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We investigate the influence of phenomenological three-nucleon interactions on the systematics of ground-
state energies and charge radii throughout the whole nuclear mass range from4He to208Pb. The three-nucleon
interactions supplement unitarily transformed two-body interactions constructed within the Unitary Correlation
Operator Method or the Similarity Renormalization Group approach. To be able to address heavy nuclei as
well, we treat the many-body problem in Hartree-Fock plus many-body perturbation theory, which is sufficient
to assess the systematics of energies and radii, and limit ourselves to regularized three-body contact interactions.
We show that even with such a simplistic three-nucleon interaction a simultaneous reproduction of the experi-
mental ground-state energies and charge radii can be achieved, which is not possible with unitarily transformed
two-body interactions alone.
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I. INTRODUCTION

Nuclear structure theory is approaching an era of systematic
many-body calculations using nuclear Hamiltonians based on
Quantum Chromodynamics (QCD). An important step along
these lines is the formulation of nuclear interactions within
chiral effective field theory [1–3], leading to a consistent hier-
archy of two-, three- and many-nucleon interactions starting
from the relevant degrees of freedom and symmetries for the
low-energy nuclear structure regime. The use of these two-,
three- and many-nucleon interactions in nuclear structurecal-
culations is a formidable task.

In addition to few-body calculations the most promising nu-
clear structure calculations using the chiral two- plus three-
nucleon interaction consistently have been performed in the
no-core shell model (NCSM) for mid p-shell nuclei [4]. An
immense numerical effort is needed to compute and man-
age the three-body matrix elements in these calculations,
which limits the range of applicability of these calculations
at present. Recently, the use of consistent two- plus three-
nucleon interactions resulting from a Similarity Renormaliza-
tion Group evolution of the chiral two- plus three-nucleon in-
teraction was demonstrated also in the context of the NCSM
[5]. This approach, a unitary transformation of the chiral
Hamiltonian aiming at a pre-diagonalization that improvesthe
convergence properties of NCSM substantially, holds great
potential also for the use in other many-body schemes and
will play a significant role in the future. However, the com-
putational effort for including those two- plus three-nucleon
interactions into many-body calculations, be it exact or ap-
proximate, is still the limiting factor for many applications.

In this paper we follow a more pragmatic route to explore
the impact of three-body forces in connection with unitarily
transformed two-nucleon interactions. We start from the Ar-
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gonne V18 high-precision two-nucleon potential [6], which
is still widely used although it does not have the same sys-
tematic link to QCD like the chiral effective field theory in-
teractions and is considered phenomenological in this respect.
We then use the Similarity Renormalization Group [7–11] as
well as the Unitary Correlation Operator Method [10, 12–14]
to construct a transformed two-nucleon interaction, whichhas
a much better convergence behavior and allow us to use sim-
plified many-body schemes. At this level neither genuine nor
induced three-nucleon interactions are included. From vari-
ous applications of these unitarily transformed two-nucleon
interactions we know that there are characteristic deviations
of basic nuclear observables from the experimental systemat-
ics that might be connected to three-body interactions. For
example, unitarily transformed two-body interactions which
yield a realistic systematics for binding energies tend to un-
derestimate the charge radii [10, 15]. Here we study to what
extend these systematic deviations can be cured by including
a three-body interaction. Note that we are not aiming at a pre-
cision description of individual nuclei but rather the complete
systematics from light nuclei,4He, to heavy nuclei,208Pb.

To facilitate calculations for the full mass range from4He
to 208Pb we have to simplify the approach compared to the
consistent. The first simplification consists in the use of a
phenomenological three-body interaction, which allows for an
efficient computation of matrix elements but violates the con-
sistency discussed above. The second simplification consists
in the use of Hartree-Fock plus many-body perturbation the-
ory for the approximate solution of the many-body problem.
Despite of these simplifications, we will obtain valuable infor-
mation on the interplay between realistic two-body and phe-
nomenological three-body interactions and on how well the
experimental systematics of ground-state energies and charge
radii can be reproduced. Furthermore, these studies prepare
the ground for calculations with consistently transformedtwo-
plus three-nucleon interactions.

After a brief reminder of the basic concepts of the Unitary
Correlation Operator Method and the Similarity Renormaliza-
tion Group we introduce the phenomenological three-body in-
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teraction and calculate the matrix elements in the harmonic
oscillator basis in the second section. In the third section, we
discuss the inclusion of the three-body interaction in Hartree-
Fock and many-body perturbation theory and discuss the sys-
tematics of ground-state energies and charge rms-radii across
the whole nuclear mass range and its dependence on the two-
and three-nucleon interaction.

II. FORMALISM

A. Unitary Correlation Operator Method and Similarity
Renormalization Group

The Unitary Correlation Operator Method and the Similar-
ity Renormalization Group provide two conceptually different
but physically related approaches for the construction of soft
phase-shift equivalent interactions.

The Similarity Renormalization Group (SRG) [7–11] aims
at the pre-diagonalization of the Hamiltonian for a given basis
by means of a unitary transformation implemented through
the renormalization-group flow equation:

dHα
dα
= [ηα,Hα] , (1)

whereα is the flow parameter andHα the evolved Hamilto-
nian, with H0 = H being the initial or ‘bare’ Hamiltonian.
The anti-hermitian generatorηα defines the specifics of the
flow evolution, e.g. the representation with respect to which
the Hamiltonian should become diagonal or block-diagonal.
Various choices for this generator have been investigated [11],
we restrict ourselves to the simple generator [7, 9]

ηα = [Tint,Hα] (2)

with Tint = T − Tcm being the intrinsic kinetic energy, which
leads to a pre-diagonalization of the Hamiltonian with respect
to the eigenbasis of the kinetic energy or momentum operator.
Once the generator is fixed, the Hamiltonian and all operators
of interest can be evolved easily using a matrix representation
of the flow equation (1).

In A-body space the evolution generates up toA-body oper-
ators even if the initial Hamiltonian contains only up to two- or
three-body operators. For reasons of practicability one has to
truncate the evolution at some low particle number—typically
this is done by solving the evolution equation in a matrix rep-
resentation in two- or three-body space. For the moment we
restrict ourselves to transformations in two-body space, i.e.,
we will discard any induced three-body interactions.

The aim of the Unitary Correlation Operator Method
(UCOM) [10, 12–14, 16] is to explicitly treat short-range cor-
relations induced by the nuclear interaction via a static unitary
transformation. This transformation can either be used to cor-
relate the many-body states or to similarity transform opera-
tors of interest, e.g. the Hamiltonian

H̃ = C†HC , (3)

using the correlation operatorC. The dominant short-range
correlations are induced by the strong short-range repulsion

and the tensor part of the nuclear interaction. Therefore the
correlation operator is written as a product of two unitary op-
erators,Cr for the central correlations andCΩ for the tensor
correlations. We choose an explicit form of the correlation
operators:

C = CΩCr = exp
(

− i
∑

j<k

gΩ, jk
)

exp
(

− i
∑

j<k

gr, jk

)

(4)

with the following ansatz for hermitian generatorsgr andgΩ:

gr =
1
2[qr s(r) + s(r)qr ] ,

gΩ = 3
2[(σ1 · r)(σ2 · qΩ) + (σ1 · qΩ)(σ2 · r)] ,

(5)

whereqr =
1
2(r

r ·q+q · rr ), qΩ = q− r

r ·qr , andq =
1
2[p1−p2].

The strengths and radial dependencies of the two transforma-
tions are governed by the correlation functionss(r) andϑ(r)
for the central and tensor correlations, respectively. Onecan
obtain these functions via an energy minimization in the two-
body system [16]. Recently, we have also employed the SRG
as tool for the determination of the UCOM correlation func-
tionss(r) andϑ(r) as discussed in Refs. [9, 10]. Here, we will
use these SRG-optimized UCOM correlation functions only.

Though the SRG- and UCOM-transformations have a dif-
ferent formal background, they address the same physics of
short-range correlations. A first connection becomes clearat
the level of the generators [8]—the SRG generator (2) in two-
body space atα = 0 reveals the same operator structures that
appear in the UCOM-generators (5). At the level of matrix
elements, both the SRG- and UCOM-transformations lead to
a suppression of the off-diagonal momentum-space matrix el-
ements and an enhancement of the low-momentum matrix el-
ements as discussed in detail in Ref. [10].

In the following, we employ both transformations to gener-
ate one-parameter families of phase-shift equivalent two-body
interactions starting from a specific initial NN-interaction,
the Argonne V18 (AV18) in our case. For the SRG-
transformation the flow parameterα directly spans this fam-
ily of two-body interactions. We will study two versions of
the SRG-transformation, one where the flow equations are
solved for all partial waves and one where only the partial-
waves containing relativeS-waves, i.e. the1S0 and the cou-
pled 3S1 − 3D1 partial waves, are transformed. The latter is
motivated by the fact that short-range correlations affect the
S-wave channels most, because for all higher orbital angular
momenta the relative wave functions are suppressed by the
centrifugal barrier at short distances. We use the label ‘SRG’
for the fully transformed interactions and ‘S-SRG’ for the S-
wave-only transformations. For the UCOM-transformation
we use correlation functions determined from SRG-evolved
two-body wave functions as discussed in Refs. [9, 10], thus
the flow parameterα also spans a family of different UCOM-
transformed interactions. Note that the standard formulation
of UCOM only uses different transformations for the different
(S,T)-channels. We thus use the SRG-evolved wave func-
tions for the lowest partial waves for each (S,T)-channel to
define the correlation functions, leading to a transformed in-
teraction labelled ‘UCOM(SRG)’. Analogously to the S-SRG
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FIG. 1: (color online) Binding energy of4He as function of
the flow parameterα obtained from a converged no-core shell
model calculation using the UCOM(SRG)-transformed (•), the S-
UCOM(SRG)-transformed (�), the SRG-transformed (N), or the S-
SRG-transformed (�) AV18 potential. The horizontal lines indicate
the experimental binding energy ( ) and the exact ground state
energy for the bare AV18 two-body interaction ( ) [17].

transformation, we can also use an S-wave-only UCOM trans-
formation, denoted ‘S-UCOM(SRG)’, which acts only in the
1S0 and the coupled3S1 − 3D1 partial waves.

So far, we have assumed that both transformations are eval-
uated in two-body space, leading to a transformed interaction
containing two-body terms only. A consistent first-principles
treatment requires the transformation to be performed inA-
body space, leading to a hierarchy of induced interactions up
to theA-body level, as mentioned earlier. The most advanced
attempts along these lines use the full SRG-evolution at the
three-body level to construct a consistently transformed two-
plus three-nucleon interaction [5]. The use of those two- plus
three-body interactions in many-body calculations is veryde-
manding and presently limited to rather small model spaces.

Therefore, we follow a more pragmatic path in this work.
We evaluate the unitary transformations at the two-body level
and mimic the three-body contributions (genuine plus in-
duced) through a simple phenomenological three-body inter-
action. By using a simplified three-nucleon (3N) interaction,
e.g., a regularized contact or a Gaussian interaction, the cal-
culation of the three-body matrix elements becomes formally
and computationally much less demanding. This allows us to
study the impact of 3N interactions on various nuclear struc-
ture observables for nuclei and model spaces beyond the do-
main accessible with realistic 3N interactions. Furthermore,
we can develop and benchmark approximate treatments of the
three-body contributions and establish the technical frame-
work to include 3N interaction into different many-body meth-
ods.

The parameters of the phenomenological 3N interactions
will be adjusted depending on the flow parameterα of
the transformed two-nucleon (NN) interaction. For a wide
range ofα parameters the transformed two-body interaction
alone produces an overbinding compared to the experimen-
tal ground state energy. This is illustrated in Fig. 1 for the
ground-state energy of4He as function ofα obtained in con-
verged no-core shell model calculations for the UCOM(SRG)-

, the S-UCOM(SRG)-, the SRG-, and the S-SRG-transformed
AV18 interaction. Thus the additional phenomenological in-
teraction, which mimics the net effect of the genuine and the
induced 3N interaction, has to be repulsive in order to lead
to a 4He binding energy consistent with experiment. Note
that the phenomenological three-body forces that are used in
connection with the bare AV18 interaction are generally at-
tractive. Thus the induced 3N interaction resulting from the
unitary transformation of the NN interaction alone has to be
repulsive and sufficiently strong to create an over-all repulsive
three-body contribution.

B. Three-Body Contact Interaction

The simplest choice for a phenomenological 3N interaction
is a spin-isopin-independent contact interaction

V3N = C3N δ
(3)(x1 − x2) δ(3)(x1 − x3) (6)

with variable strengthC3N. Despite its simplicity it allows us
to study the impact of a 3N interaction on bulk observables
like ground-state energies or charge radii. Obviously thissim-
plistic choice offers substantial computational advantages.

For evaluating the matrix elements of a realistic 3N in-
teraction for the use in configuration-space Hartree-Fock or
no-core shell model type calculations one typically adopts
a two-step procedure: First the matrix elements are eval-
uated in a Jacobi-coordinate basis for the relative motion
in the three-nucleon system. Then, through a sequence of
Talmi-Moshinski transformations and angular momentum re-
couplings, the matrix elements are transformed into the m-
scheme to perform the many-body calculation. Both steps
are non-trivial and computationally demanding, thus limiting
the model-space sizes for which those matrix elements can be
handled.

In contrast, the matrix elements of the contact interac-
tion can be directly evaluated in the m-scheme in a straight-
forward manner. We first consider the matrix elements of the
3N contact interaction with respect to the spatial part of three-
particle product states in the harmonic oscillator basis

〈n1l1ml1, n2l2ml2, n3l3ml3 |V3N |n4l4ml4, n5l5ml5, n6l6ml6〉 . (7)

The spin and isospin quantum numbers and the antisym-
metrization will be included subsequently. We can insert a
unit operator in position representation using cartesian coordi-
nates and directly evaluate the Kronecker-deltas. This leaves
us with a single integration over a single-particle coordinate,
which can be rewritten in spherical coordinates. Introducing
the position representation of the harmonic oscillator single-
particle states,φnlml (x) = Rnl(x)Ylml (Ω), with radial wave



4

functionsRnl(x) and spherical harmonicsYlml (Ω), we obtain:

〈n1l1ml1, n2l2ml2 , n3l3ml3 |V3N |n4l4ml4, n5l5ml5, n6l6ml6〉

= C3N

∫

dxx2Rn1l1(x)Rn2l2(x)Rn3l3(x)

× Rn4l4(x)Rn5l5(x)Rn6l6(x)

×
∫

dΩ Y∗l1ml1
(Ω)Y∗l2ml2

(Ω)Y∗l3ml3
(Ω)

× Yl4ml4
(Ω)Yl5ml5

(Ω)Yl6ml6
(Ω) .

(8)

The integral over the six radial wave functionsRnl(x) has to be
calculated numerically while the integral over the six spherical
harmonicsYlml (Ω) can be evaluated analytically. The product
of three spherical harmonics can be reduced to one spherical
harmonic and the integral over the remaining two spherical
harmonics can be solved analytically, leading to

∫

dΩY∗l1ml1
(Ω)Y∗l2ml2

(Ω)Y∗l3ml3
(Ω)Yl4ml4

(Ω)Yl5ml5
(Ω)Yl6ml6

(Ω)

=
1

16π2
l̂1 l̂2 l̂3 l̂4 l̂5 l̂6

∑

L1L2L3
ML1 ML2 ML3

1
2L2 + 1

× c
(

l1 l2
0 0

∣

∣

∣

L1
0

)

c
(

L1 l3
0 0

∣

∣

∣

L2
0

)

c
(

l4 l5
0 0

∣

∣

∣

L3
0

)

c
(

L3 l6
0 0

∣

∣

∣

L2
0

)

× c
(

l1 l2
ml1 ml2

∣

∣

∣

L1
ML1

)

c
(

L1 l3
ML1 ml3

∣

∣

∣

L2
ML2

)

× c
(

l4 l5
ml4 ml5

∣

∣

∣

L3
ML3

)

c
(

L3 l6
ML3 ml6

∣

∣

∣

L2
ML2

)

(9)

with l̂ =
√

2l + 1 and c
(

l1 l2
ml1 ml2

∣

∣

∣

L
ML

)

being Clebsch-Gordan
coefficients.

We precompute and store those angular integrals as well as
the radial integrals in (8). The inclusion of the spin and isospin
quantum numbers, the coupling of the single-particle orbital
angular momenta and the spins, and the antisymmetrization
are then done on the flight during the many-body calculation.
This makes calculations in large model spaces feasible.

For applications beyond the mean-field level a regulariza-
tion of the contact interaction is inevitable. However, the
regularization should preserve the simplicity of the matrix-
element calculation, which rules out momentum-space cutoffs
and such. Hence, we introduce an energy cut-off parameter
e3N, which defines an upper bound for total oscillator energy
of the three-particle state, (2n1+l1)+(2n2+l2)+(2n3+l3) ≤ e3N.
The implementation of this cutoff is trivial and it preserves all
computational advantages of the contact interaction.

III. MANY-BODY CALCULATIONS

We adopt the 3N contact interaction together unitarily
transformed NN interactions for the study of the systematics
of nuclear ground-state energies and charge radii throughout
the whole mass range from4He to 208Pb using Hartree-Fock
and many-body perturbation theory.

A. Hartree-Fock Approximation

We have employed the Hartree-Fock (HF) approximation as
a first indicator for the gross systematics of binding energies
and charge radii obtained with unitarily transformed two-body
interactions in Refs. [10, 15] already. In order to assess the
impact of 3N contact interactions we extend our HF frame-
work in a first step.

All calculations are based on the translationally invariant
Hamiltonian

Hint = Tint + VNN + V3N = H(2)
int + V3N (10)

with VNN being the UCOM- or SRG-transformed NN inter-
action andTint = T − Tcm the intrinsic kinetic energy. This
Hamiltonian includes all charge dependent and electromag-
netic terms of the transformed AV18 potential as well as the
phenomenological three-body force.

The HF equations are formulated in a harmonic oscilla-
tor basis representation, i.e., the single-particle states are ex-
panded in the harmonic oscillator states:

|νl jmmt〉 =
∑

n

C(νl jmt)
n |nl jmmt〉 , (11)

where |nl jmmt〉 denotes the harmonic oscillator eigenstates
with radial quantum numbern, orbital angular momentuml,
total angular momentumj with projectionm, and isospin pro-
jection quantum numbermt. Since we only consider closed-
shell nuclei in the following, the expansion coefficients are
independent ofm. The HF equations can now be written as

∑

n̄

h(l jmt)
nn̄ C(νl jmt)

n̄ = ε(νl jmt)C(νl jmt)
n (12)

with the single-particle energiesε(νl jmt). The matrix elements
of the single-particle HF Hamiltonian

h(l jmt)
nn̄ =

∑

l′ j′m′t

∑

n′n̄′
〈nl jmt, n

′l′ j′m′t |H
(2)
int |n̄l jmt, n̄

′l′ j′m′t〉 ̺
(l′ j′m′t )
n̄′n′

+
1
2

∑

l′ j′m′t
l′′ j′′m′′t

∑

n′n′′
n̄′n̄′′

〈nl jmt, n
′l′ j′m′t , n

′′l′′ j′′m′′t | ×

× V3N |n̄l jmt, n̄
′l′ j′m′t , n̄

′′l′′ j′′m′′t 〉 ̺
(l′ j′m′t )
n̄′n′ ̺

(l′′ j′′m′′t )
n̄′′n′′

(13)

are obtained by contractions of the antisymmetrized matrix
elements of the two-body part of the HamiltonianH(2)

int and the
three-body interactionV3N with the one-body density matrix
given by

̺
(l jmt)
n̄n =

∑

ν

O(νl jmt)C(νl jmt)∗

n̄ C(νl jmt)
n (14)

with O(νl jmt) being the number of occupied magnetic sublevels
which is 2j + 1 for closed-shell nuclei.

In the following the HF approach is applied to selected
closed-shell nuclei from4He to 208Pb. The HF equations are
solved iteratively until full self-consistency is reached. The
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FIG. 2: (color online) Ground-state energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calculations
based on pure two-body interactions foremax = 10: UCOM(SRG)
with α = 0.16 fm4 (•), S-UCOM(SRG) withα = 0.16 fm4 (�), SRG
with α = 0.10 fm4 ( �), S-SRG withα = 0.10 fm4 (N). The bars
indicate the experimental values [18, 19].

model space is truncated at a given major oscillator quantum
numbere= 2n+ l ≤ emax, whereemax = 10 is sufficient to ob-
tain converged ground-state energies and radii at the HF level.
The oscillator parameter is chosen for each nucleus separately
such that the experimental charge radius is reproduced by a
shell-model Slater determinant built from harmonic oscillator
single-particle states.

As a first illustration of the behavior of unitarily trans-
formed two-body interactions Fig. 2 summarizes the ground-
state energies per nucleon and the charge radii obtained at
the HF level for nuclei up to208Pb. We adopt four differ-
ent two-body interactions—UCOM(SRG), S-UCOM(SRG),
SRG, and S-SRG—with flow parameters relevant for the later
calculations including the 3N contact interaction. We observe
that the general trend of the binding energies and charge radii
is similar for the UCOM(SRG), the S-UCOM(SRG), and the
S-SRG interactions. All three interactions produce binding
energies that are within 2 MeV per nucleon of the experimen-
tal values for the whole mass range. By including correlations
beyond HF, e.g., through many-body perturbation theory, all
interactions would lead to an overbinding compared to exper-
iment. At the same time the charge radii are underestimated
for all but the lightest isotopes. Those systematic deviations
can be remedied by a repulsive 3N interaction, as it will be
included in the next step.

The SRG-transformed interaction exhibits a vastly differ-
ent behavior. The binding energies per nucleon increase
rapidly with mass number, leading to an completely unphysi-
cal overbinding already at the HF level for intermediate and
heavy nuclei. At the same time the charge radii are even
smaller than the ones obtained with the other transformed
interactions. Those strong systematic deviations have to be
compensated by the 3N interaction that is generated from the
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FIG. 3: (color online) Ground-state energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calculations
for the pure two-body interaction S-UCOM(SRG) foremax = 10 and
different flow parameters:α = 0.04 fm4 (•), α = 0.12 fm4 (�), α =
0.16 fm4 ( �). The bars indicate the experimental values [18, 19].

initial NN potential in the course of the SRG-evolution. Be-
cause of the mere size of the three-body corrections needed
one cannot expect a simple phenomenological interaction to
be adequate to capture the main physics contained in the three-
body contributions. Therefore, we will not consider the fully
SRG-transformed interactions in the following.

Before including the 3N contact interaction explicitly, we
analyze the dependence of the HF results obtained with the
transformed two-body interactions on the flow parameterα.
In Fig. 3 the binding energies and charge radii for the S-
UCOM(SRG) interactions withα = 0.04 fm4, 0.12 fm4, and
0.16 fm4 are shown. For the smallest flow parameterα =
0.04 fm4 the ground-state energies reproduce the systemat-
ics of the experimental values up to a constant shift. The
missing binding energy can be explained by beyond-HF cor-
relations that can be recovered, e.g., by perturbation theory.
This flow parameter would be used for calculations based on
the pure NN interaction, as they are discussed in detail in
Refs. [9, 10, 15].

When increasing the flow parameter entering into the con-
struction of the S-UCOM(SRG) interaction toα = 0.12 fm4

or 0.16 fm4 the ground-state energy at the HF level decreases
substantially. For most nuclei the binding energy per nucleon
more than doubles when going fromα = 0.04 fm4 to 0.16 fm4.
For heavier nuclei the increase is larger, thus leading to a tilt
of the ground-state energy systematics with respect to the ex-
perimental behavior. Unlike the energies, the charge radiiex-
hibit a very weakα-dependence as shown in the lower panel
of Fig. 3. For all flow parameters considered here, the radii
are somewhat underestimated. The situation is very similar
for the UCOM(SRG) and the S-SRG interactions.

This general phenomenology of ground-state energies and
charge radii obtained from unitarily transformed interactions
at larger flow parameters illustrates that the purely repulsive
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phenomenological 3N interaction can be used to improve en-
ergies and radii. Since the radii are insensitive to the flow
parameter in a certain regime, we can fix the strength of the
3N interaction such that the systematics of the charge radii
is in good agreement with experiment. The flow parameter
can then be chosen to provide an optimal description of the
ground-state energies in a beyond-HF calculation.

The impact of 3N contact interactions with different
strength parametersC3N is illustrated in Fig. 4 using the S-
UCOM(SRG) interaction forα = 0.16 fm4. As compared
to the HF calculation with the pure two-body interaction, the
binding energies are reduced significantly and the charge radii
are increased as a result of the purely repulsive 3N interaction.
It is remarkable, that the charge radii are in excellent agree-
ment with experiment for the whole mass range from4He to
208Pb when using a 3N interaction with strength parameters in
the rangeC3N = 2200 to 2800 MeV fm6. For the same values
C3N the ground-state energy systematics at the HF does again
resemble the experimental systematics up to a constant shift,
i.e. the tilt of the energy curve towards an overbinding for
heavier nuclei is cured as well. The missing binding energy of
3 to 4 MeV per nucleon at the HF level can be recovered by
including correlations beyond HF, as will be discussed in the
next section.

In addition to ground-state energies and radii the HF ap-
proximation provides us with an estimate for the single-
particle energies that can be used to diagnose the various
NN+3N interactions. Examples for the single particle spectra
obtained with the various unitarily transformed interactions
for 40Ca and90Zr are shown in Figs. 5 and 6, respectively. We
use the UCOM(SRG) and the S-UCOM(SRG) interactions for
α = 0.16 fm4 and the S-SRG interaction forα = 0.10 fm4

each supplemented with a 3N contact interaction with strength
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FIG. 5: (color online) Single-particle spectra of40Ca for differ-
ent interactions: (1) UCOM(SRG) withα = 0.16 fm4, C3N =

1600 MeV fm6, (2) S-UCOM(SRG) withα = 0.16 fm4, C3N =

2200 MeV fm6, (3) S-SRG withα = 0.10 fm4, C3N = 2000 MeV fm6.
Three-body cut-off set toe3N = 20 for all calculations. Occupied
states are indicated by solid lines, unoccupied states by dashed lines.
Experimental data taken from Ref. [20].
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FIG. 6: (color online) Single-particle spectra of90Zr for the same
interactions used in Fig. 5. Experimental data taken from Refs. [21,
22].

parameter adjusted to provide a good over-all description of
the charge radii at the HF level, i.e.,C3N = 1600 MeV fm6

for UCOM(SRG),C3N = 2200 MeVfm6 for S-UCOM(SRG),
andC3N = 2000 MeVfm6 for S-SRG.

The gross structure of the single-particle spectra obtained
with the S-UCOM(SRG)+3N and the S-SRG+3N interactions
agrees rather well with the single-particle energies extracted
from experiment. The quality of the agreement is comparable
with other mean-field type calculations and some of the of the
characteristic deviations, e.g. the overestimation of thegaps at
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the Fermi energy, are expected to be remedied by the inclusion
of beyond HF corrections. Other important quantities, e.g.,
the splittings between spin-orbit partner states, are reproduced
rather well at the HF level already.

The picture is different for the UCOM(SRG)+3N interac-
tion. In particular for the single-particle spectrum of90Zr
shown in Fig. 6 and for all heavier nuclei we observe
a collapse of the spin-orbit splittings. Since this problem
does not appear in the corresponding S-UCOM(SRG) cal-
culation, it has to be caused by the UCOM-transformation
of the higher partial waves. The problem is also absent in
UCOM(SRG) interaction for smaller flow parametersα, e.g.
for the UCOM(SRG) interaction atα = 0.04 fm4 that was
used in Fig. 3. Thus the long-range character of the tensor cor-
relation functions as they appear for largerα (cf. Refs. [9, 10])
acting on the higher partial wave leads to this unphysical be-
havior. We will, therefore, restrict ourselves for the following
discussion to the S-UCOM(SRG) and S-SRG interactions.

B. Many-Body Perturbation Theory

A simple means to estimate the impact of correlations be-
yond the HF approximation is many-body perturbation theory
(MBPT). In particular low-order MBPT corrections to the en-
ergy [23–26] can be computed quite efficiently for the whole
mass range up to208Pb. We have used second- and third-
order MBPT to investigate various two-body Hamiltonians
and the importance and systematics of correlations beyond
HF in Refs. [10, 15]. One should be aware, however, that
low-order MBPT can only provide an estimate for the exact
ground-state energies and that the order-by-order convergence
is not guaranteed, as we have shown in Ref. [27] using an har-
monic oscillator single-particle basis.

Because of its computational simplicity we adopt second-
order MBPT as a guideline for the effect of beyond-HF corre-
lations on the energy in the presence of a phenomenological
3N interaction. The second-order energy correction to the HF
ground state energy for the intrinsic Hamiltonian (10) includ-
ing the 3N interaction reads

E(2)
=

1
4

<εF
∑

hh′

>εF
∑

pp′

∣

∣

∣

∣
〈hh′|H(2)

int |pp′〉 +
<εF
∑

h̄
〈hh′h̄|V3N |pp′h̄〉

∣

∣

∣

∣

2

εh + εh′ − εp − εp′

+
1
36

<εF
∑

hh′h′′

>εF
∑

pp′p′′

| 〈hh′h′′|V3N |pp′p′′〉 |2

εh + εh′ + εh′′ − εp − εp′ − εp′′
,

(15)

whereh, h′, ... denote the HF single-particle states (11) below
the Fermi energyǫF (hole states) andp, p′, ... the correspond-
ing HF single-particle states above the Fermi energy (particle
states). All two- and three-body matrix elements appearing
here are understood to be antisymmetrized matrix elements.

Already the structure of the second-order energy correction
(15) is interesting. Obviously, if we set all matrix elements of
the 3N interaction to zero we recover the well known form of
the second-order correction for a pure two-body Hamiltonian.

8 12 16 20 24
e3N

8 12 16 20 24
e3N

8 12 16 20 24
e3N
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FIG. 7: (color online) Contributions to the ground state energy re-
sulting from MBPT based on the S-UCOM(SRG) interaction for
α = 0.16 fm4, emax = 10, C3N = 2200 MeV fm6 as function
of the cut-off parametere3N for HF (•), HF+MBPT(2B) (�) ,
HF+MBPT(2B+3Bpphh) (�), and HF+MBPT(2B+3B) (N).

The inclusion of the 3N interaction affects this expression in
two ways: (i) The matrix elements of the two-body Hamilto-
nian are modified by an effective or in-medium two-body term
that results from the three-body matrix elements by a contrac-
tion of the third single-particle index. (ii ) An additional pure
three-body term involving three particle and three hole indices
appears.

To separate the effect of these two contributions we
study three variants of the second-order energy correction:
MBPT(2B) includes only the contribution of the two-body
Hamiltonian, i.e., the first matrix element in Eq. (15).
MBPT(2B+3Bpphh) includes the in-medium two-body con-
tribution generated by the 3N interaction, i.e., the complete
first term in Eq. (15). Finally, MBPT(2B+3B) includes all
terms of Eq. (15).

The ground-state energies of4He, 16O, and40Ca obtained
with MBPT(2B), MBPT(2B+3Bpphh), and MBPT(2B+3B)
on top of the HF result for the S-UCOM(SRG) interaction are
shown in Fig. 7 as function of the cutoff parametere3N. For
the HF calculations presented so far we had fixed this cutoff

to e3N = 20, which was sufficiently large to guarantee that the
HF energies were practically independent of this cutoff for all
nuclei. As soon as we include the second-order perturbative
correction we cannot expect the results to be independent of
e3N, because the sums over particle states above the Fermi en-
ergy directly probe high-lying matrix elements. Eventually we
will have to fix e3N to a certain value as part of the definition
of the phenomenological 3N interaction.

For the study of the different contributions a cutoff varia-
tion nevertheless provides a useful diagnostic tool. As seen
in Fig. 7, the HF energies are practically independent ofe3N

as mentioned earlier. When including the second-order cor-
rection due to the two-body Hamiltonian, MBPT(2B), the
ground-state energies are lowered by about 1 MeV per nu-
cleon for 4He and by about 2.5 MeV per nucleon for16O
and 40Ca. The MBPT(2B) energies are sensitive toe3N

only indirectly via high-lying HF single-particle states,there-
fore, the dependence is marginal. For MBPT(2B+3Bpphh)
and MBPT(2B+3B) the cutoff directly affects the perturba-
tive correction via the three-body matrix elements and the
e3N-dependence becomes more pronounced. Generally, the
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FIG. 8: (color online) Binding energies per nucleon and charge radii
of selected closed-shell nuclei resulting from HF calculations (filled
symbols) and MBPT (open symbols) based on the S-UCOM(SRG)
interaction foremax = 10,C3N = 2200 MeV fm6, e3N = 20 and differ-
ent flow parameters:α = 0.12 fm4 (•), α = 0.16 fm4 (�). The bars
indicate the experimental values [18, 19].

step from MBPT(2B) to MBPT(2B+3Bpphh) can modify the
ground-state energy in either direction, whereas the change
from MBPT(2B+3Bpphh) to MBPT(2B+3B) always results
in a lowering of the ground-state energy, as evident from Eq.
(15).

For 4He we obtain a significantly lower ground-state en-
ergy when fully including the three-body terms. For the heav-
ier nuclei the ground-state energy is increased at smalle3N

and remains almost unchanged for largere3N. Generally, the
change in the ground-state energy per nucleon when going
from MBPT(2B) to MBPT(2B+3B) for fixed and sufficiently
largee3N decreases with increasing particle number. Beyond
40Ca the impact of the three-body terms to the second-order
energy correction is smaller than other uncertainties of the
calculation, e.g., the degree of convergence with respect to
the model-space. Therefore, we will limit ourselves to the
MBPT(2B) corrections and will continue usinge3N = 20 in
the following. One should keep in mind, however, that for
nuclei below40Ca and in particular for4He the full second-
order correction MBPT(2B+3B) leads to a lower ground-state
energy than MBPT(2B) and thus to a much better agreement
with experiment.

As discussed earlier, we can fix the strength of the three-
body interaction based on the systematics of the charge radii
and use the flow parameter entering into the two-body inter-
action to control the binding-energy systematics. In Fig. 8
we illustrate the influence ofα on the energies obtained in
MBPT(2B) using the S-UCOM(SRG) interaction withα =
0.12 fm4 and 0.16 fm4 and a 3N contact interaction withC3N =

2200 MeVfm6. Whereas the charge radii are practically iden-
tical for both values ofα, the HF and the MBPT(2B) ground
state energies are systematically lower for the larger flow pa-
rameters. The difference is smaller for the MBPT(2B) ener-
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FIG. 9: (color online) Binding energies per nucleon and charge radii
of selected closed-shell nuclei resulting from HF calculations (filled
symbols) and MBPT (open symbols) based on the S-UCOM(SRG)
interaction forα = 0.16 fm4, C3N = 2200 MeV fm6, e3N = 20 and
different basis sizes:emax = 10 (•); emax = 12, lmax = 10 (�); emax =

14, lmax = 10 (N). The bars indicate the experimental values [18, 19].
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FIG. 10: (color online) Binding energies per nucleon and charge radii
of selected closed-shell nuclei resulting from HF calculations (filled
symbols) and MBPT (open symbols) based on the S-SRG interaction
for α = 0.10 fm4, C3N = 2000 MeV fm6, e3N = 20 and different basis
sizes:emax = 10 (•); emax = 12, lmax = 10 (�); emax = 14, lmax = 10
(N). The bars indicate the experimental values [18, 19].

gies than for the HF energies, as to be expected. The unitary
transformation for largerα accounts for more of the correla-
tions explicitly, thus the ground-state energy at the HF level
is lower and the gain due to the inclusion of residual correla-
tions through MBPT(2B) is smaller. Thus we can still use the
α-dependence to control the binding-energy systematics.

So far we have used a model space withemax = 10
for all calculations. This is absolutely sufficient to obtain
converged HF results, but it is not enough to obtain con-
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verged HF+MBPT energies. The convergence behavior of
the HF+MBPT(2B) energies is illustrated in Fig. 9 for the S-
UCOM(SRG) interaction withα = 0.16 fm4 and in Fig. 10 for
the S-SRG interaction withα = 0.10 fm4 usingemax = 10, 12,
and 14. The HF energies and charge radii are fully con-
verged in all cases, but not the HF+MBPT(2B) energies. Al-
though the largest model space includes 15 major oscillator
shells, this is still not sufficient to obtain convergence of the
MBPT(2B) contribution for heavier nuclei. The change of en-
ergy per nucleon between successive model-space sizes in-
creases with increasing nucleon number.

The slow convergence is partly due to the use of S-wave
only UCOM and SRG transformations for the construction of
the two-nucleon interactions. For all higher-partial waves the
transformed interactions are thus identical to the initialinter-
action. Since those partial waves become increasingly impor-
tant for heavier nuclei, the deterioration of the convergence
is unsurprising. The use of a softer all-channel transformed
interactions, e.g. the standard SRG-interaction discussed in
Fig. 2, would help with the convergence. However, for those
interactions a simple contact force is not sufficient to provide
reasonable energy and radius systematics.

Despite the non-optimal convergence, the results presented
in Figs. 9 and 10 show that after inclusion of beyond-HF cor-
relations also the systematics of the ground-state energy is
reproduced quite well. Given the additional gain in binding
energy that is expected until convergence, as estimated from
an extrapolationemax → ∞, for heavier nuclei and the addi-
tional binding resulting from the three-body contributions to
the second-order correction for light isotopes the energies are
in good systematic agreement with experiment. The charge
radii follow the experimental results very closely alreadyat
the HF level. Perturbative corrections to the radii, as studied
in Ref. [16], are very small and will not affect the general
agreement.

IV. CONCLUSIONS & OUTLOOK

We have investigated the systematics of binding energies
and charge radii for closed-shell nuclei from4He to 208Pb
starting from unitarily transformed realistic NN interactions
supplemented by phenomenological 3N forces. We have
shown that already a simplistic 3N contact interaction is suf-

ficient to cure the systematic deviations from experiment that
the UCOM- and SRG-transformed two-body interactions ex-
hibit. By supplementing an S-UCOM or S-SRG-transformed
interaction for sufficiently large flow parametersα with a re-
pulsive 3N contact interaction we were able to reproduce the
experimental charge radius and ground-state energy system-
atics simultaneously. Only for cases where the two-body in-
teraction exhibits a pathological energy systematics a contact
force is clearly not sufficient to arrive at a reasonable behavior.

In a next step, we can apply these interactions in a variety
of many-body schemes and study the elementary effects of 3N
interactions on nuclear observables. We will employ the phe-
nomenological 3N interactions in exact no-core shell model
calculations for the spectroscopy of light nuclei and in approx-
imate many-body approaches such as RPA for the study of the
collective response of heavier nuclei. The fundamental ad-
vantage of 3N contact interactions is that the computation of
three-body matrix elements itself is not a limiting factor and
thus a larger range of nuclei and observables can be explored.

A major goal, however, it to go beyond phenomenologi-
cal 3N interactions for supplementing a unitarily transformed
NN interaction towards a consistent two- plus three-body in-
teraction resulting from a combined unitary transformation of
an initial two- plus three-body interaction. This can be done,
e.g., using an SRG-evolution of the chiral NN plus 3N inter-
action. A study of the ground-state energy and radius system-
atics for those interactions, even in a simple framework like
HF+MBPT, will provide crucial information on the quality of
the presently available chiral interactions for nuclear structure
studies beyond the light isotopes and it will serve as a test-
case for the SRG-evolution in the NN plus 3N sector. Based
on our developments for phenomenological 3N interactions
discussed here, we will perform a similar analysis with fully
realistic NN plus 3N interactions next.
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