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Abstract

We apply high-order many-body perturbation theory for the calculation of ground-state energies of closed-shell nuclei using realistic
nuclear interactions. Using a simple recursive formulation, we compute the perturbative energy contributions up to 30th order and
compare to exact no-core shell model calculations for the same model space and Hamiltonian. Generally, finite partial sums of
this perturbation series do not show convergence with increasing order, but tend to diverge exponentially. Nevertheless, through a
simple resummation via Padé approximants it is possible toextract rapidly converging and highly accurate results forthe ground
state energy.

Key words: ab initio nuclear structure, many-body perturbation theory, Padé approximants, configuration interaction
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1. Introduction

The treatment of the nuclear many-body problem is a cen-
tral and long-standing issue in nuclear structure theory. Ideally,
we would like to solve the many-body problemab initio, i.e.,
starting from a given nuclear Hamiltonian without any concep-
tual approximations. With the advent of high-precision nuclear
potentials that are based systematically on Quantum Chromo-
dynamics (QCD) through chiral effective field theory [1, 2], the
demand for exactab initio solutions of the nuclear many-body
problem has grown. Only these schemes establish a rigorous
and quantitative connection between nuclear structure observ-
ables and the underlying QCD input.

The no-core shell model (NCSM) is one of the most univer-
sal exactab initio methods, which gives access to all aspects of
nuclear structure [3, 4, 5]. Other methods, are either restricted
to certain classes of Hamiltonians, like the Green’s Function
Monte Carlo approach [6], or they are limited to certain nuclei
and observables, like the coupled-cluster approach [7]. All of
them are computationally demanding, which leads to a severe
limitation regarding the number of nucleons that can be han-
dled.

Therefore, approximate many-body schemes using the same
Hamiltonians, i.e. approximateab initio methods, also pro-
vide indispensable information. In particular approachesthat
use controlled and systematically improvable approximations
are of great practical importance. In this category, many-body
perturbation theory (MBPT) is one of the most powerful and
widely used methods. On the one hand, the evaluation of low-
orders of perturbation theory is computationally simple and can
be done for the whole nuclear mass range [8, 9, 10, 11] as
well as for infinite nuclear matter [12]. On the other hand, it
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is deemed systematically improvable, either by extending the
MBPT calculations order-by-order or by using infinite partial
summations, like ladder- or ring-type summations [13, 14, 15].
However, the accuracy of low-order perturbative estimates, e.g.
for ground-state energies, or possible extensions of the MBPT
series to higher orders and the resulting convergence pattern are
rarely, if ever, addressed in the nuclear structure context.

In this paper, we apply MBPT for the calculation of the
ground state energy of several closed-shell nuclei. We extend
the order-by-order calculation of the perturbative energycontri-
butions up to 30th order, study the convergence behavior, and
compare to exact NCSM calculations for the same Hamiltonian
and model space. We introduce Padé approximants as a highly
efficient tool for the resummation of the divergent power-series
of MBPT into a rapidly converging series and demonstrate their
accuracy for the description of ground-state energies.

2. Many-body perturbation theory

2.1. Formalism

We aim at a perturbative expansion of the many-nucleon
Schrödinger equation

H |Ψn〉 = En |Ψn〉 (1)

for the translational invariant nuclear HamiltonianH = T −
Tcm + V, where we assumeV to be a two-body interaction for
simplicity. In a first step we have to chose the unperturbed ba-
sis, which in turn defines the unperturbed Hamiltonian. From
the practical point of view, a basis of Slater-determinantscon-
structed from a set of single-particle states is most convenient.
The underlying single-particle basis will typically be a Hartree-
Fock or a harmonic oscillator basis—for simplicity we assume
the latter. The unperturbed HamiltonianH0 is a one-body oper-
ator containing the kinetic energyT and a harmonic oscillator
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potential. The unperturbed Slater determinants|Φn〉 fulfill the
eigenvalue relation

H0 |Φn〉 = ǫn |Φn〉 (2)

with eigenvaluesǫn being the sum of the single-particle ener-
gies of the occupied states. After the unperturbed Hamiltonian
is fixed, the perturbation is defined throughW = H − H0. This
partitioning leads to the Møller-Plesset formulation of MBPT
and obviously other partitionings of the Hamiltonian are pos-
sible [16, 17]. For ease of presentation, we assume that the
unperturbed state corresponding to the eigenstate we are inter-
ested in is non-degenerate, as it is the case for the ground state
of closed shell nuclei. In the case of degeneracy, as e.g. for
the excited states of closed shell nuclei, one would have to di-
agonalize the full Hamiltonian in the degenerate subspace and
pick the eigenstates with the desired quantum numbers as un-
perturbed states.

The standard Rayleigh-Schrödinger perturbation series can
now be constructed based on a Hamiltonian (using the notation
from Ref. [17])

H(λ) = H0 + λW (3)

containing an auxiliary expansion parameterλ that continu-
ously connects the unperturbed HamiltonianH0 = H(λ = 0)
with the full HamiltonianH = H(λ = 1). The energy eigenval-
uesEn(λ) and the corresponding eigenvectors|Ψn(λ)〉 of H(λ)
are formulated as a power series inλ

En(λ) = E(0)
n + λE

(1)
n + λ

2E(2)
n + . . . ,

|Ψn(λ)〉 = |Ψ(0)
n 〉 + λ |Ψ

(1)
n 〉 + λ

2
|Ψ(2)

n 〉 + . . . .
(4)

In the absence of degeneracy the lowest-order contributions are
simply given by the unperturbed quantities, i.e.,

E(0)
n = ǫn , |Ψ(0)

n 〉 = |Φn〉 . (5)

Inserting the Hamiltonian (3) and the power series (4) into
the Schrödinger equation (1) leads to the fundamental equation

H0 |Ψ
(0)
n 〉 +

∞
∑

p=1

λp(W |Ψ(p−1)
n 〉 + H0 |Ψ

(p)
n 〉
)

= E(0)
n |Ψ

(0)
n 〉 +

∞
∑

p=1

λ
p
(

p
∑

j=0

E( j)
n |Ψ

(p− j)
n 〉

)

.

(6)

Assuming that the unperturbed states form an orthonormal basis
and using the intermediate normalization〈Ψ(0)

n |Ψn(λ)〉 = 1 we
obtain〈Ψ(0)

n |Ψ
(p)
n 〉 = 0 for p > 0, which allows us to project-out

all required information on the individual contributions in the
power series. By multiplying Eq. (6) with〈Ψ(0)

n | and matching
same orders ofλ on both sides, we immediately obtain a simple
expression for thepth-order energy contribution

E(p)
n = 〈Ψ

(0)
n |W |Ψ

(p−1)
n 〉 . (7)

By multiplying Eq. (6) with〈Ψ(0)
m | with m , n and matching

λ-orders, we obtain an expression for the amplitudes

C(p)
n,m = 〈Ψ

(0)
m |Ψ

(p)
n 〉 =

=
1

E(0)
n − E(0)

m

(

〈Ψ(0)
m |W |Ψ

(p−1)
n 〉 −

p
∑

j=1

E( j)
n 〈Ψ

(0)
m |Ψ

(p− j)
n 〉

) (8)

which characterize the perturbative corrections to the eigen-
states|Ψ(p)

n 〉 expanded in the unperturbed basis

|Ψ
(p)
n 〉 =

∑

m

C(p)
n,m |Ψ

(0)
m 〉 (9)

with C(p)
n,n = 0 for p > 0 andC(0)

n,m = δn,m.
We can cast Eqs. (7) and (8) into a more transparent form by

systematically introducing the amplitudesC(p)
n,m and formulating

all matrix elements in terms of the unperturbed states. For the
pth-order energy contribution we obtain

E(p)
n =

∑

m

〈Φn|W |Φm〉 C(p−1)
n,m . (10)

Similarly we obtain for thepth-order amplitudes

C(p)
n,m =

1
ǫn − ǫm

(

∑

m′
〈Φm|W |Φm′〉C

(p−1)
n,m′ −

p
∑

j=1

E( j)
n C(p− j)

n,m

)

. (11)

Together withC(0)
n,m = δn,m andE(0)

n = ǫn these relations form a
recursive set of equations which uniquely determines the per-
turbative corrections for all energies and states to all orders.

Usually one would use these general expressions to derive
explicit formulae for the lowest-order corrections. The ma-
trix elements of the perturbation in the unperturbed Slater-
determinant states can be evaluated explicitly and the summa-
tions over the many-body basis set can be replaced by summa-
tions over single-particle states. In this way we would recover
the standard expressions for, e.g., the second- and third-order
energy corrections [8, 11, 16].

2.2. Evaluation to high orders

When attempting to evaluate the perturbative corrections be-
yond third- or forth-order the explicit formulae for the energy
corrections become impractical because of the large numberof
nested summations. A much more elegant way to evaluate high-
order contributions makes use of the recursive structure ofEqs.
(10) and (11). The only ingredients needed are the many-body
matrix elements of the full HamiltonianH with respect to the
unperturbed basis|Φn〉. Starting from the zeroth-order coeffi-
cientsC(0)

n,m = δn,m we can readily evaluate the first-order en-
ergy contributionE(1)

n from (10). This in turn allows us to com-
pute the first-order coefficientsC(1)

n,m via (11). Generally, for the
evaluation of the energy contributionE(p)

n only the coefficients
C(p−1)

n,m of the previous order are required. For the evaluation of
the coefficientsC(p)

n,m all energy contributions up to orderp and
all coefficients up to order (p− 1) need to be known.

Technically, the recursive evaluation of the perturbationse-
ries bears some resemblance to the Lanczos algorithm for the
iterative solution of the eigenvalue problem for a few extremal
eigenvalues as it is used in the NCSM. The most significant op-
eration is a matrix-vector multiplication of the Hamiltonian ma-
trix with the coefficient vector from the previous order, which
constitutes the first term in the evaluation of the coefficients
(11). Because the second term in (11) involves the coefficient
vectors from all previous orders, we store them for simplic-
ity. These computational elements are the same as for a simple
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Lanczos algorithm in the NCSM or in corresponding configura-
tion interaction (CI) approaches, therefore, an implementation
of high-order MBPT using NCSM or CI technologies is straight
forward. However, since the computational elements are the
same, so are the computational limitations: This direct imple-
mentation of high-order MBPT is limited to the same model
spaces and particle numbers as the full NCSM. This is not a
concern for the present study, but for an application of MBPT
beyond the domain of the NCSM one has to resort to other eval-
uation schemes.

2.3. Applications:4He,16O and40Ca

As examples for a direct application of high-order MBPT
we consider the ground-state energies of4He, 16O, and40Ca.
Throughout this work we use an intrinsic Hamiltonian with
a soft two-nucleon interaction that is derived from the chiral
N3LO potential [1] via a Similarity Renormalization Group
(SRG) transformation [18, 19, 20]. The final flow parame-
ter for the SRG evolution of the interaction isα = 0.02 fm4

which corresponds to a momentum scale ofΛ = 2.66 fm−1.
This choice for the flow parameters leads to a unitarily trans-
formed interaction which is sufficiently soft to warrant excel-
lent convergence properties with respect to model space size in
the NCSM but at the same time yields ground-state energies
which are in reasonable correspondence with experiment in the
mass-range considered here. To allow for a direct comparison
with exact NCSM calculations for the same Hamiltonian and
the same model space, we use anNmax~Ωmodel space also for
the MBPT calculations. We have confirmed, however, that all
conclusions regarding the performance and limitations of the
MBPT approach do not depend on this particular choice.

In Fig. 1 we summarize the results of an order-by-order
MBPT calculation up to 30th order for the ground state energy
of the three nuclei. For4He the calculations were performed in
a 12~Ωmodel space, for16O in 6~Ω, and for40Ca in 4~Ω, each
with two different oscillator frequencies~Ω. The partial sum of
the perturbative energy contributions up to orderp,

Esum(p) =
p
∑

p′=0

E(p′)
, (12)

is depicted in upper row and the modulus of the individualpth-
order contributions,|E(p)|, on a logarithmic scale in the lower
row. Here and in the following we omit the indexn = 0 for
convenience.

Already the first glance at Fig. 1 reveals a fundamental prob-
lem with the convergence behavior of the perturbation series.
For 4He, as depicted in Fig. 1(a), we observe two different pat-
terns depending on the oscillator frequency. For~Ω = 20 MeV
the partial sumEsum(p) shows an alternating behavior with a
systematically decreasing amplitude. Beyond 10th order one
might consider the perturbation series converged and the result-
ing energy is in excellent agreement with the result of an NCSM
calculation with the same Hamiltonian in the same model space.
However, a change of the oscillator frequency destroys thispic-
ture. For~Ω = 32 MeV, where the NCSM provides a lower
ground-state energy, we again observe an alternating sequence

of energy contributionsE(p), but this time without any sign of
convergence. The absolute value of the individual energy cor-
rections does not decrease with increasing order, it even shows
a slightly increasing trend. Hence even in the simplest case, the
4He ground state, the convergence of the perturbation seriesis
not guaranteed.

The situation is even more dramatic for16O or 40Ca as de-
picted in Fig. 1(b) and (c). In all cases the size of the perturba-
tive energy contributions|E(p)| growsexponentiallywith p. The
partial sumEsum(p) exhibits a strong oscillatory behavior with
increasing amplitude. Only the lower orders, typically up to
10th order for16O and up to 5th order for40Ca, lead to binding
energies in a physically meaningful energy range. At the 30th
order the perturbative contributions are in the order of 104 MeV
for 16O and 109 MeV for 40Ca—this is beyond any physical en-
ergy scale present in the nuclear many-body problem. We were
not able to find a convergent scenario by varying the oscillator
frequency or the model space size or truncation for these nuclei.

The explosion of the perturbative corrections beyond any
meaningful energy scale suggests a principal mathematical
problem in the representation of the energy eigenvalueE(λ) as
a partial sum of a simple power series (4) .

3. Pad́e approximants

3.1. Formalism

Prompted by the drastic failure of a partial sum of a simple
power series to describe the energyE(λ) at the physical point
λ = 1 one might consider more general expansions of this func-
tion. A next step would be an expansion of the energyE(λ) in
terms of a rational function composed of separate power series
for numerator and denominator

E(λ) =
A(λ)
B(λ)

=
a0 + a1λ + a2λ

2 + . . .

b0 + b1λ + b2λ
2 + . . .

. (13)

Obviously we will not attempt to re-derive perturbation theory
for this type of expansion. The above is useful only, if we could
use the information contained in the standard MBPT energy
contributionsE(p) to construct this rational expansion.

Exactly this is achieved through the Padé approximants [21,
22]. Given a power series (4) of the functionE(λ), then the
Padé approximant

[M/N](λ) =
a0 + a1λ + a2λ

2 + · · · + aMλ
M

b0 + b1λ + b2λ
2 + · · · + bNλ

N
(14)

with numerator being a polynomial of orderM and the denomi-
nator a polynomial of orderN is constructed such that its Taylor
expansion reproduces the firstM+N orders of the initial power
series, i.e.

E(λ) = [M/N](λ) +O(λM+N+1) . (15)

From this definition one can immediately construct a coupled
system of equations that determines the coefficients an and
bm of the Padé approximant from a given set ofE(p) with
p = 0, ...,N + M. An alternative and more elegant form
[21, 22] relates the Padé approximants to determinants of two
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Figure 1: Contributions to the ground-state energies in MBPT up to 30th order for different nuclei and model spaces: (a)4He in a 12~Ω model space with~Ω = 20
MeV (•) and 32 MeV (�); (b) 16O in 6~Ω with ~Ω = 20 MeV (•) and 24 MeV (�); (c) 40Ca in 4~Ω with ~Ω = 20 MeV (•) and 24 MeV (�). The upper
panels depict the partial sumEsum(p) defined in Eq. (12) as function of the largest orderp, the lower panels the modulus of the individual contributions E(p) on a
logarithmic scale. The dashed horizontal lines in the upperpanels indicate the NCSM ground-state energies for the respective nuclei and model spaces.
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(16)
where we setE(p) ≡ 0 for p < 0. We will use this form to
evaluate various Padé approximants in the following.

Before considering numerical results, we should like to men-
tion a few formal properties of the Padé approximants that
are of importance for the present application. The mathemat-
ical foundation for using Padé approximants for our purpose
in the first place is provided by the Padé conjecture (simpli-
fied) [21, 22]: LetE(λ) be a continuous function for|λ| ≤ 1,
then there is an infinite subsequence of diagonal Padé approx-
imants [N/N](λ) that for N → ∞ converges locally uniformly
againstE(λ) for |λ| ≤ 1. For our application the continuity re-
quirements for the functionE(λ) are always fulfilled, thus we
expect the diagonal Padé approximants to show a convergence
behavior—unlike the simple power series.

Additionally the Padé approximants have a number of spe-
cific properties that would be extremely valuable in the present
context. If the power series expansion ofE(λ) is a Stieltjes se-
ries, then the Padé approximants fulfill the condition

[M/M](λ) ≥ E(λ) ≥ [M − 1/M](λ) (17)

for λ ≥ 0 as well as a whole set of related inequalities [21, 22].
Thus the diagonal and the super-diagonal Padé approximants
provide upper and lower bounds for the full energyE(λ), re-
spectively. Furthermore, these bounds improve monotonically
with increasing orderM of the Padé approximant. Unfortu-
nately, it turns out that the power series we start from is nota
Stieltjes series in general.

3.2. Applications:4He,16O and40Ca

Using the results of the order-by-order calculation of the en-
ergy correctionsE(p) up to 30th order of MBPT we can con-
struct all Padé approximants withN + M ≤ 30 from Eq. (16).
Evaluating the approximant atλ = 1 yields an estimate for the
ground-state energy of the perturbed system

EPadé(M/N) = [M/N](λ = 1) . (18)

We will focus on the diagonal Padé approximant,EPadé(M/M),
and the super- and sub-diagonal approximants,EPadé(M−1/M)
andEPadé(M/M − 1), respectively, because of the convergence
and boundary theorems available for those.

A collection of all diagonal as well as sub- and super-
diagonal approximants withN+M ≤ 30 for4He,16O, and40Ca
using the oscillator frequencies that yield the lowest ground-
state energy is provided in Fig. 2. The first remarkable ob-
servation is that the Padé approximants converge very quickly
for sufficiently large order—we have observed this behavior in
all cases we considered. ForM + N & 10 essentially all Padé
approximants provide the same ground-state energy. We em-
phasize that the input for the construction of those Padé ap-
proximants are the exponentially diverging coefficients from the
power-series formulation of MBPT discussed in Fig. 1. The
Padé resummation of these coefficients efficiently regularizes
these divergencies and leads to exceptionally stable results for
all ordersM + N & 10.
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Figure 2: Padé approximants for the ground-state energiesof (a) 4He, (b)16O, and (c)40Ca as function of the summed orderM+N. The different symbols represent
the diagonal approximantsEPadé(M/M) (•), the super-diagonal approximantsEPadé(M − 1/M) (�), and the sub-diagonal approximantsEPadé(M/M − 1) (N). The
model space sizeNmax and the oscillator frequency~Ω is quoted in the individual panels. The dashed horizontal lines indicate the NCSM ground-state energies for
the respective nuclei and model spaces.

The second important observation results from the compari-
son of the converged Padé approximants1 with the exact energy
eigenvalue obtained from a solution of the matrix eigenvalue
problem for the Hamiltonian in the same model space—i.e.,
from the corresponding NCSM calculation—as indicated by the
dashed horizontal line in Fig. 2. The converged Padé approxi-
mantsexactlyreproduce the corresponding energy eigenvalues,
i.e., Padé resummed perturbation theory and the exact solution
of the eigenvalue problem become equivalent.

A quantitative comparison is presented in Tab. 1, where the
difference of the partial sumsEsum(p) and the Padé approxi-
mantsEPadé(M/N) to the exact NCSM eigenvaluesENCSM are
shown. The latter were obtained using the Antoine shell-model
code [23]. Starting fromM +N ≈ 10 the deviations of the Padé
approximants from the exact result are getting very small and
starting fromM + N ≈ 20 the Padé approximants are numeri-
cally identical to the exact result for all nuclei. In this regime
the individual MBPT contributionsE(p) are already increasing
exponentially for16O and40Ca (cf. Fig. 1) and the partial sum
Esum(p) does not provide any sensible estimate of the ground-
state energy. The Padé approximants prove to be a highly ef-
ficient tool to extract a virtually exact and stable result for the
energy from the first 10 or more coefficientsE(p) of the strongly
fluctuating and non-converging power series. Considering the
scale of the order-to-order fluctuations and the absolute size of
the perturbative contributionsE(p) the stability and the precision
of the converged Padé approximants is truly remarkable.

For application purposes, the behavior at low orders is also
of interest. As shown in Tab. 1, the deviations∆Esum(p) and
∆EPadé(M/N) are of comparable magnitude up to about fifth or-
der, both showing sizable fluctuations. Hence, in this low-order
domain the Padé approximants do not improve on the results
obtained from a simple partial sum. Only beyondM + N ≈ 5
do the Padé approximants start to converge, i.e., the variations

1Here, the term convergence refers solely to the convergencewith respect
to the orderM +N and not to convergence with respect to the model-space size
Nmax, which is a separate issue.

within a set of approximants of neighboring order reduce sys-
tematically. At the same time the deviations of the partial sums,
∆Esum(p), start to increase exponentially.

The stability of the Padé approximantsEPadé(M/N) across
various neighboring ordersM and N is an important intrin-
sic criterion for convergence and for the accuracy of the Padé
approximants as compared to the exact result. Therefore, it
seems advisable to always consider sets of several approxi-
mants. Moreover, there is always the possibility that individual
approximants completely escape the general trend, such as the
EPadé(2/2) approximant for40Ca at~Ω = 20 MeV that has a
large positive and thus unphysical value. These cases are a re-
minder that the convergence theorems for Padé approximants,
e.g., the Padé conjecture, only cover subsequences of approx-
imants. Finally we note that the MBPT power series in the
present examples turns out not to be a Stieltjes series. As the
Padé approximants of Tab. 1 show, the inequality (17) as well as
related inequalities are not fulfilled. The Padé approximants for
the ground state energy on nuclei in the present MBPT frame-
work do not provide rigorous bounds for the exact eigenvalues.

4. Conclusions & Outlook

We have formulated and applied many-body perturbation
theory up to high orders for the description of ground-stateen-
ergies of closed-shell nuclei using realistic Hamiltonians. In
contrast to typical applications of MBPT in nuclear physicsthat
are limited to second or third order, we extend the order-by-
order evaluation of the perturbation series up to 30th orderusing
a simple recursive scheme. In order to facilitate the comparison
with exact eigenvalues obtained in NCSM calculations, we have
limited ourselves to an harmonic-oscillator single-particle basis
and aNmax~Ω space. However, results for other single-particle
bases and model-space truncations are qualitatively similar.

Our major results and conclusions are: First, a simple par-
tial sum of the perturbative series in general does not converge.
On the contrary, we typically observe an exponential increase
of the individual perturbative contributions|E(p)| and an oscilla-
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Table 1: Large-scale MBPT results for the ground-state energies of4He, 16O,
and40Ca. Shown are the exact NCSM energies for the respective model space
and the deviations of the partial sums,∆Esum(p) = Esum(p) − ENCSM, as well
as the deviations of various Padé approximants,∆EPadé(M/N) = EPadé(M/N) −
ENCSM. All energies are given in units of MeV.

4He 16O 40Ca
Nmax 12 12 6 6 4 4
~Ω [MeV] 20 32 20 24 20 24
ENCSM -26.561 -27.194 -108.33 -109.81 -320.37 -294.19
∆Esum(1) +12.865 +20.320 +38.05 +52.39 +47.62 +83.50
∆Esum(2) -3.691 -6.695 -26.33 -31.92 -53.68 -90.55
∆Esum(3) +1.288 +5.896 +4.21 +4.64 +8.83 -11.00
∆Esum(4) -0.429 -2.853 +14.84 +14.24 +80.27 +187.51
∆Esum(5) +0.341 +3.651 -14.13 -10.88 -96.18 -131.81
∆Esum(6) -0.293 -2.095 -6.27 -9.41 -115.05 -503.15
∆Esum(7) +0.275 +2.247 +22.93 +21.98 +395.80 +985.80
∆Esum(8) -0.156 -0.896 -10.68 -8.42 -44.78+1124.02
∆Esum(9) +0.070 +0.674 -22.87 -18.37 -1270.07 -5523.29
∆Esum(10) +0.005 +0.433 +34.16 +23.47 +1500.66 +270.84
∆EPadé(1/1) -6.031 -10.941 -32.04 -40.39 -57.68 -100.93
∆EPadé(1/2) +2.274 +7.759 +6.94 +8.61 +10.76 -5.94
∆EPadé(2/1) +0.136 +1.894 -5.62 -6.41 -15.03 -35.95
∆EPadé(2/2) +0.009 +0.680 +14.93 +13.06 +3115.69 -193.45
∆EPadé(2/3) +0.108 +0.892 +8.19 +9.19 +29.10 +61.98
∆EPadé(3/2) +0.066 +0.865 +1.01 +1.32 +3.61 +9.34
∆EPadé(3/3) +0.047 +0.761 -1.32 -2.34 -6.00 -16.04
∆EPadé(3/4) +0.008 +0.066 +0.66 +1.48 +2.34 +4.01
∆EPadé(4/3) +0.132 +2.666 -0.11 -0.11 -0.88 -2.96
∆EPadé(4/4) +0.019 +0.492 +0.18 +0.05 +3.45 +26.11
∆EPadé(4/5) +0.015 +0.314 -0.80 +0.03 +2.43 +6.46
∆EPadé(5/4) +0.012 +0.135 +0.03 +0.03 +0.22 +1.14
∆EPadé(5/5) -0.029 +0.136 -0.04 +0.05 -0.50 -2.45
∆EPadé(6/6) -0.037 +0.040 +0.01 +0.00 +0.16 +1.37
∆EPadé(8/8) +0.001 +0.001 +0.01 +0.01 +0.01 +0.20
∆EPadé(10/10) +0.000 +0.001 +0.01 +0.01 +0.00 +0.01
∆EPadé(12/12) -0.000 -0.002 +0.01 +0.01 +0.00 +0.01
∆EPadé(15/15) -0.000 -0.000 +0.01 +0.01 +0.01 -0.04

tory behavior of the partial sumEsum(p) as function ofp. Thus,
finite partial summations, even if they are extended to high or-
ders, do not provide a stable and systematically improvableap-
proximation for the exact energy eigenvalue.

Second, Padé approximants offer a computationally simple
yet powerful tool to extract a convergent series from a finite
set of perturbative energy contributionsE(p). Solely through a
resummation of the finitepth-order power series to a rational
function, whose Taylor expansion up to orderp is identical to
the initial power series, we are able to extract a highly stable and
convergent approximation for the energy. The information en-
tering these Padé approximants of orderp = M + N is identical
to the power series of orderp and so is the computational effort.
However, whereas a finite partial sumEsum(p) explodes with in-
creasing orderp, the Padé approximantsEPadé(M/N) converge.

Third, beyond a sufficiently large order, typicallyM + N &

10, the different Padé approximants become very stable and
converge rapidly to a unique value for the energy. This energy
is identical to the exact eigenvalue obtained in the correspond-
ing NCSM calculation. In this sense, Padé resummed MBPT
and the Lanczos diagonalization become numerically equiva-
lent. Unfortunately, the computational effort is also comparable
at least for the implementation we adopted for the MBPT here.

Fourth, at low orders, i.e.M + N . 4, the Padé approx-

imants generally do not yield an improved approximation for
the energy. Their deviations from the exact eigenvalue fluctu-
ate and are of the same order of magnitude as the errors of the
corresponding partial sums. If one is limited, for computational
reasons, to very low orders, then the version of MBPT used here
can only provide a rough estimate that might differ significantly
from the exact eigenvalue.

These initial studies open a number of new avenues for the
study and application of MBPT in nuclear structure. Beyond
the MBPT calculations presented here, one can use optimized
single-particle bases and improved partitionings of the Hamilto-
nian to influence the convergence behavior of a finite order-by-
order MBPT calculation. Furthermore, one can exploit infinite
partial summations, e.g., ladder- or ring-type summationsin-
cluding MBPT contributions from all orders, and compare their
quality to Padé resummed finite-order calculations. Theseim-
provements and extensions will be the subject of future studies.
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