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Felix Schmitt, Markus Hild, and Robert Roth
Institut fur Kernphysik, Technische Universitat Daradtt 64289 Darmstadt, Germany
(Dated: April 28, 2009)

We study the zero-temperature phase diagram of a gas of lbgS@tb atoms in two-color superlattice po-
tentials starting directly from the experimental paramgtsuch as wavelengths and intensities of the two lasers
generating the superlattice. In a first step, we map the @rpatal setup to a Bose-Hubbard Hamiltonian with
site-dependent parameters through explicit band-streictalculations. In the second step, we solve the many-
body problem using the density-matrix renormalizationupgrdDMRG) approach and compute observables
such as energy gap, condensate fraction, maximum numbéudtians and visibility of interference fringes.
We study the phase diagram as function of the laser intessitiands, as control parameters and show that all
relevant quantum phases, i.e. superfluid, Mott-insularwl,quasi Bose-glass phase, and the transitions between
them can be investigated through a variation of these iiitessilone.

Ultracold atomic gases in optical lattice potentials offermental superlattice setup using explicit band-structatewz
unigue possibilities for studying fundamental quantum-phelations. We then solve the many-body problem using state-of
nomena, such as phase transitions to exotic quantum phasé®-art density-matrix renormalization group techniqaed
[1-7]. Experimentally, the key advantages of these systemsap out the phase diagram as function of the laser intessitie
are the unparalleled in-situ control over all relevant pgga  An example for such a phase diagram is shown in Fig. 1(b)
ters and the flexible tools to probe the quantum state. Thiand will be discussed in detail in the following.
has lead to a series of experimental studies, which recently Bose-Hubbard Hamiltonian & Band StructureStrongly
also focus on non-homogeneous lattices and two-color swzorrelated ultracold bosonic atoms in a sufficiently deeg-on
perlattices [4-7]. Theoretically, these systems are well d dimensional optical lattice potential withsites are well de-
scribed by Hubbard-type Hamiltonians and a whole range o$cribed by the single-band Bose-Hubbard Hamiltonian [16]
approaches from mean-field many-body methods to exact di- s
agonalization and density-matrix renormalization grceeght U;
niques is being used to study the phase diagram [8-15]. Thél = Z { — Jiir1(ali 8, +ha) + jni(ni -+ Einz} :
oretical studies typically adopt the generic parameterthef =1 1
Bose-Hubbard Hamiltonian as control parameters, which en- @
tails several simplifications as compared to the experiaient Hereal (a,) are creation (annihilation) operators for a boson
situation. A zero-temperature phase diagram for a Bose gas A P i

in a two-color superlattice in terms of the generic Hubbard" the lowest Wannier state localized at sitandn; = a,a;
parameters in shown in Fig. 1(a). are the corresponding occupation number operators. Tae thr

In this work we want to establish the direct link between [€mMs of the Hamiltonian describe the tunneling between ad-

the experimental setup as, e.g., discussed in Refs. [4,(b] arjacent sites, the on-site two-body interaction and theitn-s
: . ; potentlal, respectively. The site-dependent Hubbardmera

ables, the intensities, ands; of the two lasers generating the tersJi,i+1, Ui, ande;, which control the strength of the indi-
vidual terms, contain all information on the underlyingilz

superlattice, as control parameters. To this end, we first de tential and the int tion bet the at
termine site-dependent Hubbard parameters from the expelri)0 entialand the interaction between the atoms.
In most previous applications, the Hubbard parameters

were used directly as the control parameters spanning the

60— 2 phase diagram. Superlattice systems are typical approsima
50’ @' V 4 AE/J 1.8 (b) 4 by using site-independent tunneling and interaction mairi
i:i: ] ements, i.e.J; ;41 = J andU; = U, and some ansatz for
%0 ( 1o ] the site-dependent on-site energig$l1, 12]. In this study
0 & 1l (BG) | we start directly from the experimental setup, i.e., fronma-o
%0 8-2: <: dimensional lattice potentid () in real-space depending on
0 o4 / the wavelt_angthskl and)\; and the intensities% aQnTrdsQ of the
adae | O'S,‘(SF‘) L @ two sta'n(ilngwwaves through(x) h251ET1 sin (A-1 r+¢)+
0 10 20 U%L 40 50 6 2 4 6810121416 sf,sin ()\—2:17) wherekE,, = 57 IS the recoil energy of

the atoms with mass: and¢ a relative phase shift between
FIG. 1: (color online) Contour plots of the energy gap coregut the two standing waves. For the sake of simplicity we do not
in DMRG for a commensurate superlattice with= N = 30 as  account for a longitudinal trapping potential. We study two
function of the generic Hubbard parameters (a) and a fumcticthe different superlattice topologies: A commensurate saperl
experimental laser intensities (b) (see text). The labelkrthe do-  tice with A\, = 800 nm, \; = 1000 nm (¢ = 7/4) and an
mains of the superfluid (SF) phase, the homogeneous Matlaitts  jncommensurate superlattice with = 830 nm, A\; = 1076
(MI) phase, and the quasi Bose-glass (BG) phase. nm (p = 7/3). These values are motivated by the experimen-



tal setup discussed in Ref. [4] and we also assume the strong
primary laser to be defined by, andss.

In order to extract the Hubbard parameters for the lattice
potentialV (z) we first have to determine the localized Wan-
nier functions via a single-particle band-structure cktan.

For a homogeneous lattice;(= 0) with I sites we can eas-
ily obtain a numerical solution for the Bloch functions oéth
lowest bandi, (x), characterized by a quasimomentum index
k=0,1,...,1—1. The corresponding Wannier functions are
then determined by a Fourier transformation with respect to

2m

the quasimomentumy; (z) = S g e R ek gy (1),
The arbitrary phasey, of the individual Bloch functions is de-
termined by requiring the Wannier functions to be localized
From these Wannier functions the Hubbard parameters canbe 135 S 10 15 %0 55 %0
computed through matrix elements of the different terms of i

the real-space Hamiltonian

FIG. 2: Site-dependent Hubbard parameters obtained framd-ba

. h? 92 structure calculations for two-color superlattices witimmmensurate
—Jijit1 = | dx wi(z) T om Ox2 + V(@) | wiyi(z) (black symbols) and incommensurate wavelengths (gray skgnhb
B2 g2 for s, = 10 ands; = 1. Lines to guide the eye.
€ = /dx w} (z) (—%@ + V(:E)) wi(z) (2

U = %w: a .dx |w; (z)[* 51 = s2/10 considered in this example is sufficient to create
! L0 ! ’ a superlattice witlemax > U. For the following calculations
we consider a parameter range= 2 to 16 ands; = 0to 2.

The interaction is described by a three-dimensional S-Wave e eds: — 0. ie. in a homogeneous lattice, the variation
1 - ) - - 1

contact interaction with a strength given by the s-wavetecat of 5 covers a range frory/.J ~ 110 60 With cpax/ T—o.

ing lengtha,. For the transverse directions the wave functlon.l_he variation ofs; Spans a range up e/ J ~ 4 ats, — 2

is approximated by a Gaussian of a width corresponding to the = - i
frequencyw, of the transverse confinement. Following Ref. and Up tOcmay/J ~2 180 at s2 = 16 with U/J being almost

[4, 5] we consider a gas 6fRb atoms with s-wave scattering independent a8, . Throughout this work the bars indicate av-
erages over all lattice sites.

lengtha, = 109a and we assume a transverse trappin ) . o
gihas Borr PPIng Density Matrix Renormalization Group & Observables.

frequencyw, = 30E,,/h to ensure the validity of the 1D O ; -
description. Based on the Bose-Hubbard Hamiltonian with the site-

In the case of non-homogeneous lattice potentials we deél€Pendent parameters discussed above we solve the many-
scribe each site individually with a Wannier function exted ~ P2rticle_problem using the density-matrix renormalizatio
from a homogeneous lattice with the same local depths. Basé©UP (PMRG) approach [17, 18], which is one of the most
on this set of nontrivial site-dependent Wannier functires  POWerful methods for solving one-dimensional problems of
Hubbard parameters are then determined from Egs. (2). ThifiS type.
scheme is sufficiently accurate for the parameter regimeund  The so-called infinite-size DMRG algorithm is based on an
consideration. Even simpler approximations, e.g. a lowestiterative growth of the lattice system. We start from aniait
order perturbative inclusion of the lattice inhomogenéigy ~ block of I, lattice sites with up taVy, particles per site de-
computing the Hubbard parameters (2) with the full poténtiascribed in a Fock spac, of dimensionDy,. To this block an
V(x) and the Wannier functions from a homogeneous latticeadditional site with up taVs particles described by a spage
of the same average depth, yield similar results. is attached to build the system spakgs = Fp @ Fs of di-

Examples for the site-dependent Hubbard parameters fdnensionDsys = DpDs. In order to mimic the thermodynamic
the commensurate as well as the incommensurate superlattitmes, the system is coupled with an analogously constducte
with sy = 10 ands; = 1 are depicted in Fig. 2. Note that we €environment yielding the superblocKsuper = Fsys ® Fenv
always subtract a global constant from the Hamiltonian suchvith the constraint of fixed total particle number. The grdun
thatemin = 0. The dominant effect of the superlattice struc- State i) is obtained by diagonalizing the superblock Hamil-
ture is the spatial modulation of the on-site energjewhich ~ tonian. A reduced density-matrix is formed by tracing oet th
is in-line with the approximation to introduce the supditat ~ €nvironmentpreq = Treny [th0)(¢0| , and theDy eigenvectors
throughe; only. However, also the tunneling matrix element Of pred for the largest eigenvalues are used to span the Fock
Ji.it1, which essentially depends on the barrier height beSpaceF; of a new block of lengthly, = I +- 1 for the next
tween the sitesandi + 1, shows a sizable variation &f20% iteration. These eigenvectors also define a non-unitangira
around the average value The interaction strengili; shows ~ formation matrix® which is employed to construct the new
only a weak site-dependence which is induced solely throughlock HamiltonianH, = OFHg,4O. This cycle is repeated
the site-dependence of the Wannier functions. A comparisoHntil the final length of the lattice is reached.
of the energy scales reveals that the weak secondary latber wi  In non-homogeneous systems only at the very last step of



3

the algorithm the full information about the lattice topgyo  inthe SF phase. Fer = 0 the ratioU/J is aboutl ats, = 2
is included. Therefore, the infinite-size algorithm alose i and reaches about5 at s, = 6. Around this value of//.J
not sufficient to provide an accurate description of the gtbu the phase transition from superfluid to Mott insulator is ex-
state for superlattices. During a second stage of the @lcul pected in one-dimensional Bose systems in homogeneous lat-
tion we thus resort to the so-called finite-size DMRG algo-tices [15, 19], which is consistent with our observationeiv
rithm. Keeping the size of the superblock fixed at its finalin the presence of the secondary laser, i.e.0fer s; < 2,
value, the size of the system is increased at the expense tife intensitys, = 6 leads tol/ /.J ~ 4.5, which explains the
the environment and vice versa. While sweeping the boundsresence of the SF phase in the whole rangg afonsidered
ary between system and environment forth and back using thigere.
same operations discussed for the infinite-size algorithe, If we increases, at fixeds; = 0, the system enters the ho-
Hamiltonian always takes the whole lattice into account. mogeneous Mott-insulator (MI) phase, which is characestiz
For the following calculations we use the inifinite-sizealg by a large energy gap, a small condensate fraction, small fluc
rithm for the initial phase and perform three complete sweeptuations, and a minimal visibility. These signatures aeady
of the finite-size algorithms in the second phase. To warrantisible in the Fig. 3 for large values &f and small values of
convergence of the whole procedure, we increase of the blocki. At s; = 0 ands, = 16 the ratioU/J is about60 and the
basis dimensiorD}, until all observables stabilize. We typ- systemis deep in the Ml regime.
ically use Dy, = 56 with up to five particles per lattice site If we now increases; at fixeds, = 16, the modulation
N, = Ns = 5. This restriction is sufficient because we of the site-dependent Hubbard parameters grows rapidly. Al
are most interested in the strongly correlated regime. Agnonready ats; ~ 0.6 the spread of the on-site energies be-
the observables we analyze are the energyyapbetween comes comparable to the average interaction strength, i.e.
ground and first excited state, the condensate fragligiven  ¢..../J ~ U/J ~ 60. Thus it becomes energetically fa-
by the largest eigenvalue of the one-body density matri, thvorable to move particles from the lattice sites with latges
maximum fluctuatiorrmax of the occupation numbers across on-site energies to the sites with the lowest on-site easygi
the lattice, and the visibility of the interference fringes ex- thus creating doubly occupied sites. In this way the homoge-
tracted from the quasimomentum occupation numbers. Thaeous Ml phase is broken up and the transition to a quasi Bose
latter is of particular interest as it is directly accessiinl ex-  glass (BG) phase is observed. In a truely random infinite-siz
periment. The detailed definition of those observablesss di |attice, the BG phase is characterized by a vanishing energy
cussed in Refs. [12, 19, 20]. gap. Intuitively, this results from the continuous distition
Commensurate Lattice.We first consider the commensu- Of on-site energies, which allows for the construction of ex
rate superlatticeXo = 800 nm, A\; = 1000 nm, ¢ = 7/4)  cited states by redistributions of atoms to sites with itéisi
with the site-dependent Hubbard-parameters depictedgin Fi mally higher on-site energies and thus infinitesimal exicita
2. Already in Fig. 1 we have used this superlattice to illus-energies. In contrast to a random lattice, the commensurate
trate the difference between a generic phase diagram sgpannguperlattice exhibits only 5 different on-site energieisisTal-
by the the Hubbard parametei’§.J andemax/J (neglecting ways gives rise to finite energy gaps and extended domains
the site-dependence 6f and.J) and the experiment-specific in the phase diagram, where certain occupation-numbesstat
phase diagram spanned by the laser intensitiesnds;. In  dominate the ground state—two of those domains are visible
both cases we show the energy gap obtained from DMRG caln Fig. 3(a). Only in the transition regions between those do
culations forl = N = 30. Because the variation ®f ands; mains the energy gaps become small. In order to approach a
affects all site-dependent Hubbard parameters simultsshgo more realistic BG phase, we have to consider more complex
the (s2, 51) phase diagram is distorted relative to the generidattice topologies, e.g., the incommensurate superattic
(U/J, emax/ J) phase diagram. Nonetheless, all relevant quan- Incommensurate Lattice.We repeat the above analysis for
tum phases can be reached by variation of the laser intesisiti the incommensurate lattice{ = 830 nm, A\; = 1076 nm,
alone, i.e., there is no need to vary other experimentahpara ¢ = =/3) inspired by the experimental setup of Lye et al.
eters like the interatomic scattering length. [4, 5]. These parameters lead to a modulation of the site-
A more detailed analysis of the phase diagram as functiodependent Hubbard parameters with a periodicity which does
of s, ands; is given in Figs. 3(a) to (d), where we depict the not correspond to an integer number of lattice sites, as seen
energy gap, the condensate fraction, the maximum numbéf Fig. 2. Therefore, the pattern of on-site energigsfor
fluctuations, and the visibility, resp., obtained in DMRG-ca €xample, is not periodic anymore as in the case of the com-
culation for/ = N = 30 with the commensurate superlattice. mensurate lattice.
The superfluid (SF) phase is signaled by a small or vanishing The resulting phase diagrams fbr= N = 30 are depicted
energy gap, a large condensate fraction, large number fluéa Figs. 3(e) to (h). Evidently, the structure and extendhef t
tuations, and maximum visibility. Although the most strin- SF and the MI phase are not affected by the change in the lat-
gent order parameter for the SF phase—the superfluid fragice topology. Only the BG phase exhibits a different bebavi
tion [19]—is not computed here, this signature allows us toThe energy gap is clearly reduced due to the irregular charac
identify the SF phase in the regime of smal| roughly up to  ter of the superlattice. The larger number of different @a-s
s9 S 6 forall s; S 2. In this regime the superlattice is shal- energies allows for redistributions associated with logsemi-
low such that tunneling dominates over on-site interastion tation energies and reduced energy gaps. The more irregular
which is a prerequisite for the long-range coherence ptesethe lattice the stronger the reduction of the energy gapen th
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FIG. 3: (color online) Phase diagrams in terms of energyAyjy.J, condensate fractioft, maximum number fluctuationsnax, and visibility
v obtained from DMRG calculations fa¥ = I = 30 with the commensurate superlattice (upper row) and thenimeensurate superlattice
(lower row). The irregularities of the contour lines are doieninimal numerical fluctuations of the DMRG results.

quasi BG phase—eventually the true BG phase in a randorion of s, for fixed s; < 0.4) and the transition from Ml to
lattice would be approached. Observables like the condiensaquasi BG phase (variation of; for fixed s 2 10) can be
fraction and the visibility are still suppressed inthe BGinee  studied in detail. By comparing superlattices obtaineanfro
and allow for a unique distinction from the SF phase. lasers with commensurate and incommensurate wavelengths
Conclusions. We have studied the phase diagram ofwe show that the SF and the MI phase are largely insensitive
bosonic atoms in one-dimensional two-color superlatticego the detailed lattice topology. As expected, only the gper
starting from the experimentally accessible parametetseof gaps in the quasi BG phase change systematically when going
optical lattice. Following a band-structure calculationetx-  to a more irregular lattice topology and approach the liriit o
tract the corresponding site-dependent Hubbard parasetea gapless BG expected in a random lattice. By measuring the
the many-body problem is solved using the DMRG approachenergy gap and, e.g., the visibility of the interferencaedds
Using the intensities of the two laser fields,ands,, as con- it is possible to uniquely identify the three different qtiam
trol parameters while keeping all other experimental pa&am phases in experiment. Thus a detailed experimental asalysi
ters fixed, it is possible to access all relevant quantumeshas of the rich structure of the phase diagram is directly pdssib
of the system. By following a simple path in the, s2)- both from the control and the diagnostics point of view.
parameter-plane, the transition from SF to Ml phase (varia- Supported by the Helmholtz Alliance HA216-TUD/EMMI.
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