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Abstract. We present a novel approach for the treatment of realistic nucleon-
nucleon interactions in nuclear many-body systems. A unitary correlation oper-
ator is used to explicitly introduce short-range central and tensor correlations in
many-body states. The correlated interaction is used as an effective interaction
in nuclear structure calculations. Results for Lithium isotopes including proton
and neutron distributions, radii as well as magnetic moments and quadrupole
moments are shown. Molecular resonances in the 16O-16O system are given as
a first application in reaction theory.
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1. Nucleon-Nucleon Interaction

Realistic interactions that fit the nucleon-nucleon scattering data like the Argonne
and Bonn interactions possess a strong repulsive core and a strong tensor force
that lead to strong short-range correlations in the many-body wave function. These
correlations can not be described with the simple many-body states of a mean-field
or shell model approach. An explicit treatment of the short-range correlations is
necessary. Well known methods are the G-matrix as used for example with the
Coupled-Cluster Model or the Lee-Suzuki transformation as used in the No-Core
Shell Model (see contributions in these proceedings). Another recent approach is
the Vlowk [1] that uses renormalization group arguments to derive a low-momentum
interaction. All these approaches are formulated either in a shell model basis or in
momentum space. In contrast the Unitary Correlation Operator Method (UCOM)
[2–4] is formulated in coordinate space and allows us to give explicit expressions for
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Fig. 1. Two-body density of 4He ρ(2)(r) in the S = 1, MS = 1, T = 0 channel
as a function of the distance r of two nucleons. On the left the uncorrelated
two-body density of the trial state is shown. In the middle the central correlator
has shifted the nucleons out of the repulsive core into the attractive region of the
potential. On the right the tensor correlator has achieved an alignment of the
density with the spin of the two nucleons as energetically preferred by the tensor
interaction.

the correlated (effective) interaction. The basic idea of the UCOM is to introduce
the short-range correlations in the many-body explicitly by means of an unitary
correlation operator C = Cr · CΩ that is the product of a central correlator Cr

and a tensor correlator CΩ. If the correlation operators are not applied onto the
states but onto the operators we obtain correlated operators, e.g. the correlated
Hamiltonian C†HC that can be regarded as an effective interaction.

The central correlator Cr =
∑

i<j exp
{

−s(rij)prij

}

moves nucleons ij pairwise
apart from each other. This is achieved by using the radial part of the relative mo-
mentum pr of the nucleons and a distance dependent shift function s(r). The tensor
correlator CΩ =

∑

i<j exp
{

− 1
2θ(rij)(σ1 · pΩij)(σ2 · rij) + 1 ↔ 2

}

is constructed us-
ing the orbital part of the relative momentum of two nucleons pΩ = p − r

r pr and
performs shifts perpendicular to the distance vector of the nucleon pair as indicated
in Fig. 1.

The parameters of the correlation operators are fixed in the two-body system
by a variation with respect to the correlation functions s(r) and θ(r) in each spin-
isospin channel. The correlated interaction is a momentum-dependent soft interac-
tion that can be used directly with simple many-body states. Its matrix elements
in momentum space are almost identical to those of the Vlowk .

Unfortunately it is not enough to treat the nuclear interaction and the correla-
tions on the two-body level. In our many-body calculations we will use the corre-
lated interaction in a two-body approximation where contributions from three-body
correlations are omitted. We also have not included genuine three-body forces in
our approach yet. To simulate the effects of these missing parts of the interaction
we introduce a two-body correction term (that contributes about 15% to the total
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potential) to the interaction that consists of a central momentum-dependent and a
spin-orbit part and is fitted to reproduce in the structure calculations the binding
energies and charge radii of 4He, 16O and 40Ca and binding energies of 24O, 34Si
and 48Ca. For 16O and 40Ca tetrahedral α-cluster configurations are used, all other
nuclei are treated as spherical closed-shell configurations.

2. Many-body Approach

The nuclear many-body states in Fermionic Molecular Dynamics (FMD) [4, 5] are
given by Slater determinants

∣

∣Q
〉

= A
{∣

∣ q1

〉

⊗ · · · ⊗
∣

∣ qA

〉}

(1)

with Gaussian wave packets for the spatial part of the single-particle states

〈

x
∣

∣ q
〉

=
∑

i

ci exp

{

−
(x − bi)

2

2ai

}

⊗
∣

∣χ↑
i , χ

↓
i

〉

⊗
∣

∣ ξ
〉

. (2)

The spin is given by the spinor
∣

∣ χ↑
i , χ

↓
i

〉

, the isospin
∣

∣ ξ
〉

can be either proton or
neutron. Minimizing the intrinsic energy expectation value of the Slater determi-
nant

min
{qk}

〈

Q
∣

∣Heff − Tcm

∣

∣ Q
〉

〈

Q
∣

∣Q
〉 (3)

with respect to all the single-particle parameters provides the intrinsic state of the
nucleus.

2.1. Restoration of Symmetries

This minimization corresponds to a mean-field calculation in our basis and may
yield intrinsic states that violate the symmetries of the Hamiltonian. We perform
projections on total momentum, parity and angular momentum to restore the trans-
lational and rotational symmetry and the symmetry under parity transformation.
We therefore obtain from a single intrinsic state

∣

∣ Q
〉

projected states

∣

∣Q; JπMK
〉

= P J
MKP πPP=0

∣

∣Q
〉

. (4)

If the intrinsic state has no axial symmetry we need to consider K-mixing and
have to diagonalize the Hamiltonian matrix. The projections are implemented in a
straightforward manner as the FMD Slater determinants can be moved and rotated
without difficulty.

2.2. Variation after Projection and Multiconfiguration Calculations

For the often strongly deformed and clustered nuclei of the p- and sd-shell the ef-
fects of the projection can be large. In principle a Variation after Projection should
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be performed. As this is quite costly we do this explicitly only with respect to
the parity projection. Beyond that we generate sets of intrinsic states that are ob-
tained by minimizing the energy under constraints on collective variables like dipole
moment (Helium isotopes), quadrupole moments (Lithium, Beryllium, Carbon iso-
topes) or octupole moments (Carbon isotopes). We can then study the projected
energy surface as a function of the external constraints. The different intrinsic
states can also be used to perform multiconfiguration calculations by diagonalizing
the Hamiltonian in this many-body basis

∑

bK′

〈

Q(a)
∣

∣ HP J
KK′P πPP=0

∣

∣ Q(b)
〉

c
Jπ(i)
bK′ =

EJπ(i)
∑

bK′

〈

Q(a)
∣

∣ P J
KK′P πPP=0

∣

∣Q(b)
〉

c
Jπ(i)
bK′ . (5)

The eigenstates
∣

∣Ψ; JπM(i)
〉

=
∑

bK′

∣

∣Q(b); JπMK ′
〉

c
Jπ(i)
bK′ (6)

of the Hamiltonian are then linear combinations of projected Slater determinants.
This improves the description of the ground state and is in general necessary to
describe states that do not belong to a ground state (rotational) band.

We also observe that the structure of a nucleus is related to the strength of the
spin-orbit force. A weak spin-orbit forces favors cluster structures while a strong
spin-orbit force usually leads to shell model like structures. As the effects of the
angular momentum projection are usually more pronounced for clustered nuclei the
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Fig. 2. Cuts through the proton- and neutron densities of intrinsic states with
minimum energy obtained in the FMD calculations.
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strength of the spin-orbit force can be used as a generator coordinate. The final
projected energies are of course always calculated with the same interaction.

3. Nuclear Structure

In this section we illustrate the use of the FMD for the structure of Lithium isotopes.
Calculations for Helium, Beryllium and Carbon isotopes have been presented in [6].
We use the quadrupole deformation and the strength of the spin-orbit force as
generator coordinates and create sets of six intrinsic states for each isotope. In
Fig. 2 the intrinsic states with the lowest projected energies are shown. Obviously
the intrinsic states are not parity or angular momentum eigenstates. 6Li and 7Li
are to a large extend of α - d and α - t structure. This can be verified by calculating
the overlap with Brink type cluster wave functions. For the heavier isotopes 8Li and
9Li the filling of the p3/2 neutron orbitals leads to more shell model like structures.
This effect can also be observed in the calculated quadrupole moments and charge
radii as shown in Tab. 1.

4. Reactions

The FMD basis is also very well suited for doing reaction theory. The possibility to
localize wave packets allows us to construct Brink type cluster model wave functions
as FMD many-body states. These cluster model wave functions are used in the
asymptotic region to define proper asymptotics for the formulation of the boundary
conditions. In the internal region we can use for example adiabatic configurations in
addition to the cluster wave functions. We can directly use our effective interaction
which provides a good description of nuclear structure properties in the reaction
theory.

As a first example we have calculated molecular resonances in the 16O-16O

Table 1. Experimental and calculated properties of Lithium isotopes.

Jπ EB [MeV] µ [µN ] Q [e2fm4] rmatter [fm] rcharge [fm]
6Li FMD 31.42 +0.85 +0.08 2.44 2.58
1+ Experiment 31.995 +0.822 -0.083(8) 2.32(3) 2.55(3)
7Li FMD 39.26 +3.25 -3.61 2.40 2.42
3/2− Experiment 39.245 +3.256 -4.06 2.33(2) 2.40(5)
8Li FMD 40.16 +1.73 +2.76 2.42 2.37
2+ Experiment 41.277 +1.654 3.17(4) 2.37(2)
9Li FMD 44.36 +3.48 -3.22 2.43 2.30
3/2− Experiment 45.341 3.439 2.78(8) 2.32(2)
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reaction where we used angular momentum projected GCM many-body states
∣

∣ ΨJM (R)
〉

= P J
M0

∣

∣ Ψ(R)
〉

(7)

with
∣

∣Ψ(R)
〉

= A
{∣

∣

16O;
1

2
R

〉∣

∣

16O;−
1

2
R

〉}

(8)

In the asymptotic region a transformation in the corresponding RGM wave function
is performed and Gamov boundary conditions (purely outgoing Coulomb wave) are
assumed for the relative motion of the nuclei. With this boundary conditions we
solve the Schrödinger equation in the interaction region. The complex eigenvalues
of this eigenvalue problem directly give resonance energies and widths. In Fig. 3
the first two calculated molecular bands are shown.
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Fig. 3. Molecular resonances in the 16O-16O system calculated in the FMD
framework. Gray bars indicate the calculated widths. The experimental data
show a good agreement for low angular momentum with the calculated reso-
nances. For higher angular momentum a stronger mixing with the ground state
band of 32S is expected but not yet included in the FMD calculation.
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