an enhancement of the low-momentum matrix el-
Ne = [Tint, He] (2) ementsas disc_:ussed in detail in Ref. [10]. -

In the following, we employ both transformations to gener-
with Tine = T — Tem being the intrinsic kinetic energy, which  ate one-parameter families of phase-shift equivalenttiody
leads to a pre-diagonalization of the Hamiltonian with B2p  jnteractions starting from a specific initial NN-interaumti
to the eigenbasis of the kinetic energy or momentum operatoghe Argonne V18 (AV18) in our case. For the SRG-
Once the generator is fixed, the Hamiltonian and all opesatori gnsformation the flow parameterdirectly spans this fam-
of interest can be evolved easily using a matrix representat jly of two-body interactions. We will study two versions of
of the flow equation (1). the SRG-transformation, one where the flow equations are

In A-body space the evolution generates up#body oper-  splved for all partial waves and one where only the partial-
ators even if the initial Hamiltonian containsonly upto o  \yaves containing relative-waves, i.e. théS, and the cou-
three-body operators. For reasons of practicability orsetha pled3s, - 3D, partial waves, are transformed. The latter is
truncate the evolution at some low particle number—tyycal motivated by the fact that short-range correlatiofiea the
this is done by solving the evolution equation in a matrixrep s-wave channels most, because for all higher orbital angular
resentation in two- or three-body space. For the moment Wghomenta the relative wave functions are suppressed by the
restrict ourselves to transformations in two-body spaee, i centrifugal barrier at short distances. We use the labeGSR
we will discard any induced three-body interactions. for the fully transformed interactions and ‘S-SRG’ for the S

The aim of the Unitary Correlation Operator Method aye-only transformations. For the UCOM-transformation
(UCOM) [10, 12-14, 16] is to explicitly treat short-rangeco e use correlation functions determined from SRG-evolved
relations induced by the nuclear interaction via a statitam two-body wave functions as discussed in Refs. [9, 10], thus
transformation. This transformation can either be use®to ¢ the flow parameter also spans a family of fierent UCOM-
relate the many-body states or to similarity transform aper transformed interactions. Note that the standard forriurat
tors of interest, e.g. the Hamiltonian of UCOM only uses dferent transformations for theftérent

b =Cc'HC 3) (S, T)-channels. We thus use the SRG-evolved wave func-
’ tions for the lowest partial waves for each T)-channel to
using the correlation operat@. The dominant short-range define the correlation functions, leading to a transfornmed i
correlations are induced by the strong short-range regulsi teraction labelled ‘UCOM(SRG)'. Analogously to the S-SRG

whereq is the flow parameter and, the evolved Hamilto-
nian, with Hy = H being the initial or ‘bare’ Hamiltonian.
The anti-hermitian generataey, defines the specifics of the
flow evolution, e.g. the representation with respect to Whic
the Hamiltonian should become diagonal or block-diagonal
Various choices for this generator have been investigateld
we restrict ourselves to the simple generator [7, 9]
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B0 S . , the S-UCOM(SRG)-, the SRG-, and the S-SRG-transformed
AV18 interaction. Thus the additional phenomenological in
teraction, which mimics the netfect of the genuine and the
261 1 induced 3N interaction, has to be repulsive in order to lead
to a“He binding energy consistent with experiment. Note
that the phenomenological three-body forces that are used i
connection with the bare AV18 interaction are generally at-
tractive. Thus the induced 3N interaction resulting frora th
29l | unitary transformation of the NN interaction alone has to be
repulsive and diiciently strong to create an over-all repulsive
three-body contribution.
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N
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FIG. 1: (color online) Binding energy ofHe as function of
the flow parameterr obtained from a converged no-core shell
model calculation using the UCOM(SRG)-transforme}l the S-
UCOM(SRG)-transformede(), the SRG-transformedaj, or the S- B. Three-Body Contact Interaction
SRG-transformeds() AV18 potential. The horizontal lines indicate
the experimental binding energy—+—) and the exact ground state
energy for the bare AV18 two-body interacticn{-) [17]. The simplest choice for a phenomenological 3N interaction
is a spin-isopin-independent contact interaction

transformation, we can also use an S-wave-only UCOM trans-
formation, denoted ‘S-UCOM(SRG)’, which acts only in the
1S, and the coupledS; — 3D, partial waves.

So far, we have assumed that both transformations are evakith variable strengtiCsy. Despite its simplicity it allows us
uated in two-body space, leading to a transformed intemacti to study the impact of a 3N interaction on bulk observables
containing two-body terms only. A consistent first-prileg  like ground-state energies or charge radii. Obviouslyghis
treatment requires the transformation to be performed-in plistic choice dfers substantial computational advantages.
body space, leading to a hierarchy of induced interactigns u
to the A-body level, as mentioned earlier. The most advancege
attempts along these lines use the full SRG-evolution at thﬁ
three-body level to construct a consistently transforme t
plus three-nucleon interaction [5]. The use of those twaspl

Van = Can 6@(x1 — 2) 6Oz — x3) (6)

For evaluating the matrix elements of a realistic 3N in-
raction for the use in configuration-space Hartree-Fack o
o-core shell model type calculations one typically adopts
a two-step procedure: First the matrix elements are eval-

. . . . ; uated in a Jacobi-coordinate basis for the relative motion
three-body interactions in many-body calculations is \dey in the three-nucleon system. Then, through a sequence of

manding and presently limited to rather small mode SPACES.Ta1mi-Moshinski transformations and angular momentum re-

Therefore, we follow a more pragmatic path in this work. coyplings, the matrix elements are transformed into the m-
We evaluate the unitary transformations at the two-bodgllev ¢cheme to perform the many-body calculation. Both steps
and mimic the three-body contributions (genuine plus in-5re non-trivial and computationally demanding, thus lingjt

duced) through a simple phenomenological three-body-intefihe model-space sizes for which those matrix elements can be
action. By using a simplified three-nucleon (3N) interagtio p5ndied.

e.g., a regularized contact or a Gaussian interaction,dhe c _ .
culation of the three-body matrix elements becomes fogmall N contrast, the matrix elements of the contact interac-
and computationally much less demanding. This allows us t§on can be directly evaluated in the m-scheme in a straight-
study the impact of 3N interactions on various nuclear strucforward manner. We first consider the matrix elements of the
ture observables for nuclei and model spaces beyond the dgN contactinteraction with respect to the spatial part oé¢h
main accessible with realistic 3N interactions. Furthereno Particle product states in the harmonic oscillator basis

we can develop and benchmark approximate treatments of the

three-body contributions and establish the technical &am

Worktoincylude 3N interaction into ffierent many-body meth- (Nalam,, Nzl2M;, NglsM | Van nalam,, Nslsm,, nelem,) . (7)
ods.

The parameters of the phenomenological 3N interaction§he spin and isospin quantum numbers and the antisym-
will be adjusted depending on the flow parameterof = metrization will be included subsequently. We can insert a
the transformed two-nucleon (NN) interaction. For a wideunit operator in position representation using cartesiemai-
range ofa parameters the transformed two-body interactionnates and directly evaluate the Kronecker-deltas. Thieka
alone produces an overbinding compared to the experimems with a single integration over a single-particle cooatk
tal ground state energy. This is illustrated in Fig. 1 for thewhich can be rewritten in spherical coordinates. Introdgci
ground-state energy dHe as function ofr obtained in con- the position representation of the harmonic oscillatoglgin
verged no-core shell model calculations for the UCOM(SRG)-particle stateSgnm(x) = Ra(X)VYim (€2), with radial wave
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functionsRy(X) and spherical harmonitéy,, (), we obtain: A. Hartree-Fock Approximation
(nalim, nplomy,, nglamy, | Van Inglamy,, nslsmyg, nelem;) We have employed the Hartree-Fock (HF) approximation as
a first indicator for the gross systematics of binding erergi
= Can f A Ryt () Rt (%) Ry (%) and charge radii obtained with unitarily transformed tvamip

interactions in Refs. [10, 15] already. In order to assess th

X Rots (9 Rels () Reis () ®) impact of 3N contact interactions we extend our HF frame-
X f dQ Yy QY ()Y, (Q) work in a first step.
i o s All calculations are based on the translationally invatrian
X Yl4m4 (Q)Yl5m5 (Q)Ylﬁm6 (Q). Hamiltonian
Hint = Tint + VNN + Van = Hi(nzt) + Van (10)

The integral over the six radial wave functidRg(x) has to be

calculatgd numerically while the integral oyerthe sixopted  \ih Vi being the UCOM- or SRG-transformed NN inter-
harmonicsYim, (_Q) can be eyaluated analytically. The product 4 tion andTix = T — Tem the intrinsic kinetic energy. This
of three_spherlcal harmomcs can be redupe_d to one sphengﬁ miltonian includes all charge dependent and electromag-
harmonic and the integral over the remaining two spherica},qtic terms of the transformed AV18 potential as well as the
harmonics can be solved analytically, leading to phenomenological three-body force.

The HF equations are formulated in a harmonic oscilla-

fdg (Q) o, (Q)lem (Q)YumA (Q)YlsmS(Q)Ylsms(Q) tor basi§ representatiqn, i.e:, the single-particle state ex-
8 panded in the harmonic oscillator states:

AAAAAA 1
16712|1|2|3|4|5|6 Z 11 bljmmy) = chﬂjmt) inljmmy , (11)
Lilols
My, ML, M, n
X ('1 '2|L1) (Ll '3|L2) ('4 '5|L3) (L03 '3|L02) where |nljmm) denotes the harmonic oscillator eigenstates
Lol with radial quantum number, orbital angular momentut
(m1 m, | MLl) (ML1 m3 | MLZ) total angular momenturjpwith projectionm, and isospin pro-
( i s | ) ( ' ) jection quantum numbaery. Since we only consider closed-
Ma Ms | Mg Miy ”‘6 M, shell nuclei in the following, the expansion d¢heients are
©) independent ofn. The HF equations can now be written as
with T = V2I+1 and ¢ni o |y, ) being Clebsch-Gordan Z h{mdc0lim) _ gotimacOtim) (12)
codficients. n

We precompute and store those angular integrals as well
the radial integrals in (8). The inclusion of the spin andsa
guantum numbers, the coupling of the single-particle atbit
angular momenta and the spins, and the antlsymmetrlzatmlﬂ(nmt) _ nlime. 'l i'ntl H mlime. 17 i (" j'my)
are then done on the flight during the many-body calculation. ™ Z Z< i, W] Ho I, W50 o

ith the single-particle energie§'i™). The matrix elements
of the single-particle HF Hamiltonian

This makes calculations in large model spaces feasible. . m{ "
For applications beyond the mean-field level a regulariza- Z Z(nljmt, 'l g, 1”7 my’| x
tion of the contact interaction is inevitable. However, the |f, monn
regularization should preserve the simplicity of the mxatri g
element calculation, which rules out momentum-spaceftsito X Van [Aljmy, 17 §/mf, 717 7y’ Q(' i mﬁ)gg r11 )
and such. Hence, we introduce an energy dbiparameter (13)

esn, Which defines an upper bound for total oscillator energy

of the three-particle state, f2+11)+(2nx+12)+(2n3+13) < esn.  are obtained by contractions of the antisymmetrized matrix

The Implementatlon of this cufidis trivial and it preserves all elements of the two- body part of the Harn"'[oniaﬁt and the

computational advantages of the contact interaction. three-body interactioWsy with the one-body density matrix
given by

(I]m) Vjme) ~(1me)* ~(jmy)
I1l. MANY-BODY CALCULATIONS 1 ZOV"C ey (14)

We adopt the 3N contact interaction together unitarilywith O®'i™) being the number of occupied magnetic sublevels
transformed NN interactions for the study of the systernsatic which is 2j + 1 for closed-shell nuclei.
of nuclear ground-state energies and charge radii thrautgho In the following the HF approach is applied to selected
the whole mass range frofide to 2°8Pb using Hartree-Fock closed-shell nuclei fromiHe t02%®Pb. The HF equations are
and many-body perturbation theory. solved iteratively until full self-consistency is reachetihe
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FIG. 2: (color online) Ground-state energies per nucleahararge  FIG. 3: (color online) Ground-state energies per nucleahdrarge
radii of selected closed-shell nuclei resulting from HFcoddtions ~ radii of selected closed-shell nuclei resulting from HFcaéations
based on pure two-body interactions g, = 10: UCOM(SRG) for the pure two-body interaction S-UCOM(SRG) .« = 10 and
with @ = 0.16 f* (e), S-UCOM(SRG) withr = 0.16 fm’* (w), SRG  different flow parametersy = 0.04frt" (o), @ = 0.12fm" (m), & =
with @ = 0.10fn"* (¢), S-SRG withe = 0.10fm* (a). The bars 0.16 fm* (#). The bars indicate the experimental values [18, 19].
indicate the experimental values [18, 19].

initial NN potential in the course of the SRG-evolution. Be-
model space is truncated at a given major oscillator quanturgause of the mere size of the three-body corrections needed
numbere = 2n+ | < emay, Whereenax = 10 is suficient to ob-  one cannot expect a simple phenomenological interaction to
tain converged ground-state energies and radii at the H#f.lev be adequate to capture the main physics contained in thes thre
The oscillator parameter is chosen for each nucleus separat body contributions. Therefore, we will not consider theyful
such that the experimental charge radius is reproduced by RG-transformed interactions in the following.
shell-model Slater determinant built from harmonic ostdt Before including the 3N contact interaction explicitly, we
single-particle states. analyze the dependence of the HF results obtained with the
As a first illustration of the behavior of unitarily trans- transformed two-body interactions on the flow parameter
formed two-body interactions Fig. 2 summarizes the ground!n Fig. 3 the binding energies and charge radii for the S-
state energies per nucleon and the charge radii obtained BICOM(SRG) interactions witkr = 0.04 fnf*, 0.12fnf", and
the HF level for nuclei up t6°Pb. We adopt four dier-  0.16 frf* are shown. For the smallest flow parameter=
ent two-body interactions—UCOM(SRG), S-UCOM(SRG), 0.04 fi? the ground-state energies reproduce the systemat-
SRG, and S-SRG—uwith flow parameters relevant for the lateics of the experimental values up to a constant shift. The
calculations including the 3N contact interaction. We obse Missing binding energy can be explained by beyond-HF cor-
that the general trend of the binding energies and chargie radelations that can be recovered, e.g., by perturbationryheo
is similar for the UCOM(SRG), the S-UCOM(SRG), and the This flow parameter would be used for calculations based on
S-SRG interactions. All three interactions produce bigdin the pure NN interaction, as they are discussed in detail in
energies that are within 2 MeV per nucleon of the experimenRefs. [9, 10, 15].
tal values for the whole mass range. By including correfetio ~ When increasing the flow parameter entering into the con-
beyond HF, e.g., through many-body perturbation theoty, alstruction of the S-UCOM(SRG) interaction to= 0.12 fnf
interactions would lead to an overbinding compared to experor 0.16 fif* the ground-state energy at the HF level decreases
iment. At the same time the charge radii are underestimatesubstantially. For most nuclei the binding energy per mutle
for all but the lightest isotopes. Those systematic desisti  more than doubles when going frame= 0.04 fr* to 0.16 ",
can be remedied by a repulsive 3N interaction, as it will beFor heavier nuclei the increase is larger, thus leading iib a t
included in the next step. of the ground-state energy systematics with respect toxthe e
The SRG-transformed interaction exhibits a vastiffeti ~ perimental behavior. Unlike the energies, the charge eedlii
ent behavior. The binding energies per nucleon increasBibit a very weake-dependence as shown in the lower panel
rap|d|y with mass number, |eading to an Comp|ete|y unphysi.Of Flg 3. For all flow parameters considered here, the radii
cal overbinding already at the HF level for intermediate andiré somewhat underestimated. The situation is very similar
heavy nuclei. At the same time the charge radii are eveffor the UCOM(SRG) and the S-SRG interactions.
smaller than the ones obtained with the other transformed This general phenomenology of ground-state energies and
interactions. Those strong systematic deviations haveeto bcharge radii obtained from unitarily transformed intei@cs
compensated by the 3N interaction that is generated from that larger flow parameters illustrates that the purely reépeils
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of selected closed-shell nuclei resulting from HF caldatat based ~ FIG. 5: (color online) Single-particle spectra $iCa for difer-

on the S-UCOM(SRG) interaction far = 0.16n, en = 10,  ©nt interactions: (1) UCOM(SRG) witr = 0.16fm", Coy =
esn = 20 and diferent strengths of the three-body interactiGgy = 1600 MeVfnf, (2) S-UCOM(SRG) witha = 0.16fn", Con =
1600 MeV fnf (o), Cay = 2200 MeV fnf (m), Cay = 2800 MeV fnf 2200 MeV fnf, (3) S-SRG withy = 0.10 fr*, Cay = ?OOO Mern’?_.
(#). The bars indicate the experimental values [18, 19]. Three-body cut-fi set toesy = 20 for all calculations. Occupied

states are indicated by solid lines, unoccupied states slyeddlines.
Experimental data taken from Ref. [20].

phenomenological 3N interaction can be used to improve en- protons neutrons
ergies and radii. Since the radii are insensitive to the flow =_=: =: =T == =
parameter in a certain regime, we can fix the strength of the = == =« =
3N interaction such that the systematics of the charge radii "\__/_.\

is in good agreement with experiment. The flow parameter 0

. ; - \ =& =
can then be chosen to provide an optimal description of the d5/2=§./—¥m
L — d3/2

ground-state energies in a beyond-HF calculation.

The impact of 3N contact interactions with fidirent _ﬁpuz o
strength parametei@gy is illustrated in Fig. 4 using the S- 2 101 s oz |
UCOM(SRG) interaction forr = 0.16 fnf". As compared 2 —q
to the HF calculation with the pure two-body interactiorg th W mzﬂﬁ/z
binding energies are reduced significantly and the chadie ra 20k _l/_{ |
are increased as a result of the purely repulsive 3N interact s
It is remarkable, that the charge radii are in excellentegre I —/_/_ds/z
ment with experiment for the whole mass range frie to
208pp when using a 3N interaction with strength parameters in - -
the rangeCsy = 2200 to 2800 MeV fr. For the same values
Csn the ground-state energy systematics at the HF does again @D @ @ Exp (1) (@ @) Exp
resemble the experimental systematics up to a constamt shifg_ 6: (color online) Single-particle spectra 8r for the same
i.e. the tilt of the energy curve towards an overbinding forinteractions used in Fig. 5. Experimental data taken froris R1,
heavier nucleiis cured as well. The missing binding enefgy 022].

3 to 4 MeV per nucleon at the HF level can be recovered by
including correlations beyond HF, as will be discussed & th
next section. parameter adjusted to provide a good over-all descriptfon o

In addition to ground-state energies and radii the HF apthe charge radii at the HF level, i.&Cay = 1600 MeV fnf
proximation provides us with an estimate for the single-for UCOM(SRG),Can = 2200 MeV fnf for S-UCOM(SRG),
particle energies that can be used to diagnose the vario@dCay = 2000 MeV fnf for S-SRG.

NN+3N interactions. Examples for the single particle spectra The gross structure of the single-particle spectra obthine
obtained with the various unitarily transformed interans  with the S-UCOM(SRG}3N and the S-SR&3N interactions

for “°Ca and®Zr are shown in Figs. 5 and 6, respectively. We agrees rather well with the single-particle energies ekt
use the UCOM(SRG) and the S-UCOM(SRG) interactions forfrom experiment. The quality of the agreement is comparable
a = 0.16 fm* and the S-SRG interaction far = 0.10 fm*  with other mean-field type calculations and some of the of the
each supplemented with a 3N contact interaction with stteng characteristic deviations, e.g. the overestimation ofytyes at
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the Fermi energy, are expected to be remedied by the inclusio ~
of beyond HF corrections. Other important quantities,,e.qg.
the splittings between spin-orbit partner states, areochpred
rather well at the HF level already.

The picture is dferent for the UCOM(SRG&G)3N interac-
tion. In particular for the single-particle spectrum 82r
shown in Fig. 6 and for all heavier nuclei we observe
a collapse of the spin-orbit splittings. Since this problem
does not appear in the corresponding S-UCOM(SRG) cal- 8 12 1620 24 8 12 16 20 24 8 12 16 20 24
culation, it has to be caused by the UCOM-transformation €3N €3N €3N
of the higher partial waves. The problem is also absent in
UCOM(SRG) interaction for smaller flow parameterse.g.  FIG. 7: (color online) Contributions to the ground staterggere-
for the UCOM(SRG) interaction at = 0.04 fnf* that was  sulting from MBPT based on the S-UCOM(SRG) interaction for
used in Fig. 3. Thus the long-range character of the tenser co@ = 0.16fn, enax = 10, Cay = 2200MeVfnf as function
relation functions as they appear for largeicf. Refs. [9, 10])  ©f the cut-df parameteresy for HF (), HF+MBPT(2B) () ,
acting on the higher partial wave leads to this unphysical beHF+MBPT(2B+3Bpphh) ¢), and HRMBPT(2B+38B) (4).
havior. We will, therefore, restrict ourselves for the éoling
discussion to the S-UCOM(SRG) and S-SRG interactions.

The inclusion of the 3N interactiorffacts this expression in
two ways: () The matrix elements of the two-body Hamilto-
nian are modified by anfiective or in-medium two-body term
that results from the three-body matrix elements by a contra
tion of the third single-particle indexii{ An additional pure
three-body term involving three particle and three holédes
Yappears.

To separate the fiect of these two contributions we
study three variants of the second-order energy correction
MBPT(2B) includes only the contribution of the two-body

amiltonian, i.e., the first matrix element in Eqg. (15).
BPT(2B+3Bpphh) includes the in-medium two-body con-
ribution generated by the 3N interaction, i.e., the corngple

B. Many-Body Perturbation Theory

A simple means to estimate the impact of correlations be
yond the HF approximation is many-body perturbation theor
(MBPT). In particular low-order MBPT corrections to the en-
ergy [23-26] can be computed quitieiently for the whole
mass range up t6°®Pb. We have used second- and third-
order MBPT to investigate various two-body Hamiltonians
and the importance and systematics of correlations beyon
HF in Refs. [10, 15]. One should be aware, however, tha[

low-order MBPT can only provide an estimate for the exactt ot tarm in Eq. (15). Finally, MBPT(2B3B) includes all
ground-state energies and that the order-by-order coexesy terms of Eq. (15) '

is not guaranteed, as we have shown in Ref. [27] using an har- 1, o ground-state energies tle, 160, and“°Ca obtained

monic oscillator single-particle basis. with MBPT(2B), MBPT(2B+3Bpphh), and MBPT(2B3B)

Because of its computational simplicity we adopt second- : :
L on top of the HF result for the S-UCOM(SRG) interaction are
orqler MBPT as agmd_elmeforthéfect of beyond-HF corre-  onown in Fig. 7 as function of the cufqparametegsy. For
lations on the energy in the presence of a phenomenologic

3N int tion. Th d-ord tion to tBe H e HF calculations presented so far we had fixed thisftuto
intéraction. 1he second-order €nergy Correction to e H,, esn = 20, which was sfiiciently large to guarantee that the
ground state energy for the intrinsic Hamiltonian (10) uret

. . . HF energies were practically independent of this fiftur all
ing the 3N interaction reads nuclei. As soon as we include the second-order perturbative
<& _ 2 correction we cannot expect the results to be independent of
<er e | (NN Hi(nzt) [pp) + X <hirh|Van|pp'h) ’ esn, because the sums over particle states above the Fermi en-
E@ — 1 Z Z h ergy directly probe high-lying matrix elements. Eventyale
44 by &ht &y —&p—&p will have to fix ey to a certain value as part of the definition
<er  >er " ., of the phenomenological 3N interaction.
" 1 Z | (hh”[ Vanpp'p”) 12 i For the study of the dierent contributions a cuibvaria-
6.7 pop En T e e —ep—éep —Ep tion nevertheless provides a useful diagnostic tool. Asisee
(15) in Fig. 7, the HF energies are practically independeresqf
as mentioned earlier. When including the second-order cor-
whereh, IV, ... denote the HF single-particle states (11) belowrection due to the two-body Hamiltonian, MBPT(2B), the
the Fermi energyr (hole states) ang, ', ... the correspond- ground-state energies are lowered by about 1 MeV per nu-
ing HF single-particle states above the Fermi energy (garti cleon for *He and by about 2.5 MeV per nucleon 8O
states). All two- and three-body matrix elements appearingnd “°Ca. The MBPT(2B) energies are sensitive e
here are understood to be antisymmetrized matrix elements.only indirectly via high-lying HF single-particle state¢bere-
Already the structure of the second-order energy corractiofore, the dependence is marginal. For MBPT{3Bpphh)
(15) is interesting. Obviously, if we set all matrix elemenf  and MBPT(2B+3B) the cutdt directly dfects the perturba-
the 3N interaction to zero we recover the well known form oftive correction via the three-body matrix elements and the
the second-order correction for a pure two-body Hamiltonia esy-dependence becomes more pronounced. Generally, the
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FIG. 8: (color online) Binding energies per nucleon and ghaedii  FIG. 9: (color online) Binding energies per nucleon and ghaadii

of selected closed-shell nuclei resulting from HF caldala (filled  of selected closed-shell nuclei resulting from HF caldata (filled
symbols) and MBPT (open symbols) based on the S-UCOM(SRG}ymbols) and MBPT (open symbols) based on the S-UCOM(SRG)
interaction forena = 10,Cay = 2200 MeV fnf, ey = 20 and difer-  interaction fore = 0.16 fm*, Cay = 2200 MeV fnf, esy = 20 and

ent flow parametersy = 0.12 fm* (o), @ = 0.16 fm’ (m). The bars  different basis size®mnax = 10 (0); €nax = 12 Imax = 10 (®); €max =
indicate the experimental values [18, 19]. 14, Imax = 10 (a). The bars indicate the experimental values [18, 19].

step from MBPT(2B) to MBPT(2B3Bpphh) can modify the
ground-state energy in either direction, whereas the ahang?’
from MBPT(2B+3Bpphh) to MBPT(2B-3B) always results =
in a lowering of the ground-state energy, as evident from th‘f\J
(15).

For “He we obtain a significantly lower ground-state en-
ergy when fully including the three-body terms. For the heav [ —]
ier nuclei the ground-state energy is increased at sesgall 5 8
and remains almost unchanged for larggr. Generally, the —
change in the ground-state energy per nucleon when goin
from MBPT(2B) to MBPT(2B-3B) for fixed and sfiiciently S 3t -
largeesy decreases with increasing particle number. Beyond 1
40Ca the impact of the three-body terms to the second-order I ]
energy correction is smaller than other uncertainties ef th 4He 240 40cy 48Nj 6ONj 88gy 100gn 132gn 208pp
calculation, e.g., the degree of convergence with resmect t 160 34gj 48Cg S6Nj 78Nj 90zr 1ll4gp l6Gq
the model-space. Therefore, we will limit ourselves to the
MBPT(2B) corrections and will continue usirggy = 20 in FIG. 10: (color online) Binding energies per nucleon andgaaadii
the following. One should keep in mind, however, that for of selected closed-shell nuclei resulting from HF caldata (filled
nuclei below*°Ca and in particular fofHe the full second- symbols) and MBPT (open symbols) based on the S-SRG intemact
order correction MBPT(2B3B) leads to a lower ground-state for @ = 0.10 fm, Czy = 2000 MeV fnf, ey = 20 and diferent basis

energy than MBPT(2B) and thus to a much better agreeme§iZes:€nax = 10 (¢); €max = 12 lmax = 10 @); €nax = 14, Imax = 10
with experiment. (a). The bars indicate the experimental values [18, 19].

As discussed earlier, we can fix the strength of the three-
body interaction based on the systematics of the charge radi
and use the flow parameter entering into the two-body intergies than for the HF energies, as to be expected. The unitary
action to control the binding-energy systematics. In Fig. gtransformation for largew accounts for more of the correla-
we illustrate the influence of on the energies obtained in tions explicitly, thus the ground-state energy at the HFellev
MBPT(2B) using the S-UCOM(SRG) interaction with = is lower and the gain due to the inclusion of residual cofrela
0.12 fnf* and 016 fm* and a 3N contact interaction wi@gy = tions through MBPT(2B) is smaller. Thus we can still use the
2200 MeV fnf. Whereas the charge radii are practically iden-@-dependence to control the binding-energy systematics.
tical for both values ofy, the HF and the MBPT(2B) ground  So far we have used a model space withx = 10
state energies are systematically lower for the larger flaw p for all calculations. This is absolutely Sicient to obtain
rameters. The dlierence is smaller for the MBPT(2B) ener- converged HF results, but it is not enough to obtain con-
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verged HR-MBPT energies. The convergence behavior officient to cure the systematic deviations from experimeat th
the HF+MBPT(2B) energies is illustrated in Fig. 9 for the S- the UCOM- and SRG-transformed two-body interactions ex-
UCOM(SRG) interaction witlr = 0.16 fm* and in Fig. 10 for  hibit. By supplementing an S-UCOM or S-SRG-transformed
the S-SRG interaction with = 0.10 fnf* usingemax = 10,12, interaction for stficiently large flow parameters with a re-
and 14. The HF energies and charge radii are fully conpulsive 3N contact interaction we were able to reproduce the
verged in all cases, but not the HMBPT(2B) energies. Al-  experimental charge radius and ground-state energy system
though the largest model space includes 15 major oscillataatics simultaneously. Only for cases where the two-body in-
shells, this is still not sflicient to obtain convergence of the teraction exhibits a pathological energy systematics dambn
MBPT(2B) contribution for heavier nuclei. The change of en-force is clearly not sflicient to arrive at a reasonable behavior.
ergy per nucleon between successive model-space sizes in-In a next step, we can apply these interactions in a variety
creases with increasing nucleon number. of many-body schemes and study the elementéiects of 3N
The slow convergence is partly due to the use of S-wavénteractions on nuclear observables. We will employ the phe
only UCOM and SRG transformations for the construction ofnomenological 3N interactions in exact no-core shell model
the two-nucleon interactions. For all higher-partial watlee  calculations for the spectroscopy of light nuclei and inrapp
transformed interactions are thus identical to the initigr-  imate many-body approaches such as RPA for the study of the
action. Since those partial waves become increasinglyimpo collective response of heavier nuclei. The fundamental ad-
tant for heavier nuclei, the deterioration of the convergen vantage of 3N contact interactions is that the computatfon o
is unsurprising. The use of a softer all-channel transfarme three-body matrix elements itself is not a limiting factoida
interactions, e.g. the standard SRG-interaction discusse thus a larger range of nuclei and observables can be explored
Fig. 2, would help with the convergence. However, for those A major goal, however, it to go beyond phenomenologi-
interactions a simple contact force is noffatient to provide cal 3N interactions for supplementing a unitarily transfed
reasonable energy and radius systematics. NN interaction towards a consistent two- plus three-body in
Despite the non-optimal convergence, the results predenteeraction resulting from a combined unitary transfornmmatd
in Figs. 9 and 10 show that after inclusion of beyond-HF cor-an initial two- plus three-body interaction. This can be elon
relations also the systematics of the ground-state energy e.g., using an SRG-evolution of the chiral NN plus 3N inter-
reproduced quite well. Given the additional gain in bindingaction. A study of the ground-state energy and radius system
energy that is expected until convergence, as estimated froatics for those interactions, even in a simple framewor& lik
an extrapolatiore,,x — oo, for heavier nuclei and the addi- HF+MBPT, will provide crucial information on the quality of
tional binding resulting from the three-body contribusaie  the presently available chiral interactions for nucleaucture
the second-order correction for light isotopes the energie  studies beyond the light isotopes and it will serve as a test-
in good systematic agreement with experiment. The chargease for the SRG-evolution in the NN plus 3N sector. Based
radii follow the experimental results very closely alreaty on our developments for phenomenological 3N interactions
the HF level. Perturbative corrections to the radii, asistid discussed here, we will perform a similar analysis withyfull
in Ref. [16], are very small and will notfect the general realistic NN plus 3N interactions next.
agreement.
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