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Abstract

We apply high-order many-body perturbation theory for thlewlation of ground-state energies of closed-shell nuslag realistic
nuclear interactions. Using a simple recursive formufative compute the perturbative energy contributions up tb 8fder and
compare to exact no-core shell model calculations for tieesaodel space and Hamiltonian. Generally, finite partisdsof

this perturbation series do not show convergence with asing order, but tend to diverge exponentially. Nevergglthrough a
simple resummation via Padé approximants it is possibextact rapidly converging and highly accurate resultstierground
state energy.
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1. Introduction is deemed systematically improvable, either by extendireg t
MBPT calculations order-by-order or by using infinite palrti

The treatment of the nuclear many-body problem is a censummations, like ladder- or ring-type summations [13, B, 1

tral and long-standing issue in nuclear structure theaigally, ~ However, the accuracy of low-order perturbative estimates

we would like to solve the many-body probleab initio, i.e.,  for ground-state energies, or possible extensions of th® MB

starting from a given nuclear Hamiltonian without any cqmce  series to higher orders and the resulting convergence paite

tual approximations. With the advent of high-precisionleac  rarely, if ever, addressed in the nuclear structure context

potentials that are based systematically on Quantum Chromo |n this paper, we apply MBPT for the calculation of the

dynamics (QCD) through chiraffective field theory [1, 2], the  ground state energy of several closed-shell nuclei. Wenelxte

demand for exacb initio solutions of the nuclear many-body the order-by-order calculation of the perturbative enexytri-

problem has grown. Only these schemes establish a rigoroitions up to 30th order, study the convergence behaviar, an

and quantitative connection between nuclear structurerobs compare to exact NCSM calculations for the same Hamiltonian

ables and the underlying QCD input. and model space. We introduce Padé approximants as a highly
The no-core shell model (NCSM) is one of the most univer-efiicient tool for the resummation of the divergent power-serie

sal exactb initio methods, which gives access to all aspects obf MBPT into a rapidly converging series and demonstrati the

nuclear structure [3, 4, 5]. Other methods, are eitheriotstr  accuracy for the description of ground-state energies.

to certain classes of Hamiltonians, like the Green’s Famncti

Monte Carlo approach [6], or they are limited to certain eucl i

and observables, like the coupled-cluster approach [7]ofAl 2+ Many-body perturbation theory

them are computationally demanding, which leads to a SeVerg,  ormalism

limitation regarding the number of nucleons that can be han-"""

dled. We aim at a perturbative expansion of the many-nucleon
Therefore, approximate many-body schemes using the sanfchrodinger equation

Hamiltonians, i.e. approximatab initio methods, also pro-

vide indispensable information. In particular approacttes

:fee (;:fonrtégltle?ai?iia?ﬁeg?;f?gy Ilrr]nt?]rig\g?f gﬁ)prr?quml ' for the translational invariant nuclear Hamiltoniah = T —
N P P ) gory, Tem + V, where we assumé to be a two-body interaction for

perturbation theory (MBPT) is one of the most powerful and " . .
widely used methods. On the one hand, the evaluation of Iowg!mpllc!ty. I_n afirst st_ep we have to chose the upper_turbed ba
orders of perturbation theory is computationally simpld aan sis, which in turn defines the unperturbed Hamiltonian. From

be done for the whole nuclear mass range [8, 9, 10, 11] atshe practical point of view, a basis of Slater-determinaots-

well as for infinite nuclear matter [12]. On the other hand, itstructed from a get of smg_le-parngle s_tates. IS most camwvien
The underlying single-particle basis will typically be arttae-

Fock or a harmonic oscillator basis—for simplicity we assum
Email addressrobert.roth@physik.tu-darmstadt.de (Robert the latter. The unpert_urbgd Hamiltonibdg is a One'_bOdy pper-
Roth) ator containing the kinetic enerdy and a harmonic oscillator

H[¥n) = En[¥n) (1)
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potential. The unperturbed Slater determingdtg) fulfill the which characterize the perturbative corrections to thereig

eigenvalue relation states|‘1’§1p)> expanded in the unperturbed basis
Holn) = &{Cn) @) P = 3" Clin e (©)
with eigenvalues, being the sum of the single-particle ener- m

gies of the occupied states. After the unperturbed Hanidton with Cgp% —0forp>0 andc@ —

I L . - ) fm = Onm:
IS f')f?d’ .the perturbation is defined through= H N Ho. This We can cast Egs. (7) and (8) into a more transparent form by
partitioning leads to the Mgller-Plesset formulation of BB

. e . . systematically introducing the amplitude$), and formulatin
and obviously other partitionings of the Hamiltonian arespo 4 y 9 b gm 9

X ) all matrix elements in terms of the unperturbed states. @r t
sible [16, 17]. For ease of presentation, we assume that th&h-order energy contribution we obtain

unperturbed state corresponding to the eigenstate wetare in
ested in is non-degenerate, as it is the case for the groated st EP - Z@”' WD) Cf]',),;l) ) (10)
of closed shell nuclei. In the case of degeneracy, as e.g. for ™
the excited states of closed shell nuclei, one would havé-to d
agonalize the full Hamiltonian in the degenerate subspade a
pick the eigenstates with the desired quantum numbers as un- 1 P ‘
perturbed states. cth= —( Z(‘Dml qu)m)Cff,}l) - Z Eﬁj)Cﬁﬂ;')). (11)
The standard Rayleigh-Schrodinger perturbation sed@s ¢ n = fm oy j=1

now be constructed based on a Hamiltonian (using the natatio L (0) ©) _
from Ref. [17]) Together withCyym, = dnm andEy” = &, these relations form a

H() = Ho + AW 3) recurs_ive set of _equations Which_uniquely determines thie pe
turbative corrections for all energies and states to akzd
Usually one would use these general expressions to derive
explicit formulae for the lowest-order corrections. The-ma
trix elements of the perturbation in the unperturbed Slater
determinant states can be evaluated explicitly and the sasmm
tions over the many-body basis set can be replaced by summa-
En(1) = Ego) + /1E§11) + /12E§12) ..., tions over single-particle states. In this way we would o
W) = |‘P§1°)> N /1|‘P§11)> NP |‘I’§12)> . (4) the standard expressions for, e.g., the second- and thilet-o

energy corrections [8, 11, 16].
In the absence of degeneracy the lowest-order contrilbgiion

Similarly we obtain for thepth-order amplitudes

containing an auxiliary expansion paramefiethat continu-
ously connects the unperturbed Hamiltonldp = H(1 = 0)
with the full HamiltonianH = H(2 = 1). The energy eigenval-
uesEn(1) and the corresponding eigenvectd#s, (1)) of H(2)
are formulated as a power seriestin

simply given by the unperturbed quantities, i.e., 2.2. Evaluation to high orders
EO = ¢, Oy = (D) (5) When attempting to evaluate the perturbative correcti@as b
n > n N

_ o _ ~yond third- or forth-order the explicit formulae for the egg
Inserting the Hamiltonian (3) and the power series (4) intocorrections become impractical because of the large nuofber
the Schrodinger equation (1) leads to the fundamentaltequa pested summations. A much more elegantway to evaluate high-

o0 order contributions makes use of the recursive structuksf
Ho [¥©)) + Z APW P+ Ho 1)) (10) and (11). The only ingredients needed are the many-body
p=1 ) matrix elements of the full HamiltoniaH with respect to the
o P 4 unperturbed basigb,). Starting from the zeroth-order cibie
= EQp0) + Z /lp( Z EY |‘*’§1p_])>) . cientsC®, = 6,m we can readily evaluate the first-order en-
p=1 j=0

ergy contributiorE!” from (10). This in turn allows us to com-

Assuming that the unperturbed states form an orthonornsé ba pute the first-order cd‘ﬁcientscﬁf,)n via (11). Generally, for the

and usin? the intermediate normalizatiol,|¥n(1)) = 1 we  evaluation of the energy contributid” only the codficients

obtain¢¥ ¥y = 0 for p > 0, which allows us to project-out chD of the previous order are required. For the evaluation of

all required information on the individual contributionsthe  he codicientsC®), all energy contributions up to orderand

power series. By multiplying Eq. (6) with}‘ﬁo)| and matching )| codficients up’ to order{— 1) need to be known.

same orders of on both sides, we immediately obtain a simple  Tgchnically, the recursive evaluation of the perturbatien

expression for theth-order energy contribution ries bears some resemblance to the Lanczos algorithm for the
EP = pOpw ey (7) iterative solution of the eigenvalue problem for a few exte

o ) Oy ) eigenvalues as it is used in the NCSM. The most significant op-
By multiplying Eq. (6) with(*¥r'| with m # nand matching  gration is a matrix-vector multiplication of the Hamiltanima-

A-orders, we obtain an expression for the amplitudes trix with the coeficient vector from the previous order, which
cP — npO)pPy constitutes the first term in the evaluation of the fo&nts
nm = (¥i’[¥n") . : :
p (11). Because the second term in (11) involves thefment
_ 1 ((‘I’Q)IWI‘I’&)_”) _ Z Eﬁ”<‘P£?N‘P%"‘”>) (®)  vectors from all previous orders, we store them for simplic-
EQ - gQ =t ity. These computational elements are the same as for aesimpl



Lanczos algorithm in the NCSM or in corresponding configura-of energy contribution&®, but this time without any sign of
tion interaction (Cl) approaches, therefore, an implemtiorn ~ convergence. The absolute value of the individual energy co
of high-order MBPT using NCSM or Cl technologies is straightrections does not decrease with increasing order, it evenwsh
forward. However, since the computational elements are tha slightly increasing trend. Hence even in the simplest,dhse
same, so are the computational limitations: This directlémp “He ground state, the convergence of the perturbation series
mentation of high-order MBPT is limited to the same modelnot guaranteed.

spaces and particle numbers as the full NCSM. This is not a The situation is even more dramatic f§O or “°Ca as de-
concern for the present study, but for an application of MBPTpicted in Fig. 1(b) and (c). In all cases the size of the pbaur
beyond the domain of the NCSM one has to resort to other evative energy contributiond®)| growsexponentiallywith p. The

uation schemes. partial sumEg,{p) exhibits a strong oscillatory behavior with
increasing amplitude. Only the lower orders, typically op t
2.3. Applications?He, %0 and*°Ca 10th order for'®0 and up to 5th order fd°Ca, lead to binding

As examples for a direct application of high-order MBPT energies in a physically meaningful energy range. At thé 30t
we consider the ground-state energiesldé, 1°0, and*°Ca.  order the perturbative contributions are in the order dinev
Throughout this work we use an intrinsic Hamiltonian with for °0 and 18 MeV for “°Ca—this is beyond any physical en-

a soft two-nucleon interaction that is derived from the ghir ergy scale present in the nuclear many-body problem. We were

N3LO potential [1] via a Similarity Renormalization Group not able to find a convergent scenario by varying the oseillat

(SRG) transformation [18, 19, 20]. The final flow parame-frequency or the model space size or truncation for theskenuc

ter for the SRG evolution of the interaction ds = 0.02 fntf* The explosion of the perturbative corrections beyond any

which corresponds to a momentum scalefof= 2.66 fm 2. meaningful energy scale suggests a principal mathematical

This choice for the flow parameters leads to a unitarily transproblem in the representation of the energy eigenvelUg as

formed interaction which is sficiently soft to warrant excel- a partial sum of a simple power series (4) .

lent convergence properties with respect to model spaedrsiz

the_ NCSM but at the same time yields gr(_)und-stafte ene_rgieg Pack approximants

which are in reasonable correspondence with experimehein t

mass-range considered here. To allow for a direct compariso3.1. Formalism

with exact NCSM calculations for the same Hamiltonian and

the same model space, we useNap1Q2 model space also for

the MBPT calculations. We have confirmed, however, that al

conclusions regarding the performance and limitationshef t

M?nP-Lizppjrovf\i/ghsduomnrﬁ;?iigetr;]deOrneg:jllispi?l;ﬁlagrgl’;?j;)e/.-or determs of a rational functio_n composed of separate powegseri
' . for numerator and denominator

MBPT calculation up to 30th order for the ground state energy

Prompted by the drastic failure of a partial sum of a simple
Power series to describe the eneigf) at the physical point

A = 1 one might consider more general expansions of this func-
tion. A next step would be an expansion of the endggy) in

of the three nuclei. FotHe the calculations were performed in A())  ag+agd+apd?+ ...

a 1:Q model space, fol®0 in 6rQ, and for*°Ca in 42.Q, each E(1) = B() bo+bid+bpl2+. .. (13)
with two different oscillator frequencié®. The partial sum of

the perturbative energy contributions up to orger Obviously we will not attempt to re-derive perturbationdhe

) for this type of expansion. The above is useful only, if weldou
, use the information contained in the standard MBPT energy
Esun(P) = Z B, (12 contributionsE® to construct this rational expansion.

p=0 Exactly this is achieved through the Padé approximants [21
is depicted in upper row and the modulus of the individutal ~ 22]. Given a power series (4) of the functi@{l), then the
order contributions|E(®)|, on a logarithmic scale in the lower Padé approximant
row. Here and in the following we omit the index= 0 for 5 "
convenience. [M/N](1) = A+ ad+ &A%+ +awd (14)

Already the first glance at Fig. 1 reveals a fundamental prob- bo + by + bA2 + - + by AN

lem with the convergence behavior of the perturbation serie
For“He, as depicted in Fig. 1(a), we observe twiatient pat-
terns depending on the oscillator frequency. Far= 20 MeV
the partial sumEsy(p) shows an alternating behavior with a
systematically decreasing amplitude. Beyond 10th order on M4N+1
might consider the perturbation series converged and thdtre E(1) = [M/N](1) + O(4 ) (15)
ing energy is in excellent agreement with the result of an MCS From this definition one can immediately construct a coupled
calculation with the same Hamiltonian in the same modelspac system of equations that determines thefitoents a, and
However, a change of the oscillator frequency destroyspibis by, of the Padé approximant from a given set BP with
ture. ForhiQ = 32 MeV, where the NCSM provides a lower p = 0,...N + M. An alternative and more elegant form
ground-state energy, we again observe an alternating segue [21, 22] relates the Padé approximants to determinants@f t

3

with numerator being a polynomial of order and the denomi-
nator a polynomial of orde is constructed such that its Taylor
expansion reproduces the fitdt+ N orders of the initial power
series, i.e.
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Figure 1: Contributions to the ground-state energies in MBP to 30th order for dierent nuclei and model spaces: the in a 12:Q model space witthQ = 20
MeV (e) and 32 MeV @); (b) 10 in 6rQ with KQ = 20 MeV (s) and 24 MeV @); (c) *°Ca in 41Q with AQ = 20 MeV () and 24 MeV @). The upper
panels depict the partial suBy,m(p) defined in Eq. (12) as function of the largest orgethe lower panels the modulus of the individual contribugi&(? on a
logarithmic scale. The dashed horizontal lines in the uppesels indicate the NCSM ground-state energies for theeotisp nuclei and model spaces.

(N + 1) x (N + 1) matrices containing directly the power-seriesfor 1 > 0 as well as a whole set of related inequalities [21, 22].
cogficientsE® Thus the diagonal and the super-diagonal Padé approxmant
provide upper and lower bounds for the full enefgfn), re-

E(M—N+1) E(M—N+2) . E(M+1) | | h h . )
EM-N+2) E(M-N+) L Eme) spectively. Eurt ermore, these boqnds improve monotbpica
with increasing ordeM of the Padé approximant. Unfortu-
: : . : nately, it turns out that the power series we start from isanot
EM EM+1) e EMEN) Stieltjes series in general.
M-N . M-N+1 . M o
Z E(I)/lN+I Z E(l)/lNJrl—l . Z E(I)/ll ) .
[IM/N]() = —=° =0 =0 3.2. Applications?He, 0 and*’Ca
EM-N+1)  EM-N+2) . E(M+D) i ) ]
EM-N:2)  E(M-N:3) L E(M+2) Using the results of the order-by-order calculation of the e
ergy correction€€® up to 30th order of MBPT we can con-
: : . : struct all Padé approximants with+ M < 30 from Eq. (16).
E‘:"') E(:"'*l” coo EMN) Evaluating the approximant dt= 1 yields an estimate for the
1 2 e 1 (16) ground-state energy of the perturbed system
where we seE(P = 0 for p < 0. We will use this form to Epacd M/N) = [M/N](1 = 1). (18)

evaluate various Padé approximants in the following.
Before considering numerical results, we should like to menWe will focus on the diagonal Padé approximdEizqd M/M),
tion a few formal properties of the Padé approximants thaaind the super- and sub-diagonal approximdtigsd M — 1/M)
are of importance for the present application. The mathematndEp,q{M/M — 1), respectively, because of the convergence
ical foundation for using Padé approximants for our puepos and boundary theorems available for those.
in the first place is provided by the Padé conjecture (simpli A collection of all diagonal as well as sub- and super-
fied) [21, 22]: LetE(1) be a continuous function fgr| < 1,  diagonal approximants with + M < 30 for*He, 10, and*°Ca
then there is an infinite subsequence of diagonal Padé epprousing the oscillator frequencies that yield the lowest gdbu
imants N/N](2) that forN — oo converges locally uniformly  state energy is provided in Fig. 2. The first remarkable ob-
againstE() for |1] < 1. For our application the continuity re- servation is that the Padé approximants converge verklyuic
quirements for the functio&(1) are always fulfilled, thus we for sufficiently large order—we have observed this behavior in
expect the diagonal Padé approximants to show a convezgenall cases we considered. For+ N > 10 essentially all Padé
behavior—unlike the simple power series. approximants provide the same ground-state energy. We em-
Additionally the Padé approximants have a number of spephasize that the input for the construction of those Padé ap
cific properties that would be extremely valuable in the enés  proximants are the exponentially diverging fiagents from the
context. If the power series expansionk(fl) is a Stielties se- power-series formulation of MBPT discussed in Fig. 1. The

ries, then the Padé approximants fulfill the condition Padé resummation of these tlogents dficiently regularizes
these divergencies and leads to exceptionally stabletsefsul
[M/M](2) = E(Q) = [M — 1/M](1) (27) allordersM + N = 10.
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Figure 2: Padé approximants for the ground-state eneofiig “He, (b)1°0, and (cf*°Ca as function of the summed orddr+ N. The diferent symbols represent
the diagonal approximantpaqd M/M) (e), the super-diagonal approximars,qdM — 1/M) (#), and the sub-diagonal approximais,qgdM/M — 1) (A). The
model space sizBmax and the oscillator frequendy< is quoted in the individual panels. The dashed horizomaislindicate the NCSM ground-state energies for
the respective nuclei and model spaces.

The second important observation results from the compariwithin a set of approximants of neighboring order reduce sys
son of the converged Padé approximamtith the exact energy tematically. At the same time the deviations of the partians,
eigenvalue obtained from a solution of the matrix eigenalu AEgu(p), Start to increase exponentially.
problem for the Hamiltonian in the same model space—i.e., The stability of the Padé approximariEs,q{M/N) across
from the corresponding NCSM calculation—as indicated ley th various neighboring order8! and N is an important intrin-
dashed horizontal line in Fig. 2. The converged Padé approxsic criterion for convergence and for the accuracy of theePad
mantsexactlyreproduce the corresponding energy eigenvaluesapproximants as compared to the exact result. Therefore, it
i.e., Padé resummed perturbation theory and the exadi@molu seems advisable to always consider sets of several approxi-
of the eigenvalue problem become equivalent. mants. Moreover, there is always the possibility that irtlial

A guantitative comparison is presented in Tab. 1, where thapproximants completely escape the general trend, sudteas t
difference of the partial sunBs,(p) and the Padé approxi- Epacd2/2) approximant fof°Ca athQ = 20 MeV that has a
mantsEpagd M/N) to the exact NCSM eigenvaluéscsy are  large positive and thus unphysical value. These cases @e ar
shown. The latter were obtained using theréine shell-model  minder that the convergence theorems for Padé approxémant
code [23]. Starting fronM + N ~ 10 the deviations of the Padé e.g., the Padé conjecture, only cover subsequences obappr
approximants from the exact result are getting very small animants. Finally we note that the MBPT power series in the
starting fromM + N ~ 20 the Padé approximants are numeri- present examples turns out not to be a Stieltjes series. és th
cally identical to the exact result for all nuclei. In thiggjime  Padé approximants of Tab. 1 show, the inequality (17) akasel
the individual MBPT contribution&® are already increasing related inequalities are not fulfilled. The Padé approxitaéor
exponentially fort0 and*°Ca (cf. Fig. 1) and the partial sum the ground state energy on nuclei in the present MBPT frame-
Esum(p) does not provide any sensible estimate of the groundwork do not provide rigorous bounds for the exact eigenvalue
state energy. The Padé approximants prove to be a highly ef-
ficient tool to extract a virtually exact and stable resuittfee
energy from the first 10 or more cfieientsE® of the strongly
fluctuating and non-converging power series. Considetieg t
scale of the order-to-order fluctuations and the absolatec
the perturbative contributiorP the stability and the precision ) f closed-shell lei usi listic Hamiltosiart
of the converged Padé approximants is truly remarkable. ergies of closed-snetl huciel using reafistic Hamitosarin

S . . contrast to typical applications of MBPT in nuclear physfeat

For application purposes, the behavior at low ordersis alsq__ . .

. : L are limited to second or third order, we extend the order-by-
of interest. As shown in Tab. 1, the deviatiohEg,(p) and . . . .

. : order evaluation of the perturbation series up to 30th asgigig
AEpagd M/N) are of comparable magnitude up to about fifth or- _ . . o )
. ; . s a simple recursive scheme. In order to facilitate the compar
der, both showing sizable fluctuations. Hence, in this lodeo . : . . .
with exact eigenvalues obtained in NCSM calculations, weha

domain the Padé approximants do not improve on the resulﬁs . . . . .
. . . imited ourselves to an harmonic-oscillator single-pAetbasis
obtained from a simple partial sum. Only beyad¥id+ N ~ 5

. ; . N and aNnaxhQ space. However, results for other single-particle
do the Padé approximants start to converge, i.e., theticaréa max b . €1 single-pa
bases and model-space truncations are qualitativelyagimil

Our major results and conclusions are: First, a simple par-
IHere, the term convergence refers solely to the convergeitberespect tial sum of the perturbauve SEriesin general does not ageve

to the ordeM + N and not to convergence with respect to the model-space siz&2N th? cqqtrary, we typlc_ally obs_ervg an exponential InEgea
Nmax, Which is a separate issue. of the individual perturbative contributiofs(®| and an oscilla-

4. Conclusions & Outlook

We have formulated and applied many-body perturbation
theory up to high orders for the description of ground-staie




Table 1: Large-scale MBPT results for the ground-statecggeenf*He, 160,
and“°Ca. Shown are the exact NCSM energies for the respective Impdee
and the deviations of the partial sumdsym(p) = Esum(p) — Encsm, as well
as the deviations of various Padé approximafi;aqd M/N) = Epagd M/N) —
Encswm. All energies are given in units of MeV.

imants generally do not yield an improved approximation for
the energy. Their deviations from the exact eigenvaluedluct
ate and are of the same order of magnitude as the errors of the
corresponding partial sums. If one is limited, for compiotal
reasons, to very low orders, then the version of MBPT useel her

7 15 a0 i . . o
N 12He 12 60 6 4ca 4 can only provide a rough estimate that mightati significantly
max .

hQ [MeV] 20 32 20 24 20 24 from the (_ax_a_ct elger_walue.
EncsMm -26.561 -27.194 -108.33 -109.81 -320.37 -294.19  These initial studies open a number of new avenues for the
AEsumE]-; +12.865 +20.320 +38.05 +52.39 +47.62 +83.50 study and application of MBPT in nuclear structure. Beyond
AEsum(2 -3.691 -6.695 -26.33 -31.92 -53.68  -90.55 . L
AEam(3) 1988 15896 4451 4464  +883 1100 the MBPT _calculatlons pr.esented here., one can use optimized
AEsum(4) 0429 -2.853 +14.84 +14.24 +80.27 +187.51  Single-particle bases and improved partitionings of thena-
AEsum(5) +0.341 +3.651 -14.13 -10.88 -96.18 -131.81 nian to influence the convergence behavior of a finite orger-b
iEsumE% -8-;?2 '22-&975 2;5927 21'99-31 3;3%%13(')05 98-55%%15 order MBPT calculation. Furthermore, one can exploit idini

sum +0. +2. +22. +21. +395. +985. : : _ P -
AEo(®) 0156 0896 -1068 842  -44.781124.02 partl_al summatlons,_ e.g., ladder- or ring-type summatm_ns
AEeum(9) +0.070 +0.674 -22.87 -18.37 -1270.07 -5523.29 cluding MBPT contributions from all orders, and comparerthe
AEsum(10) +0.005 +0.433 +34.16 +23.47 +1500.66 +270.84  quality to Padé resummed finite-order calculations. These
ABpagdl/1)  -6.031 -10.941 -32.04 -40.39  -57.68 -100.93 provementsand extensions will be the subject of futureistud
AEpqgd1/2)  +2.274 +7.759 +6.94 +861 +10.76 -5.94
AEpagd2/1)  +0.136 +1.894 -562 -6.41  -15.03  -35.95
AEpagd2/2)  +0.009 +0.680 +14.93 +13.06 +3115.69 -193.45
AEpqgd2/3)  +0.108 +0.892 +8.19 +9.19 +29.10 +61.98 Acknowledgments
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