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Introduction

Stating the nuclear many-body problem is deceptively simple - “calculate the properties
of a complex nucleus consisting of Z protons and N neutrons from the nuclear inter-
action”. As with most simple statements in physics, the solution of the corresponding
problem proves to be difficult.

There are two major problems we have to face when we want to treat the nucleus
in quantum mechanics. First, it consists of too many particles to solve the Schrödinger
equation exactly. Second, the nuclear force has a very rich and complex operator struc-
ture, and the constraints imposed by experimental observations are not strong enough
to discern between different models. Low-energy data, like phase shifts obtained from
the analysis of nucleon-nucleon scattering, only depend on the on-shell properties of the
interaction, so models with considerable off-shell differences will reproduce them equally
well. In nuclei or nuclear matter, on the other hand, only the total four-momentum is
conserved, hence many interactions will be between half-on-shell or off-shell nucleons,
and therefore the various models arrive at different predictions. A well-known manifes-
tation is the Coester line in nuclear matter calculations, where practically all employed
nucleon-nucleon interactions lead to different results for the nuclear matter saturation
point. This would be helpful to decide which model is correct, if there was not the
problem that (at least in nonrelativistic calculations, see the review [1]) all predictions
are well apart from the values derived from experimental observations.

Quantum Chromodynamics (QCD) has been established as the microscopic theory
of the strong force, describing the interaction between quarks by the exchange of gluons.
On a conceptual level, nucleons are the relevant degrees of freedom in the low energy
regime, and the forces that bind them together in a nucleus are residual in nature,
i.e., the structure of these interactions is very involved. Furthermore, aside from the
sheer number of particles involved, there are two inter-related properties of QCD which
effectively prevent us from tackling the derivation of these residual forces — quark con-
finement and the asymptotic freedom of the theory, i.e., the breakdown of perturbative
treatments at the low energy scales relevant for nuclear physics.

In the past decade, there has been considerable effort to make contact between
nuclear physics and QCD in the framework of effective field theories (EFTs). Work
undertaken along this direction has recently produced a very promising nucleon-nucleon
potential derived from chiral perturbation theory (χPT) [2].

Parallel to the theoretical efforts of the past decades, several so-called realistic po-
tential models were developed. Starting from varying degrees of theoretical development
like meson theory or simple invariance considerations, the current generation of these in-
teractions describes nucleon-nucleon scattering data and deuteron properties with very
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high precision. The good description of low-energy observables comes at a price, how-
ever — all high-precision models have typically 30 – 50 free parameters which are used
to fit the experimental data. Nevertheless, these potentials provide a good starting
point for nuclear structure calculations, for which a host of powerful techniques like
Green’s Function Monte Carlo (GFMC) have been developed over the years. The sheer
computational effort has thus far limited these calculations to nuclei with A ≤ 12 [3].

Methods used in nuclear structure calculations have to cope with two important
properties of the realistic nucleon-nucleon interactions — the existence of a repulsive
core, and tensor forces. Unfortunately, this rules out the use of standard mean-field
approaches, because the Slater determinants used in Hartree-Fock and similar schemes
cannot model the correlations induced by these effects. In order to employ the realistic
NN -potentials in mean-field calculations, the Unitary Correlation Operator Method
(UCOM) has been developed [4, 5, 6, 7], which yields good results with relatively low
computational effort.

A recent development from the application of renormalization group (RG) techniques
to the realistic nucleon-nucleon interactions is the Vlow-k potential [8], which represents
the NN -interaction in the low-momentum regime. Since the treatment of central and
tensor correlations by means of UCOM amounts to a separation of momentum scales,
the two methods are conceptually alike and give very similar results, although there is
no one-to-one correspondence.

The correlated interactions constructed by applying unitary correlation operators to
realistic interactions contain three- and higher many-nucleon forces, which are (presently)
neglected in order to implement the correlated potentials in many-body calculations.
One of the main issues addressed in this work is the construction and discussion of sev-
eral phenomenological two-nucleon corrections to replace these missing many-nucleon
contributions.

In chapter 1, realistic NN potentials are reviewed, with emphasis on the Argonne
[9] and Bonn potentials [10, 11, 12], which are used for nuclear structure calculations in
the present work, and the recent chiral potential model of Entem and Machleidt [2].

Chapter 2 introduces the unitary correlation operator method (UCOM). It is shown
how unitary correlation operators provide a way to introduce central and tensor corre-
lations into simple many-body model states of Slater determinants, making it possible
to combine a computationally affordable model space with realistic NN interactions.

Fermionic Molecular Dynamics (FMD) [13, 14], the model used for the nuclear struc-
ture calculations, is summarized in Chapter 3. The violation of symmetries in mean-field
models is also discussed, considering translational and rotational invariance as examples.
The restoration of the latter is achieved by angular momentum projection techniques
[15], which are described in detail.

Central and tensor correlation operators for the Argonne V18 and Bonn-A poten-
tials are presented in Chapter 4, along with the correlated interactions themselves.
Several modifications, both on a global and a nucleus-by-nucleus basis, are constructed
to improve the agreement of the groundstate properties of nuclei up to A = 60 with
experimental data.

The final versions of the modified interactions are subsequently used to perform
nuclear structure calculations for selected nuclei in Chapter 5. The impact of the mod-
ifications on the density distributions and spectra is critically examined.
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Chapter 6 summarizes the results of this work, and ends with an outlook.
Appendix A lists important UCOM formulas for reference. Calculations of basic

correlated operators are performed in detail, to illustrate the method. Appendix B
serves as a reference for the partial-wave analysis of the NN interactions, in particu-
lar the derivation of matrix elements between angular momentum eigenstates in (LS)J
coupling, and the decomposition of Cartesian tensor operators into irreducible compo-
nents. In Appendices C and D, we provide the parameters of the correlators and the
parametrizations of the correlated interactions for use with the FMD code. Finally,
Appendix E summarizes the notation used for vectors, operators and coordinates, as
well as the conventions employed for, e.g., Clebsch-Gordan coefficients and common
functions.



Chapter 1

Realistic Nucleon-Nucleon
Potentials

1.1 A Brief Historical Overview

Chadwicks discovery of the neutron in 1932 [16] marks the birth of nuclear physics, and
the problem of determining the force responsible for binding the nuclei has been at the
center of the field ever since. The first rather fundamental attempt to explain the nature
of the nuclear force was Yukawa’s meson theory, published in 1935, and reformulated in
the framework of quantum field theory (QFT) two years later.

In the following years, several authors considered other meson fields in addition to
Yukawa’s scalar particle, leading to the so-called mixed-meson theories, which produced
force models with rich operator structures. However, most physicists at the time believed
that the fundamental nuclear force would in the end turn out to be given by some simple
law, just as for the Coulomb force and gravitation. Experiment would prove them wrong
– over the years, it became clear that no simple model would be able to explain the
observed phenomena.

When the pion was finally found in cosmic rays in 1947 and shortly thereafter in the
Berkeley cyclotron lab, Yukawa was awarded the Nobel prize in 1949. The discovery
of the strongly interacting meson motivated theoretical efforts to describe the nuclear
force by the pion alone, treating it as the quantum of the strong interaction in anal-
ogy to the photon in Quantum Electrodynamics (QED). While the one-pion exchange
(OPE) became experimentally well-established as the long-range part of the nuclear
force, the two-pion exchange, considered to be the source of an intermediate attractive
part, evolved very much in the other direction, producing calculations which deviated
from experiment by orders of magnitude.

During the 1950s, another line of research was begun, though, which had far more
modest goals, and proved more successful - it was the attempt to give a simple phe-
nomenological description of the nuclear potential, with data from NN scattering ex-
periments being its basis. Such a model can be used as input for nuclear structure
calculations, and serve as a reference point for comparisons with models founded en-
tirely on theory. The most general form of a nonrelativistic potential can be derived
from invariance considerations (e.g., Galilei-invariance). Using a set of such invariant
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2 CHAPTER 1. REALISTIC NUCLEON-NUCLEON POTENTIALS

operators, Gammel and Thaler constructed the first quantitative NN potential ever,
which may well be considered the ancestor of today’s realistic phenomenological poten-
tials. The Gammel-Thaler potential introduced a hard core region at small distances to
account for the sign change of the 1S0 phase shift at laboratory energies above 250 MeV.
Improved phenomenological potentials were constructed in the following years, most no-
table among them Reid’s hard- and soft-core models, one of which became the most
frequently used potential in nuclear structure calculations in the 1970s.

The attempt to model the nuclear force as a pion-exchange QFT, on the other
hand, was considered a failure in the 1960s, for reasons which are clear nowadays —
the crucial impact of chiral symmetry on pion dynamics was not known at the time. In
light of the phenomenological experience with the nucleon-nucleon interaction, Breit and
others revived theories using additional mesons which had been shown to predict these
features. The subsequent discovery of heavy mesons like the ρ in Brookhaven and the ω
in Berkeley, both in 1961, sparked new developments, the first of which were the so-called
one-boson exchange (OBE) models. These models are based on Yukawa’s theory, but
in addition they take advantage of the observation that groups of mesons are correlated
due to the strong interaction between them. Uncorrelated multi-pion exchanges were
neglected altogether, creating a certain unease in their application. Nevertheless, OBE
models are preferable for pragmatic reasons – OBE evaluation is straightforward, and
the NN data can be described reasonably well with very few parameters, i.e., meson-
nucleon couplings and vertex cutoffs, which therefore acquire, at least in principle, a
physical meaning.

Work to derive the nuclear force proceeded along the lines of dispersion and field
theory, and accidentally, most of it was done in two European capitals, Paris and Bonn,
the results being the Paris potential ([17] and Sect. 1.5.1), published in 1980, and the
Bonn full model ([10] and Sect. 1.2), published in 1987.

The Paris and Bonn potentials, along with the meson-theoretic Nijmegen potential
(Sect. 1.5.2) and a series of phenomenological interactions constructed by the Argonne
(Urbana and Argonne series, see Sect. 1.3) group, came to be known as the ”realistic po-
tentials” in the 1990s. They describe phase shifts and other low energy observables with
high precision, and are therefore considered good starting points for nuclear structure
calculations. However, even nuclear many-body calculations combining these interac-
tions with the most powerful techniques like the quasi-exact Green’s Function Monte
Carlo (GFMC) method show a shortcoming of these models — their inherent lack of
genuine three- or higher many-nucleon forces, due to their construction from phase shift
data, i.e., two-nucleon scattering. This issue remains unresolved to the present day —
several models for 3N -forces have been proposed and employed in calculations, but their
free parameters are ultimately not much more than additional fit parameters. A way
to address this and other problems of the realistic potentials would be the derivation of
the NN -interaction, including many-nucleon-forces, from first principles.

Nowadays, QCD has been established as the microscopic theory of the strong inter-
action. The force responsible for binding a nucleus together is a mere residual effect of
the more fundamental quark-gluon interactions, and for this reason, the chance of ever
deriving it directly from QCD are considerably slim. The problem is exacerbated by the
non-perturbative character of QCD at low energies. Although some QCD-inspired the-
ories like the Skyrmion or constituent quark cluster models were developed, they are at
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heart still phenomenological like the meson theories since they are modeled after QCD,
not derived from it. In addition, only the quantitative features of the nuclear force are
predicted correctly, while the qualitative results are poor – hence they are the exact
opposite of the high-precision potentials, which are partly based on phenomenology but
yield good results.

1.2 The Bonn Model and Derived Potentials

The full Bonn model [10] is a field-theoretic meson-exchange model for the nucleon-
nucleon interaction. Starting from a Lagrangian which contains nucleons, mesons (see
below) and the ∆-isobar, the Bonn group evaluated a wide range of diagrams in time-
ordered perturbation theory (as is usual in many-body physics), from one-boson ex-
changes to 3π- and 4π-diagrams with and without intermediate isobars. The Bonn
model exhibits sensitive cancellations between different types of diagrams, and the 3π
and 4π contributions decrease in size in a way that indicates convergence of the per-
turbation series. Several of the small effects are dropped in the process of constructing
potentials since it involves further approximations and, of course, fitting to data.

The model includes six mesons below 1 GeV: π, η, σ′ (2π-s-wave resonance), ρ, ω, δ.
Other mesons of similar mass are dropped either because of their strange-quark content,
which means that their coupling to the nucleon is suppressed by the Okubo-Zweig-Iizuka
(OZI) rule, or because their range would be below the vertex cutoff ranges employed
to account for the extended substructure of the hadrons. The Lagrangian thus contains
three types of basic couplings, for pseudoscalar, scalar, and vector mesons, respectively:

LNNps =gpsψiγ
5ψϕ(ps) , (1.1)

LNNs =gsψψϕs , (1.2)

LNNv =gvψγµψϕ
µ
v +

fv

4mv
ψσµνψ(∂µϕν

v − ∂νϕµ
v ) . (1.3)

In the case of isovector mesons – π, ρ, δ – the replacement

ϕα −→ τ · ϕα (1.4)

has to be made.
Alternative to the pseudoscalar coupling of Eq. (1.1), the pseudovector coupling

LNNps =
fps

mps
ψγ5γµψ∂µϕ(ps) , fps =

mps

2mN
gps , (1.5)

can be employed for the pseudoscalar mesons π and η. In fact, in π-N scattering a
dominant p-wave (i.e., vector) contribution is found. In relativistic calculations, (1.1)
is found to produce unphysically high antinucleon contributions, while (1.5) gives more
realistic results. Another noteworthy point is the appearance of the pseudovector cou-
pling as an effective coupling due to chiral invariance (see Sect. 1.4). Both couplings
reduce to the same nonrelativistic expressions.

OBE, 2π-exchange, and π-ρ-exchange contributions are calculated from these inter-
action Lagrangians and ∆-nucleon-meson terms, with the additional use of a monopole
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or dipole vertex form factor to regulate the amplitudes at short ranges:

Fα(q2) =

(
Λ2

α −m2
α

Λ2
α + q2

)nα

. (1.6)

A general OBE Feynman amplitude in the center-of-mass system of the interacting
nucleons reads

−ivα(k′, k) = u1(k
′)Γ(α)

1 u1(k)Pα(k′, k)u2(−k′)Γ(α)
2 u2(−k) , (1.7)

where Pα and Γ(α) denote the corresponding meson propagators and vertices, respec-
tively, and k and k′ denote the initial and final relative momenta. The OBE potential
is then defined by

v(k′,k) =

√
mN

E

√
mN

E′
∑

α

vα(k′,k)F 2
α(k′ − k; Λα) , (1.8)

where the sum runs over all mesons, E and E ′ are the initial and final energies of the nu-
cleons, and mN denotes the nucleon mass. The square-root factors are included to allow
the application of reduction schemes like the Blankenbecler-Sugar method [18], which
recast the four-dimensional Bethe-Salpeter equation into the form of the Lippmann-
Schwinger equation and hence make it possible to use these relativistic potential expres-
sions in a consistent way in nonrelativistic nuclear structure and scattering calculations.

Starting from the full model, the Bonn group has constructed several OBE poten-
tials, both in momentum (OBEPQ) and configuration space (OBEPR) [11]. Of partic-
ular interest to this work are the two configuration space potentials, Bonn-A and -B.
In order to outline their derivation (and for later use), consider the one-pion exchange
amplitude

vπ(k′,k) = − g2
π

4m2
N

(E′ +mN )(E +mN )

(k′ − k)2 +m2
π

(
σ1 · k′
E′ +mN

− σ1 · k
E +mN

)

×
(

σ2 · k′
E′ +mN

− σ2 · k
E +mN

) (1.9)

(notation as in Eq. (1.8)). Note that (1.9) (as well as the other OBE amplitudes derived
from Eq. (1.7)) is a nonlocal expression, since Fourier transformation into configuration
space will yield functions of r and r′, the relative positions of the incoming and outgoing
nucleons, respectively, and the energy-dependent square root factors create additional
nonlocality. Thus, if one wants to construct a local potential, which is technically easier
to use in coordinate space calculations, further approximations are necessary.

The standard approach is to use the on-shell approximation, i.e., set E ′ = E in the
spinors and square root factors, and subsequently expand them in terms of the momenta

q = k′ − k and p =
1

2
(k′ + k) . (1.10)

By keeping the lowest order terms, nonlocality enters the r-space potential through p2

and q × p, the former providing ∆, the latter angular momentum terms after Fourier
transformation. This scheme yields the OPE amplitude

v(loc)
π (q) = − g2

π

4m2
N

(σ1 · q)(σ2 · q)

q2 +m2
π

, (1.11)
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where the index (loc) indicates that the amplitude has been localized, as it only depends
on one momentum. Subsequent Fourier transformation yields

v(loc)
π (r) =

g2
π

4π

1

3

(
mπ

2mN

)2
[(

mπY(mπr) −
4π

m2
π

δ3(r)

)
σ1 · σ2

+mπZ(mπr)s12

] (1.12)

where
s12 ≡ 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2 (1.13)

is the tensor operator, and the Yukawa functions are defined by

Y(x) ≡ e−x

x
and Z(x) ≡

(
1 +

3

x
+

3

x2

)
Y(x) . (1.14)

This is the familiar local OPE potential, which coincides with the result one would
obtain by using the static limit E ′ ≈ E ≈ mN . Upon inspection, it turns out that the
various approximations substantially enhance the off-shell contributions of the tensor
force [12]. Thus, nuclear structure or nuclear matter calculations, which depend on the
off-shell properties of the interaction, will significantly differ from results obtained with
local potentials if the Bonn interaction is used in form of the amplitudes (1.7). Once
all OBE amplitudes have been treated with the described approximation scheme, the
general structure of the OBEPR potentials reads

v =
∑

S,T

vc
ST (r) ΠST +

∑

S,T

1

2

(
vp
ST (r)p2 + p2vp

ST (r)
)
ΠST

+
∑

T

vt
T (r) s12 ΠT +

∑

T

vls
T (r) l · sΠT ,

(1.15)

where l · s is the spin-orbit operator, and ΠT and ΠST are projection operators on the
T and ST -channels (cf. Appendix E), respectively. The radial dependencies of the
interaction are given by superpositions of Yukawa functions and their derivatives, as
contributed by each meson.

Multimeson and σ′ exchanges are accounted for by the introduction of two fictitious
σ mesons, one for each isospin channel. Their properties are used as the ‘main’ degrees
of freedom for a data fit — generally, one will aim to reproduce the predictions of the
full model by adjusting them. The potential keeps the five other mesons from the full
model, each associated with three parameters — a mass, a coupling constant, and the
value of the cutoff for the vertex form factor (setting nα = 1 in (1.6)). The five ‘real’
meson masses and the pion coupling are held fixed, so there is a total of 15 parameters
used to fit phase shift data; their values are listed in Tab. 1.1.

The Bonn-A potential will be used for calculations in this work, because it has a
weaker tensor force than Bonn-B and is therefore considered a better starting point for
the handling of tensor correlations in the UCOM framework described in Chapter 2.

The newest member of the Bonn family of interactions is the high-precision CD-
Bonn potential [12]. Aside from accounting for changes in coupling constants, most
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Figure 1.1: Radial dependencies of the Bonn-A configuration space potential. The momentum-
dependent potential has been weighted by 1/r2 for better comparison with the l2-part of AV18
(see Fig. 1.3).
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Bonn-A Bonn-B

m [ MeV] g2/4π Λ [ GeV] g2/4π Λ [ GeV]

π 138.03 14.9 1.3 14.9 2.0
η 548.8 2.0 1.5 0. –
ρ 769.0 1.2 1.2 1.7 1.1
ω 782.6 25.0 1.4 29.0 1.3
δ 983.0 2.742 2.0 6.729 2.0
σT=1 550.0 8.7171 2.0 8.8322 1.4
σT=0 710 / 700 17.6205 2.0 16.0707 2.0

Table 1.1: Parameters of the configuration space Bonn-A and -B potentials ([11]). The ten-
sor/vector coupling ratios are held at fρ/gρ = 6.1 and fω/gω = 0.0. Bonn-A uses 710 MeV for
the σT=0 mass, Bonn-B 700 MeV.

notably gπ, over the years, it is also the first Bonn potential taking charge independence
breaking (CIB) and charge symmetry breaking (CSB) into account in order to improve
the agreement with experimental data. Formally, this means that

[
v, t
]
6= 0 and/or

[
v, eiπt2

]
6= 0 , (1.16)

i.e., the interaction is no longer invariant under general rotations (CIB) or rotations by
π around the 2-axis (CSB) in isospin space. The main causes are the pion and neutron-
proton mass differences, or, from a more fundamental point of view, the mass difference
between the u and d quarks. Multimeson exchanges like 2π and πρ lead to significant
CIB and CSB effects, too. Since the fits of the older Bonn potentials indicate that a
vanishing coupling for the η meson is favorable (see Tab. 1.1), the new model drops
it completely, just like the δ meson, whose contribution was found to be very small.
CD-Bonn’s excellent agreement with experimental phase shifts is achieved by refitting
the σ mesons in each partial wave, increasing the amount of free parameters to 43 and
turning it into an essentially phenomenological potential. Unfortunately, no ‘official’
non-relativistic description is available, and the partial wave representation prevents its
use with the FMD basis underlying our existing computer programs, because the FMD
states are no angular momentum eigenstates (see Chapter 3). In nuclear structure cal-
culations, CD-Bonn is supplemented by a refined electromagnetic interaction developed
by the Nijmegen group for their phase-shift analysis [19], including one- and two-photon
Coulomb terms, the Darwin-Foldy term (see e.g., [20]) as a first order relativistic cor-
rection, vacuum polarization, and a magnetic dipole-dipole interaction.

1.3 The Argonne Interactions

The Argonne V18 potential is the latest in a series of local potentials constructed by
the Argonne group, its predecessors being the Urbana V14 and Argonne V14 interac-
tions [21]. AV18 consists of three main parts – the local coordinate space OPE poten-
tial familiar from the discussion of the Bonn model in Sect. 1.2, a phenomenological
parametrization of the intermediate- and short-range part of the NN interaction, and
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ST(NN) Type I [ MeV] P [ MeV] Q [ MeV] R [ MeV]

01(pp) c -11.27028 3346.6874 1859.5627* 0
01(np) c -10.66788 3126.5542 1746.4298* 0
01(nn) c -11.27028 3342.7664 1857.4367* 0

01 l2 0.12472 16.7780 9.0972* 0

00 c -2.09971 1204.4301 511.9380* 0
l2 -0.31452 217.4559 117.9063* 0

11(pp) c -7.62701 1815.4920 969.3863* 1847.8059
11(np) c -7.62701 1813.5315 966.2483* 1847.8059
11(nn) c -7.62701 1811.5710 967.2603* 1847.8059

11 l2 0.06709 342.0669 185.4713* -615.2339
t 1.07985 0 -190.0949 -811.2040
ls -0.62697 -570.5571 -309.3605* 819.1222

(ls)2 0.74129 9.3418 5.0652* -376.4384

10 c -8.62770 2605.2682 1459.6345* 441.9733
l2 -0.13201 253.4350 137.4144* -1.0076
t 1.485601 0 -1126.8359 370.1324
ls 0.10180 86.0658 46.6655* -356.5175

(ls)2 0.07357 -217.5791 -117.9731* 18.3935

Table 1.2: AV18 short-range potential parameters. The asterisk denotes that the value was
computed by Eq. (1.22) and not fit. The parameters of the Woods-Saxon function are held at
r0 = 0.5 fm and a0 = 0.2 fm, the cutoff is always c = 2.1 fm−2.

the electromagnetic interaction of the Nijmegen group:

v = vπ + vsr + vem . (1.17)

Charge-independence breaking (CIB) is taken into account by distinguishing between
the charged and neutral pion exchanges as well as nn, pp and np scattering. As a caveat,
one should note that the Bonn and Argonne groups use slightly different definitions of
the pion decay constant f 2 (cf. Eq. (1.5)):

f2(AV18) = 0.075 ⇐⇒ f
2(B-A)
π

4π
=
g2
π

4π

m2
π

4m2
N

. (1.18)

Instead of the dipole form factors used in the Bonn model, the AV18 potential is
regulated by multiplying the Yukawa functions Y and Z (Eq. (1.14)) with exponential
form factors:

fY(r) = 1 − e−cr2
and fZ(r) =

(
1 − e−cr2

)2
. (1.19)

The radial dependencies of the phenomenological part are parametrized by

vi
STMT

(r) = I i
STMT

Z2(µr)f2
Z(r) +

[
P i

STMT
+ µrQi

STMT
+ (µr)2Ri

STMT

]
W (r) , (1.20)

where i runs over the different operator types (c, t, l2, ls, (ls)2), MT denotes the isospin
projection, µ is the average of the pion masses, and

W (r) =
[
1 + e(r−r0)/a

]−1
(1.21)
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Figure 1.2: Radial dependencies of the AV18 potential. Depicted is the central part of AV18,
projected onto the four ST-channels.

is a Woods-Saxon function providing the short-range core. With the imposition of the
additional regularization conditions

vt
STMT

(r = 0) = 0 and
∂vi6=t

STMT

∂r

∣∣∣∣∣
r=0

= 0 , (1.22)

a total of 40 nonzero intermediate- and short-range parameters I i
STMT

, P i
STMT

, Qi
STMT

,

and Ri
STMT

remain. Their values are listed in Tab. 1.2.
The potential given in (STMT )-channels can be projected onto 18 operators, thus

giving AV18 its name. For this work, however, we will prefer working with the ST-
projected potential. As shown in Tab. 1.2, charge dependence (CD) and charge asym-
metry (CA) in the phenomenological part of the potential are caused by the splitting
of the central potential in the T = 1 channel only, while the OPE part contributes CIB
effects both to the T = 1 central and tensor parts. The charge-dependent part of AV18
is then given by

vCD
ST =

1

6

[
1

2
(vc

S1,pp(r) + vc
S1,nn(r)) − vc

S1,np(r)

]
t12

+
1

6

[
1

2
(vt

S1,pp(r) + vt
S1,nn(r)) − vt

S1,np(r)

]
s12t12 ,

(1.23)

where the isotensor operator

t12 ≡ 3τz,1τz,2 − τ 1 · τ 2 (1.24)

has been introduced, and for the charge-asymmetric part one finds

vCA
ST =

1

4
(vc

S1,pp(r) − vc
S1,nn(r))(τz,1 + τz,2) . (1.25)
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Figure 1.3: Radial dependencies of the AV18 potential (cont.). Depicted are the tensor, angular
momentum, spin-orbit, and quadratic spin-orbit parts of AV18 in the four ST -channels.
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The charge-independent part of AV18 reads

v =
∑

ST

vc,CI
ST (r) ΠST +

∑

T

vt,CI
1T (r) s12Π1T +

∑

ST

vl2

ST (r) l2ΠST

+
∑

T

vls
1T (r) l · sΠ1T +

∑

T

v
(ls)2

1T (r) (l · s)2 Π1T ,
(1.26)

where

vi,CI
ST (r) =





1
3

(
vi
S1,pp(r) + vi

S1,nn(r) + vi
S1,np(r)

)
for T = 1

vi
ST (r) for T = 0

(1.27)

with i = c, t. The radial dependencies in the four ST-channels are plotted by interaction
type in Figs. 1.2 and 1.3.

1.4 The Chiral NN Potential

Recent years have seen efforts to make contact between QCD and low-energy nuclear
physics by means of effective field theories (EFTs). The notion of an effective theory
suggests that the theory is not fundamental, but it is considered very likely nowa-
days that all quantum field theories, including the supposedly fundamental standard
model, are just low-energy approximations of some ‘higher’ theory. Underlying these
considerations is the recognition of distinct energy scales in nature, each having their
characteristic degrees of freedom. Once higher energy or, equivalently, smaller distance
scales are probed, new degrees of freedom become relevant, e.g., the quark substructure
of hadrons in scattering experiments. In the same manner, a transition to lower energy
scales leads to a “freezing out” of some degrees of freedom which become irrelevant.

Weinberg showed that the most general Lagrangian consistent with the symmetries
of the underlying theory needs to be considered in order to construct an EFT [22, 23].
This will ensure that one obtains the most general possible S-matrix consistent with
these symmetries, analyticity, (perturbative) unitarity, and the cluster decomposition
principle, and therefore the correct low-energy limit of the underlying theory. Further
assumptions, especially regarding the renormalizability of the theory, are to be avoided
— this does not pose a problem, since the EFT is only defined up to a certain energy
scale.

Naturally, one can think of infinitely many consistent interaction terms for the ef-
fective Lagrangian, so a scheme to identify the relevant terms is required. Applying
the basic concept of EFTs, interaction terms are classified by powers of (p/Λ), where
p is a four-momentum typical for the interaction, and Λ is the scale beyond which the
effective theory is not valid any more. With such a power counting scheme at hand, one
can now perform perturbative calculations with a finite number of interaction terms.
As an example, consider the description of a weak interaction process by Fermi’s the-
ory (cf. Fig. 1.4). It is applicable as long as the involved four-momenta are small in
comparison to the W -boson mass mW , one of the mediators of the weak interaction in
the Standard Model. In these cases, the denominator of the W -boson propagator can
be approximated,

1

p2 −m2
W + iε

≈ 1

m2
W

, (1.28)
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e+
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Figure 1.4: Fermi’s theory of weak interactions. The (non-renormalizable) point interaction
of fermion fields (right) can be understood as a low-energy limit of a standard model process
mediated by W+ exchange (left). q2 denotes the four-momentum transfer between proton and
neutron, mW is the W -boson mass, and gW and gF are the weak and Fermi coupling constants,
respectively.

and one obtains an effective point interaction of fermion fields. The ‘effect’ of the
W -boson is contained in the effective coupling constant,

gF ∼ gW

m2
W

. (1.29)

Once the four-momenta and mW become comparable in size, the propagator starts to
resonate, and Fermi’s theory breaks down since the dynamics of the W are no longer
negligible1.

In the case of QCD, the transition from the ‘fundamental’ to the effective level
happens through the spontaneous breakdown of chiral symmetry. For chiral symmetry
between three quark flavors — u, d, and s — the breakdown of SU(3)L × SU(3)R to
SU(3)V reduces the number of symmetry generators by 32 − 1 = 8, and one expects
eight pseudoscalar Goldstone bosons, which can be identified with the lightest mesons

— π0, π±,K0,K
0
,K±, and η. Their non-zero masses [24] are attributed to the approx-

imative nature of the chiral symmetry, which is explicitly broken by the non-vanishing
quark masses. Since the u and d masses are very small, and mu ≈ md � ms, the ap-
proximation is better for a two-flavor chiral symmetry with only the pions as Goldstone
bosons.

The effective field theory describing the chiral dynamics of hadrons at low energies
is known as chiral perturbation theory (χPT) [25]. It is applicable up to the scale Λχ,
which is usually taken to be the mass of the ρ-meson, mρ ≈ 770 MeV [24], since ρ is the
lightest meson not identifiable as a Goldstone boson associated with chiral symmetry
breaking. As Λχ is approached, the ρ-propagator becomes resonant, and the meson’s
dynamics have to be taken into account explicitly. This is essentially the same situation
as for Fermi’s weak interaction theory and the W -boson.

In order to treat the NN -system in χPT, one has to overcome one further obstacle:
obviously, the nucleon massmN is not small compared to Λχ, which leads to inconvenient
interdependencies between tree and loop graphs of all orders [25]. The solution is to
take a non-relativistic limit by further expanding in terms of 1/mN , i.e., the nucleons
are treated as quasi-static sources of pion fields. This approach is known as the heavy
baryon formulation of chiral perturbation theory, HBχPT. Within this framework, the

1One usually speaks of “new physics” coming into play.
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effective Lagrangian reads

Leff = L(2)
ππ + L̂(1)

πN + L̂(2)
πN + L̂(3)

πN + . . . , (1.30)

where the superscript refers to the so-called chiral dimension or chiral order, i.e., the
number of derivatives (from the pseudovector pion couplings, cf. Sect. 1.2) or pion mass
insertions, and the hat on L̂πN implies a heavy baryon ‘projection’.

At leading order, the relativistic ππ Lagrangian is given by

L(2)
ππ =

f2
π

4
tr[∂µU∂µU

† +m2
π(U + U †)] , (1.31)

where mπ and fπ are the pion mass and decay constant in the chiral limit of vanishing
quark masses, respectively, and the matrix-valued field U collects the pions

U = 1 +
i

fπ
τ · π − 1

2f2
π

π2 − iα

f3
π

(τ · π)3 +
8α− 1

8f4
π

π4 + . . . . (1.32)

Here, the notation π indicates that the pion is an isovector particle. The factor α
appearing in the expansion of U is arbitrary, which makes it necessary to group diagrams
involving three- or four-pion vertices together so that the α-dependencies cancel.

At chiral dimension 1 and in lowest order in 1/mN , the πN Lagrangian reads

L̂(1)
πN =N

(
D0 −

gA

2
σ · u

)
N

=N
(
i∂0 −

1

4f2
π

τ · (π × ∂0π) − gA

2fπ
τ · (σ · ∇)π

)
N + . . . ,

(1.33)

where the spatial components of

uµ = − 1

fπ
τ · ∂µπ + . . . (1.34)

and the 0-component of the covariant derivative

Dµ = ∂µ +
i

4f2
π

τ · (π × ∂0π) + . . . (1.35)

have been inserted. In the HB formulation, the nucleon field operators N describe the
spin in Pauli (two-component) instead of Dirac spinors, and they also contain Pauli
spinors describing the isospin.

The HB-projected πN Lagrangian of chiral dimension 2 can be split into two distinct
parts [26, 27],

L̂(2)
πN = L̂(2)

πN,fix + L̂(2)
πN,ct , (1.36)

where the ‘fixed’ part

L̂(2)
πN,fix = N

(
1

2mN
D · D + i

gA

4mN

{
σ · D, u0

})
N (1.37)



14 CHAPTER 1. REALISTIC NUCLEON-NUCLEON POTENTIALS

is entirely generated by the heavy baryon expansion of L(1)
πN and does not contain any

new free parameters, while the second part,

L̂(2)
πN,ct =N

(
2c1m

2
π(U + U †) +

(
c2 −

g2
A

8mN

)
u2

0+

c3uµu
µ +

i

2

(
c4 +

1

4mN

)
σ · (u × u)

)
N ,

(1.38)

contributes new πN interactions which depend on the low energy constants (LECs) c1
to c4. The latter need to be determined by fits to experimental data (e.g., pion-nucleon
scattering).

The HB-projected Lagrangian at chiral dimension 3 can formally be written as

L̂(3)
πN =

23∑

i=1

d̂iNÔ
(3)
i N + L̂(3)

πN,fix , (1.39)

where the d̂i are a new set of LECs, and L̂(3)
πN,fix is again completely fixed by the HB-

formalism. The number of LECs has increased notably while advancing from chiral
dimension 2 to 3, which is a general trend for all EFTs. At chiral dimension 4, the
relativistic and HB-projected Lagrangians already feature 118 linear independent LECs
[26].

For NN scattering, only 4 linear independent terms of L̂(3) are important, for which
the values of the corresponding d̂i can be determined from fits of πN scattering data, for
example. Aside from the discussed ππ and πN Lagrangians, there is also a Lagrangian
containing contact terms, which arise in any EFT. In the present case, these contact
interactions are between the (static) nucleons:

LNN = L(0)

NN
+ L(2)

NN
+ L(4)

NN
+ . . . , (1.40)

where

L(0)

NN
=

1

2
CSNNNN +

1

2
CTNσN ·NσN , (1.41)

with undetermined coefficients CS and CT . Similarly, the higher order L(ν) consist of
NON bilinears and their products, where O are operators constructed from σ-matrices
and gradients2.

Contact Lagrangians with odd chiral dimensions ν are not allowed, since their ver-
tices would sport odd numbers of nucleon three-momenta, which is forbidden by parity
invariance. For the same reason, the πN contacts in L(1) and L(3) can only contribute
at the loop level, since the tree level contributions would violate parity, too.

The two contact terms of order (Q/Λχ)0 (see Eq. (1.41)), seven of order (Q/Λχ)2,
and fifteen of order (Q/Λχ)4 all contribute to the NN -potential at order 4, aside from
one- and two-pion exchange. Here, Q denotes either a pion four-momentum, a pion
mass, or a nucleon three-momentum. The potential terms are regulated by multiplying
them with a cutoff

exp

[
−
( p

Λ

)2n
−
(
p′

Λ

)2n
]
, (1.42)

2The σ structures arise in the non-relativistic limit of the Dirac matrices 1, γµ, σµν , γ5γµ, γ5.
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where Λ = 0.5 GeV, and p = |p| and p′ = |p′| are the moduli of the initial and final
nucleon three-momenta in the center-of-mass system. The powers 2n are chosen such
as to prevent the regulators from contributing at the order (Q/Λχ)ν of the terms they
multiply.

The 24 contact terms and two charge dependent contact terms arising from the
inclusion of isospin violation at next-to-leading order (denoted NLØ, [28]) are the main
fit parameters of the recently published chiral potential by Entem and Machleidt [2]. In
addition, they have taken the three LECs c2, c3, and c4 to be semi-free, hence raising
the amount of parameters to a total of 29. Aside from providing a phase shift fit which
rivals the quality of the AV18 potential (which uses 40 parameters), the chiral potential
has the additional attractive aspect that it contains well-defined three-nucleon forces
[25]. Generally, three- and many-nucleon forces arise from multi-pion exchange in χPT,
hence they are well-defined at each order ν.

1.5 Other Models

1.5.1 Dispersion Theory - the Paris Potential

When the field-theoretic program aiming to build a ‘fundamental’ microscopic theory
around the pion failed in the 1950s, some physicists embarked on a different theoretical
route, known as dispersion theory. In contrast to quantum field theory with its prob-
lems of renormalization, convergence and the very definition of a potential, dispersion
theory drops Lagrangians, Hamiltonians and potentials altogether in order to deal with
directly observable quantities only, e.g., scattering amplitudes, form factors, etc., in a
non-perturbative way. Its principal framework is based on three assumptions (see e.g.,
[29]): causality, unitarity, and crossing symmetry. From (micro-)causality, one derives
the analytic properties of a scattering amplitude, whose pole structure encodes infor-
mation about particle masses and couplings. Furthermore, analytic continuation of the
scattering amplitude establishes crossing symmetry, i.e., it links amplitudes of processes
like

p −→ n+ e+ + νe and p+ νe −→ n+ e+ , (1.43)

which differ by the replacement of particles and antiparticles with their counterparts
in the incoming or outgoing channel. The unitarity of the S-matrix implies the optical
theorem [29, 30], and thus relates the imaginary part of a scattering amplitude to the
total cross section for a process.

A dispersion relation for a scattering amplitude f is usually given in the form

Re f(s) =
1

π
P
∞∫

0

ds′
Im f(s′)
s′ − s

, (1.44)

where s is some energy, e.g., the total energy in the center-of-mass system (as suggested
by the use of the Mandelstam nomenclature). Then the identity

1

s′ − s− iε
= P 1

s′ − s
+ iπδ(s′ − s) (1.45)
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implies that the full amplitude is given by

f(s) =
1

π

∞∫

0

ds′
Im f(s′)
s′ − s− iε

. (1.46)

Usually, the imaginary part of f(s) (e.g., a total cross section) is not known at large
energies, but this knowledge is needed to describe the behavior at low s. The influence
of the high-s region can be lessened by means of subtractions, e.g., one considers (f(s)−
f(0))/s instead of f(s) and finds

f(s) = f(0) +
s

π

∞∫

0

ds′

s′
Im f(s′)
s′ − s− iε

, (1.47)

or generally

f(s) = R(s) +
P (s)

4π2

∞∫

0

ds′

P (s′)
Im f(s′)
s′ − s− iε

, (1.48)

where P (s) and R(s) are polynomials whose coefficients will be determined by normal-
ization conditions imposed by either theory or experiment. The high energy region is
suppressed by the factor 1/P (s) in Eq. (1.45). The method of subtractions is partic-
ularly important if |f(s)| does not vanish in the limit s → ∞, since this would cause
non-vanishing contributions from the arcs of the contour integrals used to derive Eq.
(1.45) in the first place. From a modern point of view, this procedure is reminiscent of
renormalization and EFT techniques ([31, 30, 23]), and indeed, if dispersion relations are
applied in EFTs, the coefficients of the polynomials, also called subtraction constants,
are closely related to the parameters of effective Lagrangians [32].

The appeal of dispersion relations arises from the fact that Feynman diagrams have
the same analytic structure as the amplitude they contribute to, and can therefore be
rewritten as (subtracted) dispersion relations. In this way, one can extract the predic-
tions of the theory without going through the calculation of sets of Feynman diagrams,
which usually involves applying complicated regularization and renormalization tech-
niques to deal with the divergences of each graph. Furthermore, Im f(s) is often known
experimentally — think of the total scattering cross section, for example — and can
therefore be considered an ‘exact’ or ‘ideal’ input.

Work along the dispersion theory line ultimately culminated in the final version of
the Paris potential in 1980 [17]. It includes one-pion exchange, correlated and uncorre-
lated two-pion exchange, and ω-exchange contributions derived from dispersion theory
as well as a phenomenological soft core. In configuration space, the potential is given
by

v =
∑

S,T

vc
ST (r) ΠST +

∑

S,T

[
p2

mN
vp2

ST + vp2

ST

p2

mN

]
ΠST +

∑

T

vt
T (r) s12 ΠT

+
∑

T

vls
T (r) l · sΠT +

∑

T

vq
T (r) q12 ΠT ,

(1.49)



1.5. OTHER MODELS 17

where the quadratic spin-orbit tensor q12 has been introduced:

q12 ≡ 1

2
((σ1 · l)(σ2 · l) + (σ2 · l)(σ1 · l)) = (σ1 · l)(σ2 · l) = l · s − l2 + 2(l · s)2 . (1.50)

q12 arises from the decomposition of (l · s)2 into irreducible tensor operators, for which
a slightly different prescription will be employed in this work (cf. Sect. 4.1.2 and
Appendix B).

The parametrized Paris potential presented in [17] fits the 14 radial dependencies in
Eq. (1.49) with superpositions of Yukawa functions:

vi
ST (r) =

12∑

j=1

gSTjY(µTjr) , i = c, p2 , (1.51a)

vls
T (r) =

11∑

j=1

gTjY ′(µTjr) , (1.51b)

vt
T (r) =

11∑

j=1

gTjZ(µTjr) , (1.51c)

vq
T (r) =

11∑

j=1

gTj

(
1

µTjr

)2

Z(µTjr) . (1.51d)

The range parameters µj are held fixed, hence the 164 strengths gj are fit parameters.
They are constrained further by at least 22 additional conditions, depending on the
required degree of accuracy. In the literature, 60 − 80 parameters are assumed to be
free (cf. [33]), as opposed to 12 parameters of the original dispersion theoretic potential
[34].

1.5.2 The Nijmegen Potentials

The Nijmegen group has constructed several models over the past decades. Nijmegen-78
and the updated Nijmegen-93 [35] are derived from meson theory in a similar fashion
like the Bonn potentials introduced in Sect. 1.2. There are differences in the choice
of included particles — in addition to the π, η, σ′ (also called ε), ρ, ω, and δ (also
called a0) these are the η′, S∗(975), and φ(1020) mesons, respectively. Furthermore,
contributions of several Regge trajectories are taken into account (see e.g., [36]). In
spite of this considerably large amount of particles, the total number of the Nijmegen-
93’s free parameters is only 15, and thus comparable to the Bonn models. Charge
dependence enters the potential by taking the pion-mass splitting into account for the
OPE part. The cooordinate-space potential reads (cf. (1.49))

v =
∑

S,T

vc
ST (r) ΠST +

∑

S,T

vs
ST (r) σ1 · σ2 ΠST +

∑

T

vt
T (r) s12 ΠT

+
∑

T

vls
T (r) l · sΠT +

∑

T

vq
T (r) q12 ΠT +

∑

T

va
T (r) a12 ΠT ,

(1.52)

with q12 as defined in (1.50), and the so-called antisymmetric spin-orbit operator a12

a12 ≡ 1

2
(σ1 − σ2) · l , (1.53)
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PWA93 Nijm I Nijm II Reid93 Nijm93 AV18 CD-Bonn

type nl nl l l nl l nl
npar 39 41 47 50 15 40 43

pp 1.00 1.00 1.00 1.00 1.78 1.10 1.00
np 0.99 1.05 1.04 1.04 1.93 1.08 1.03
NN 0.99 1.03 1.03 1.03 1.87 1.09 1.02

Table 1.3: Comparison of χ2/datum of CD-Bonn (Ref. [12]), AV18 (Ref. [9]), the Nijmegen
potentials (Ref. [35]) and the Nijmegen PWA for the reproduction of the pp, np, and full
Nijmegen databases [19] (Elab ≤ 350 MeV). In addition, the number of parameters npar and
the character of the potential (l local, nl nonlocal) are shown.

which is not symmetric under particle exchange and can therefore not contribute in
identical-particle scattering.

A comparison shows that the fit quality of the Nijmegen-93 potential is not con-
siderably better than that of the Paris or Bonn potentials (see Sect. 1.6). In order to
describe scattering data with a level of accuracy comparable to their own phase shift
analysis [19], the Nijmegen group constructed both a local and a nonlocal potential,
named Nijmegen-I & -II. These potentials take charge-dependence and charge symme-
try breaking into account, and are refitted in every partial wave, similar to the CD-Bonn
potential. The amount of free parameters therefore increases to 41 and 47, respectively.

In the spirit of Reid’s construction of his famous soft-core potential [37], an updated
version was developed and fit to the Nijmegen phase shift data. This Reid-93 potential
has 50 free parameters.

1.6 A Comparison

The various potentials introduced in the previous sections describe the phase shifts
of pp- and np-scattering with χ2/datum≈ 2.0 or better. Models which draw most of
their parameters from theory — Bonn and Nijmegen-93 — are found at the upper limit
of this range. Unfortunately, these potentials have never been applied to the same
database, so a direct comparison is impossible. For the Bonn full model, Machleidt and
Li found a χ2/datum of 1.80 for 3228 NN data below 300 MeV [33]; values for the
OBEPR potentials could not be found, but are expected to be slightly worse than those
achieved for the full model due to the approximations necessary for their derivation.
The Nijmegen-93 potential reproduces the full Nijmegen set of Elab ≤ 350 MeV data
(NN93) with χ2/datum= 1.87 (see Tab. 1.3). The Paris group quotes the values 1.99
for pp- and 2.17 for np-scattering, using 913- and 2239-point databases at laboratory
energies lower than 350 MeV, respectively for the parametrized potential (cf. Sect.
1.5.1, [17]).

The current high-precision potentials manage a χ2/datum close to the perfect value
1.0. As mentioned before, this good description comes at the cost of introducing many
fit parameters, i.e., the models are essentially phenomenological in nature despite the
theoretical background some of them possess. In Tab. 1.3, the description of the NN93
database by these potentials is compared. Local and nonlocal potentials describe the
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# of χ2/datum
database

data PWA93 CD-Bonn AV18

1992 pp 1787 1.00 1.00 1.10
post-1992 pp 1145 1.24 1.03 1.74
1999 pp 2932 1.09 1.01 1.35

1992 np 2514 0.99 1.03 1.08
post-1992 np 544 0.99 0.99 1.02
1999 np 3058 0.99 1.02 1.07

1992 NN 4301 0.99 1.02 1.09
1999 NN 5990 1.04 1.02 1.21

Table 1.4: Comparison of χ2/datum of CD-Bonn, AV18 and the Nijmegen PWA for the repro-
duction of the Nijmegen (‘1992 data’) and extended databases (‘post-1992’)at Elab ≤ 350 MeV,
as discussed in [12]. Data taken from Refs. [19], [9] and [12].

# of data NLO NNLO N3LO AV18

pp 2057 80.1 35.4 1.50 1.38
np 2402 36.2 10.1 1.10 1.04

Table 1.5: χ2/datum for the reproduction of the 1999 NN database [12] below 290 MeV by
χPT potentials of increasing order (cf. [2] and references therein) and the AV18 potential (Ref.
[9]).

phase shifts equally well. Looking at the post-1999 data shown in Tab. 1.4, one finds
that the uniformity encountered in the description of the NN93 database breaks down.
The pp data shows a significant increase of χ2/datum for both the Nijmegen partial-
wave analysis (PWA) and the AV18 potential, caused primarily by their problems with
describing new high-quality pp spin correlation data. Since the Nijmegen-I and -II as
well as the Reid93 potentials are essentially equivalent to the PWA, their χ2/datum
increases, too.

Clearly, as both the local AV18 and the nonlocal Nijmegen PWA exhibit this dis-
crepancy, the different character of these types of potentials cannot be the sole cause,
which is made more evident by noting that the nonlocal CD-Bonn is able to describe
the new data just as well as the NN93 set. In fact, the Unitary Correlation Operator
Method (UCOM) introduced in Chapter 2 proves that one can always shift potential
strength between interaction terms, local or nonlocal, without affecting the phase shifts
at all.

As a possible source of the discrepancy in the pp-data description, one other dif-
ference remains — the treatment of the charge dependence and the breaking of charge
symmetry. AV18 and the Nijmegen potentials and PWA use the same charge-dependent
OPE part; the former introduces CSB only in its phenomenological central part (see
Tab. 1.2), while the latter take no CSB into account at all. Contributions from multi-
meson exchanges are included in neither of the two models, but they are part of the full
Bonn model (see Sect. 1.2). As described in [12], the σ mesons are tuned to reproduce
the effects of the multimeson exchanges on the phase shifts once the transition to the
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OBE picture is made.
With the recent development of the N3LO chiral potential (see Sect. 1.4), this

particular branch has made an encouraging step forward. As can be seen in Tab. 1.5,
the new chiral potential is able to reproduce the 1999 pp and np data below 290 MeV
discussed in [12] with a χ2/datum comparable to the AV18 potential, while using only
29 parameters compared to the 40 employed by the latter. In addition, the fit model
represented by the contact terms of the N3LO potential is more systematic than the
rather phenomenological choice of operators of AV18 (see e.g., [31]).



Chapter 2

The Unitary Correlation
Operator Method

2.1 Basic Concepts

The aim of the Unitary Correlation Operator Method (UCOM) [4, 5, 6, 7] is the con-
joining of realistic nuclear interactions with simple many-body states used, e.g., in mean
field or shell model calculations. All realistic NN interactions have two properties which
cause problems when they are used with simple many-body states in a naive fashion:
the repulsive central core and the strong tensor force.

In order to describe a many-body system with central and tensor correlations be-
tween pairs of nucleons, the base states would have to provide the necessary degrees
of freedom. The relative distances rmn and total spin Smn of all possible pairs (m,n)
have to be encoded in the states. These degrees of freedom are needed to properly
account for the strong suppression of the two-nucleon wavefunctions at distances below
the core radius (Sect. 2.2), and the correlations between their total spin and relative
distance (Sect. 2.3) due to the tensor force. Suited states would be rather complicated
superpositions of partial wave states (see Appendix B), for example.

The single Slater determinants used in mean field models, on the other hand, depend
on the position and spin of single particles only. The suppression of their two-body
densities at ranges inside the core is weaker than for proper eigenstates of the relative
distance operator, which causes very large or even divergent interaction energies. In
addition, important binding energy contributions from the tensor force are missing,
since the Slater determinants cannot reproduce the alignment between the spins and
relative distances well. To remedy this shortcoming, the correlations are introduced
into the many-body states by means of unitary correlation operators, which provide the
necessary degrees of freedom in a systematic fashion.

One chooses to construct unitary correlation operators in order to preserve the norm
of the states they are applied to. The unitarity also facilitates the switching between
the two viewpoints which can be taken while pursuing this approach: one can either
apply the correlation operator to the states of a specified simple model space, mapping
it onto a new one which has the proper degrees of freedom to describe correlations, i.e.,

∣∣Ψ̃
〉

= C
∣∣Ψ
〉
, (2.1)

21



22 CHAPTER 2. UCOM

or perform a similarity transformation of the operators and evaluate them in a simple
model space:

Õ = C†OC . (2.2)

The tilde is used to denote correlated states and operators throughout this work (cf.
Appendix E). Expectation values and matrix elements do not depend on the way the
correlations are introduced, since

〈
Φ
∣∣C†OC

∣∣Ψ
〉

=
〈
Φ̃
∣∣O
∣∣Ψ̃
〉

=
〈
Φ
∣∣ Õ
∣∣Ψ
〉
. (2.3)

2.1.1 The Generator

Any unitary operator has the form

C = exp(−iG) , (2.4)

where G is the hermitian generator of the transformation it represents on the Hilbert
space of states. At this stage, one is already able to make some requirements concerning
the form of the generator. The aim is to handle two-body correlations, hence G will be a
two-body operator; in order to describe genuine three-body correlations, a corresponding
three-body generator would be required. Another prerequisite is the preservation of
the symmetries of the original Hamiltonian. In the case of the nonrelativistic NN
interaction, this implies invariance under the transformations belonging to the Galilei
group. G can then only depend on the relative coordinate and momentum of two
nucleons due to translation and boost invariance, respectively. In addition, rotational
invariance implies that G is a scalar operator, i.e., it transforms under the scalar (j = 0)
representation of the rotation group1. The most general generator G consistent with
the discussed symmetries is therefore

G =
∑

i<j

g(rij ,qij ,σi,σj , τ i, τ j) , (2.5)

where the indices i and j run over all particles in the space where G is to be defined.
One formally distinguishes between the two-body operator g, defined in a two-body
space, and the many-body operator G, defined on the A-body space (cf. Appendix E).

The final requirement will be that G obeys the cluster decomposition principle
(CDP), which states that observables of separate subsystems do not affect each other.
This implies that the correlation operator can be decomposed into a direct product of
correlation operators acting on the separate subsystems, i.e., particle clusters

CA −→ Cn ⊗ CA−n . (2.6)

A very nice discussion of the CDP, which also deals with the case of interactions of
infinite range, can be found in [29].

1Note that rotations are generated by the total angular momentum operator, which implies that even
though the ‘tensor’ operator s12 mixes orbital angular momenta, it is an irreducible tensor operator of
rank 0, too; see Appendix B.
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2.1.2 Spin-Isospin Dependence

It is common practice to project the nuclear interaction on the four ST -channels, because
certain parts of it do not contribute in all of them. The tensor and spin-orbit terms, in
particular, have nonzero expectation values only in the S = 1 channels. In the case of
a charge-independent, i.e., isoscalar NN interaction or negligible charge-independence
breaking effects the ST channels remain (at least approximately) unmixed, and the
ansatz

g =
∑

ST

gST ΠST (2.7)

can be used for the generators in two-body space. Due to the property

ΠST ΠS′T ′ = ΠST δSS′δTT ′ , (2.8)

the projection operators factor out of the exponential used to define the unitary corre-
lation operator:

c = exp(−ig) =
∑

ST

exp (−igST ) ΠST . (2.9)

This implies

ṽ = c†vc =
∑

ST

exp (igST ) vST exp (−igST ) ΠST , (2.10)

i.e., the correlations in the different ST -channels decouple, and the correlators for each
channel can be determined independently.

2.1.3 Cluster Expansion

The correlation operator is defined as the exponential of the generator G discussed in
the previous sections, implying that C is not a two-body operator due to the generation
of operators with increasing particle number by repeated application of G. Consider
many-body calculations in a Hilbert space with fixed particle number A, denoted HA.
Owing to the cluster decomposition principle, the representation of a correlated operator
will then be given by

Õ = C†OC =
A∑

i=1

Õ[i] , (2.11)

where Õ[i] denotes an irreducible i-particle operator. The Õ[i] are defined recursively:

Õ[1] =
∑

k,k′

〈
k
∣∣C†OC

∣∣k′
〉
a†kak′ =

∑

k,k′

〈
k
∣∣O
∣∣k′
〉
a†kak′ , (2.12)

Õ[n] =
1

(n!)2

∑

k1...kn
k′
1...k′

n

a

〈
k1 . . . kn

∣∣C†OC −
n−1∑

i

Õ[i]
∣∣k′1, . . . , k′n

〉
a

× a†k1
. . . a†kn

ak′
n
. . . ak′

1
,

(2.13)

where n ≤ A, ∣∣k1, . . . , kn

〉
a

= a†k1
. . . a†kn

∣∣∅
〉
, aki

∣∣∅
〉

= 0, (2.14)
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and the index a affixed to the kets and bras implies antisymmetrization.
For practical applications, one would like to restrict the calculations to the second

cluster order, since the third order contributions are already very involved. This ap-
proximation will be justified if the density of the system and the range of the correlators
are sufficiently small. Otherwise, the probability to find more than two particles simul-
taneously inside the correlation volume increases, and the higher orders of the cluster
expansion become non-negligible. The notation

[
C†OC

]C2
= Õ[1] + Õ[2] (2.15)

is introduced to indicate that the two-body approximation has been applied.
Two remarks are in order regarding the two-body approximation. First, a convenient

way to study the correlations in the nucleus is provided by the one- and two-body density
matrices:

ρ(1)(q1, q
′
1) ≡

〈
Φ
∣∣Ψ†(q1)Ψ(q′1)

∣∣Φ
〉
, (2.16)

ρ(2)(q1, q2; q
′
1, q
′
2) ≡

〈
Φ
∣∣Ψ†(q1)Ψ†(q2)Ψ(q′2)Ψ(q′1)

∣∣Φ
〉
, (2.17)

where Ψ(q) and Ψ†(q) are the usual field annihilation and creation operators2, and the
short hand notation qi = (xi,ms,i,mt,i) was introduced. By using the Wick theorem, it
is easy to prove the following reduction formula:

∫
dq2 ρ

(2)(q1, q2; q
′
1, q2) = (A− 1)ρ(1)(q1, q

′
1) , (2.18)

where the ‘integration’ over q implies integration over x and summation over ms and
mt. The correlated density matrices

ρ̃(1)(q1, q
′
1) =

〈
Φ
∣∣C†Ψ†(q1)Ψ(q′1)C

∣∣Φ
〉

=
A∑

n=1

〈
Φ
∣∣
[
C†Ψ†(q1)Ψ(q′1)C

][n] ∣∣Φ
〉

(2.19)

and

ρ̃(2)(q1, q2; q
′
1, q
′
2) =

〈
Φ
∣∣C†Ψ†(q1)Ψ†(q2)Ψ(q′2)Ψ(q′1)C

∣∣Φ
〉

=
A∑

n=2

〈
φ
∣∣
[
C†Ψ†(q1)Ψ

†(q2)Ψ(q′2)Ψ(q′1)C
][n] ∣∣φ

〉 (2.20)

still satisfy the reduction formula, but this will no longer be the case if the two-body
approximation is applied ! However, in those cases when the truncation is justified,
(2.18) will be a good approximation for the truncated correlated densities.

The second remark concerns the use of two-body approximated Hamiltonians in
variational calculations. Ritz’ variational principle [20] implies that, for a given trial
state

∣∣Ψ
〉
, the inequality 〈

Ψ
∣∣H
∣∣Ψ
〉

〈
Ψ
∣∣Ψ
〉 ≥ E0 (2.21)

2To avoid confusion, the many-body state will be called
∣∣Φ
〉

whenever field operators appear in a
formula.
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Figure 2.1: Correlation hole in the 4He two-body density. The AV18 potential in the ST=01
channel is plotted on the left. The right figure shows the uncorrelated and correlated two-body
densities obtained for a L = 0 4He harmonic oscillator shell model trial state [6, 38] which
reproduces the experimental charge radius rcms = 1.6758 fm.

holds, implying that the true groundstate energy E0 is a rigorous lower bound to the
expectation value of the Hamiltonian. This is no longer the case if the truncated Hamil-
tonian H̃C2 is used due to cancellations between energy contributions of the different
cluster orders.

2.2 Central Correlations

Let us have a look at the two-body density matrix (2.17). We introduce center-of-mass
coordinates for the nucleons, assuming an average mass for protons and neutrons (cf.
Appendix E),

xcm =
1

2
(x1 + x2) and r = x1 − x2 , (2.22)

and couple their spins and isospins. Subsequent integration over xcm yields

ρ
(2)
SMS ,TMT

(r) =
∑

ms,1,ms,2

∑

mt,1,mt,2

〈 1

2
ms,1

1

2
ms,2

∣∣SMS

〉 〈 1

2
mt,1

1

2
mt,2

∣∣TMT

〉

×
∫
d3xcm ρ

(2)
ms,1mt,1;ms,2mt,2

(xcm +
r

2
,xcm − r

2
; xcm +

r

2
,xcm − r

2
)

(2.23)

for the probability of finding two nucleons with spin and isospin orientations MS and
MT in the ST -channel at a relative distance r. Since the NN interaction is rotation-
ally invariant and (approximately) charge-independent, it is unnecessary to distinguish
between MS and MT components when the two-body densities are studied.

For illustrative purposes, consider the Argonne V18 potential in the ST = 01 channel
(see Sect. 1.3), and a trial state with relative angular momentum L = 0. By doing so,
one only needs to consider the central part of the interaction, since the tensor- and
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Figure 2.2: Left: central correlation functions R+(r) − r (solid) and r − R−(r) (dashed) for
the AV18 potential in the ST = 10 channel (cf. Tab. C.1). Right: Action of the corresponding
central correlator on a three-dimensional Gaussian wavefunction (cf. [6]).

spin-orbit terms only contribute in S = 1 channels, and the l2-potential is obviously
zero. AV18 has the same strong repulsive core as all realistic potentials. As can be seen
in Fig. 2.1, this leads to a correlation hole at short distances in the two-body density.
Mean-field model states cannot reproduce this strong suppression and therefore lead
to non-vanishing probabilities to find nucleons within the core, which in turn result in
unphysically high or even infinite energies.

In order to induce a short-range correlation hole in the model state, one needs to
construct an operator which shifts the nucleons out of the range of the core region.
Since this shift has to occur in the radial direction, along the relative distance vector r

of the two nucleons, the obvious choice is to use the radial momentum operator

pr =
1

2
(p · r̂ + r̂ · p) (2.24)

(see Sect. A.1) to construct the generator gr. The strength of the shift will be modeled
by an r-dependent function s(r), because the shift needs to be strong for relative dis-
tances smaller than the core radius, and at large distances no shift is needed at all. A
suitable hermitian generator is therefore given by

gr ≡ 1

2
(prs(r) + s(r)pr) = s(r)pr −

i

2
s′(r) . (2.25)

Applying the unitary correlation operator constructed from (2.25) to a nucleon-pair
wavefunction in coordinate space, one finds

〈
xcm, r

∣∣ c
∣∣φ
〉

= R−(r)
〈
xcm,R−(r)

∣∣φ
〉

(2.26)

and

〈
xcm, r

∣∣ c†
∣∣φ
〉

= R+(r)
〈
xcm,R+(r)

∣∣φ
〉
, (2.27)
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where

R±r = R±(r)r̂ and R±(r) =
R±(r)

r

√
R′±(r) . (2.28)

The functions R±(r) will be referred to as (UCOM) correlation functions. They are
mutually inverse:

R±[R∓(r)] = r . (2.29)

The functions R±(r) provide a metric factor which preserves the norm of the wavefunc-
tion and thus, together with the inversion properties of the R±(r), reflects the unitarity
of the transformation generated by gr. The correlation functions are connected to the
shift function s(r) by the integral equation

∫ R±(r)

r

dξ

s(ξ)
= ±1 , (2.30)

which implies
R±(r) ≈ r ± s(r) (2.31)

for a weakly r-dependent s(r), i.e., s(r) can be interpreted as the distance of the radial
shift of two nucleons at a relative distance r in this approximation. In practical calcula-
tions, it is technically advantageous to use the correlation functions to completely specify
the behavior of a central correlation operator; in fact, the notion central correlator is
used synonymously for both the function and the operator.

2.3 Tensor Correlations

Aside from the strongly repulsive core, all realisticNN potentials share another property
— a strong tensor force, which primarily originates from one-pion exchange as outlined
in Chapter 1. The tensor force induces strong correlations between the relative spatial
orientation of a nucleon pair and the orientation of the nucleons’ spins in the S = 1
channels, while the S = 0 channels remain unaffected due to the vanishing matrix
elements of the total spin operator (cf. Appendix B).

The dipole-dipole interaction of two magnets is a simple classical analogy (see Fig.
2.3): the interaction has the same structure as s12 if σi is understood as the classical
magnetic dipole moment vector for the moment. If the interaction is attractive, magnets
with parallel magnetic moments σi align themselves such that the relative orientation r

and σi are parallel, too, in order to lower the system’s energy. Likewise, for magnets with
antiparallel magnetic moments, the energetically preferred configuration is achieved by
having the relative distance vector r being perpendicular to the σi.

The deuteron is the paradigm of the influence of the tensor force in a nucleus. In
relative coordinates and using the (LS)J-coupling, its exact ground state is given by

∣∣ψ̂d; 1M
〉

=
∣∣ψ̂d

0 , (01)1M
〉
+
∣∣ψ̂d

2 , (21)1M
〉
, (2.32)

where 〈
r
∣∣ψ̂d

L=0,2

〉
= ψ̂d

L=0,2(r) (2.33)

denote the radial wavefunctions in the 3S1 and 3D1 partial waves, respectively, and
the omitted isospin quantum numbers are fixed to T = 0,MT = 0 by the asymmetry
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V ∼ − (3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2)
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Figure 2.3: Classical analogy to the tensor interaction between parallel (left) and antiparallel
spins (right): shown are the values of the ‘classical’ tensor structure corresponding to s12. σi

is to be understood as a classical vector describing, e.g., a magnetic dipole moment. An overall
factor of (−1) has been introduced to reflect the attractive nature of the interaction.

of the full state. The ψ̂d
L(r) can be obtained by solving the coupled system of radial

Schrödinger equations numerically. Fig. 2.4 shows ψ̂d
0(r) and ψ̂d

2(r) for the AV18 and
the Bonn-A interactions. The action of the tensor force is evident in the mixing of the
two partial waves, because the tensor operator s12 is of rank 2 in coordinate space and
does therefore not conserve L in nucleon-nucleon interactions.

Fig. 2.5 displays the exact deuteron two-body density projected on the spin triplet,

ρ̂
(2)
1MS

(r) =
1

3

1∑

M=−1

∣∣∣
〈
r;S = 1,MS

∣∣ψ̂d; J = 1M
〉∣∣∣

2
, (2.34)

averaged over all possible spatial orientations. The hole due to the central correlations
is clearly visible, as is the interplay between the spatial alignment and the spin of the
nucleons. The shapes one finds for the density distributions are as expected from the
classical analogy: nucleon pairs with parallel spins, MS = ±1, are primarily located
around the poles of a sphere whose z-direction is defined by the spin-polarization axis,
and likewise the nucleon pairs with antiparallel spin, MS = 0, are found in its equatorial
region.

In order to construct a unitary tensor correlation operator cΩ, T. Neff started from
the following ansatz for an implicitly centrally correlated deuteron ground state (see
[6, 7]): ∣∣ψd; 1M

〉
=
∣∣ψd

0(01)1M
〉
,
〈
r
∣∣ψd

0

〉
= ψd

0(r) . (2.35)

The tensor correlator has to map this L = 0 state onto the exact solution (2.32),
∣∣ψ̂d; 1M

〉
= cΩ

∣∣ψd; 1M
〉

= exp(−igΩ)
∣∣ψd; 1M

〉
, (2.36)
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Figure 2.4: Exact deuteron wave functions ψ̂d
L=0,2(r) for the AV18 (left) and Bonn-A potential

(right). Note that AV18 has a larger 3D1-wave admixture than Bonn-A. In addition, the cor-
relation hole is larger for AV18 because its central core is stronger (cf. Figs. 1.1, 1.2, 1.3, and
Ref. [6]).

i.e., the L = 2 admixture is entirely generated by cΩ. This implies that the generator
gΩ has to be of rank 2 in coordinate space. By the general requirements formulated in
Sect. 2.1.1, one can conclude that it has to be a rank 2 tensor in two-body spin space,
too, because this is the only way both parts can be coupled to a scalar operator of rank
0 under the full rotation group. There is only one such operator in two-body spin space
(see Appendix B):

s(2)q =
{

s(1)s(1)
}(2)

q
, where s(1)q =

1

2

(
σ(1) ⊗ �

+
� ⊗ σ(1)

)
. (2.37)

Note that the same reasoning is true for the tensor operator s12, and therefore gΩ will
have a similar structure. In coordinate space, the shifts generated by gΩ are required to
be perpendicular to the radial shifts generated by gr in order to decouple the actions of
the central and tensor correlation operators as much as possible. As shown by T. Neff
in [6, 7], this can be achieved by using the so-called orbital momentum operator

pΩ =
1

2r
(l × r̂ − r̂ × l) (2.38)

(see Sect. A.1) to construct the hermitian tensor operator

s12(r,pΩ) =

3

2

(
(σ1 · r)(σ2 · pΩ) + (σ1 · pΩ)(σ2 · r) − (σ1 · σ2)(r · pΩ + pΩ · r)

)
,

(2.39)

and from this the generator
gΩ = ϑ(r)s12(r,pΩ) . (2.40)

That gΩ does not shift the relative wavefunction radially can easily be seen from the
properties of pΩ and r, which both commute with arbitrary functions of r. The tensor
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S = 1,MS = 0 S = 1,MS = ±1

Figure 2.5: Isodensity surfaces at ρ̂
(2)
1MS

= 0.005 fm−3 for the deuteron, calculated for the AV18
potential (cf. [6]).

correlation function ϑ(r) can be used to adjust the strength of the correlator, and as a
tensor correlation operator is completely specified by ϑ(r), the term tensor correlator is
used synonymously for both.

The action of the tensor correlator on angular momentum eigenstates like the ones
in (2.36) can be derived using its matrix elements. Using the Wigner-Eckart theorem
(B.38), one finds

〈
(L′S′)J ′M ′

∣∣ s12(r,pΩ)
∣∣(LS)JM

〉
=

δJJ ′δMM ′δSS′

〈
(L′S)J

∣∣∣∣ s12(r,pΩ)
∣∣∣∣(LS)J

〉
√

2J + 1
,

(2.41)

where the reduced matrix element is given by
〈
(L′S)J

∣∣∣∣ s12(r,pΩ)
∣∣∣∣(LS)J

〉
=

3i
√
J(J + 1)

√
2J + 1δS1(δL′,J+1δL,J−1 − δL′,J−1δL,J+1) ;

(2.42)

the second square root factor is common to all scalar operators and cancels the cor-
responding factor in the Wigner-Eckart theorem for the conventions employed in this
work. The derivation of the matrix elements is outlined in Appendix B, and the non-
vanishing ones for the lowest angular momenta J are listed in Tab. B.2. The resulting
2 × 2-matrix in each J-subspace can be simply exponentiated, and one finds

cΩ

∣∣(J ∓ 1, 1)JM
〉

=

cos
(
θ(J)(r)

) ∣∣(J ∓ 1, 1)JM
〉
± sin

(
θ(J)(r)

) ∣∣(J ± 1, 1)JM
〉
,

(2.43)

where the shorthand notation

θ(J)(r) ≡ 3
√
J(J + 1)ϑ(r) (2.44)
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has been introduced. For all other states, the tensor correlator reduces to the identity
operator.

Using these results, Eq. (2.36) can be evaluated further:

〈
r
∣∣ cΩ

∣∣ψd; 1M
〉

=

ψd
0(r)

[
cos
(
3
√

2ϑd(r)
) ∣∣(01)1M

〉
+ sin

(
3
√

2ϑd(r)
) ∣∣(21)1M

〉]
.

(2.45)

By comparison with the exact deuteron solution (2.32), one can identify

ψ̂d
0(r) = ψd

0(r) cos
(
3
√

2ϑd(r)
)

and ψ̂d
2(r) = ψd

0(r) sin
(
3
√

2ϑd(r)
)
. (2.46)

Dividing these equations yields

ψ̂d
2(r)

ψ̂d
0(r)

= tan
(
3
√

2ϑd(r)
)

(2.47)

and the deuteron tensor correlation function ϑd(r) is obtained directly from the exact
deuteron solution:

ϑd(r) =
1

3
√

2
arctan

ψ̂d
2(r)

ψ̂d
0(r)

. (2.48)

The ϑd(r) are plotted in Fig. 2.6 for the AV18 and Bonn-A interactions, together with
the D-wave ground state admixtures for comparison. Since the deuteron trial state
(2.35) did not have any L = 2 admixtures at all, these entire wavefunctions have to be
generated by the tensor correlator, and this manifests itself in the very long range of the
tensor correlation functions. The corresponding tensor correlator will induce notable
many-nucleon correlations when applied in a many-body system, which in turn implies
that the truncation of the cluster expansion after the two-body order ceases to be a
good approximation. In order to avoid this problem, the low-momentum/long-range
part of ∆L = 2 admixtures should be present in the states of an aptly chosen model
space, so that cΩ can be restricted to short ranges.

2.4 Correlated Operators

In applications, it is more convenient to work with correlated operators than with cor-
related states, in particular once many-body calculations in a mean-field basis are per-
formed. The correlated Hamiltonian at second cluster order is given by

H̃C2 = T̃[1] + T̃[2] + Ṽ[2] =
∑

i

t̃
[1]
i +

∑

i<j

t̃
[2]
ij +

∑

i<j

ṽ
[2]
ij , (2.49)

where the indices run over all nucleons and o
[k]
i1,...,ik

denotes an irreducible k-body oper-

ator. The explicit construction of t̃
[1]
i , t̃

[2]
ij , and ṽ

[2]
ij is the aim of the present section.
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Figure 2.6: Deuteron correlation functions: shown are again the 3D1 admixtures to the deuteron
groundstate (left), and the deuteron correlation functions ϑd(r) for the AV18 (solid) and Bonn-A
interactions (dashed) (cf. [6]).

2.4.1 Central Correlations

In two-body space, the correlated kinetic energy consists of a one- and a two-body
operator. The one-body operator is identical to the uncorrelated kinetic energy because
gr is a two-body operator and c = exp(−igr) therefore only contains two-body and
higher terms aside from the unit operator:

t̃[1] = c†rt
[1]cr = t[1] . (2.50)

The two-body kinetic energy is best evaluated in the center-of-mass system. In terms
of the relative and total momentum operators

prel =
1

2
(p1 − p2) and pcm = p1 + p2 , (2.51)

the kinetic energies of relative and center-of-mass motion are

trel =
p2

rel

mN
and tcm =

p2
cm

4mN
, (2.52)

where the same average mass mN was assumed for protons and neutrons. The orbital
angular momentum will also be needed; it is easily verified that

l1 + l2 = lcm + lrel , (2.53)

where
lrel = r × prel and lcm = xcm × pcm . (2.54)

The center-of-mass kinetic energy is unaffected by the correlator, since it only acts
on the relative coordinate. The kinetic energy of the relative motion can be decomposed
into a radial and an angular part:

t = tr + tΩ =
p2

r

mN
+

l2

mN r2
. (2.55)
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Figure 2.7: Centrally correlated kinetic energy (cf. [6]): shown are the inverse radial and
angular masses, divided by r2 for better comparison with other energies (left), and the local
potential w̃01 (right), obtained with the AV18 central correlator min in the ST = 01 channel
(cf. Tab. C.1).

Since one will mostly be dealing with relative motion, the subscript ‘rel’ on momenta,
angular momenta, and kinetic energies is dropped from this point on. Using Eq. (2.13),
one finds the expression

t̃[2]r = c†rtrcr − tr =
1

2

(
p2

r

1

2µ̃r(r)
+

1

2µ̃r(r)
p2

r

)
+ w̃(r) (2.56)

for the correlated radial part of the kinetic energy, where

1

2µ̃r(r)
=

1

mN

(
1

[R′+(r)]2
− 1

)
(2.57)

will be referred to as a correlated radial mass, and

w̃(r) =
1

mN

(
7R′′+(r)2

4R′+(r)4
− R′′′+(r)

2R′+(r)3

)
(2.58)

is an additional local potential term. Applying the correlator to the angular part of the
correlated kinetic energy yields

t̃
[2]
Ω = c†rtΩcr − tΩ =

1

2µ̃Ω(r)

l2

r2
, (2.59)

where the correlated angular mass is defined by

1

2µ̃Ω(r)
=

1

mN

(
r2

R2
+(r)

− 1

)
. (2.60)

Note that the − 1
mN

-terms in the correlated masses result from the subtraction of the
uncorrelated kinetic energies. The correlated masses and the additional central potential
are displayed in Fig. 2.7.
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Figure 2.8: Centrally correlated potential components of the AV18 interaction in the ST = 01
channel. The only contributions in this channel come from the central (left) and l2 potential
(right).

Since the radial momentum operator commutes with most of the interaction opera-
tors, [

pr, oi

]
= 0 , oi ∈

{ �
, s12, l

2, l · s, (l · s)2
}
, (2.61)

application of the central correlator simply transforms the radial dependence of the
potential term (see Fig. 2.8):

ṽi = c†rv
icr = vi(R+(r))oi . (2.62)

The only exceptions are momentum-dependent terms like the vp2
occurring in the Bonn-

A potential. Similar to the kinetic energy, it is useful to decompose this term into a
radial and an angular part:

vp2
=

1

2

(
p2vp2

(r) + vp2
(r)p2

)
=

1

2

(
p2

rv
p2

(r) + vp2
(r)p2

r

)
+
vp2

(r)

r2
l2 . (2.63)

The application of the central correlator then yields a correlated potential which is
similar to the correlated kinetic energy, with some additional terms arising due to the
non-vanishing commutator of pr and vp2

(r):

ṽp2
= c†rv

p2
cr =

1

2

(
p2

r

vp2
(R+(r))

[R′+(r)]2
+
vp2

(R+(r))

[R′+(r)]2
p2

r

)

+ vp2
(R+(r))

(
7[R′′+(r)]2

4[R′+(r)]4
− R′′′+(r)

2[R′+(r)]3

)
− vp2 ′(R+(r))

R′′+(r)

[R′+(r)]2
(2.64)

+
vp2

(R+(r))

R2
+(r)

l2 .
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2.4.2 Central and Tensor Correlations Combined

The unitarity of the correlation operators comes in handy once they are applied to inter-
action operators in order to construct fully correlated potentials. Formally, a correlated
two-body operator is now

õ = c†rc
†
ΩocΩcr . (2.65)

As with the wavefunctions, õ now denotes a fully correlated operator. Exploiting the
unitarity, one can write

c†rc
†
ΩocΩcr =

(
c†rc
†
Ωcr

)(
c†rocr

)(
c†rcΩcr

)

=
(
c†rcΩcr

)† (
c†rocr

)(
c†rcΩcr

)
. (2.66)

The centrally correlated tensor correlator can be calculated easily, because gr commutes
with s12(r,pΩ):

c†rcΩcr = c†r exp (−iϑ(r)s12(r,pΩ)) cr = exp (−iϑ (R+(r)) s12(r,pΩ)) . (2.67)

At this point, one can again proceed along two different lines, by either applying cen-
trally correlated operators in tensor-correlated states, or constructing fully correlated
operators. The latter will require further approximations beside the ones already made,
and therefore the decision between the two approaches will be made depending on the
specific problem at hand.

Centrally Correlated Operators in Tensor-Correlated (LS)J-States

This approach extends the examination of the tensor-correlated deuteron state in Sect.
2.3 by including the central correlations in an explicit fashion, i.e., by inspecting the
matrix elements of c†rcΩcr. Only reduced matrix elements are given below. Since all
operators occurring in NN interactions as well as the correlators are scalar operators,
the angular momentum projection enters the full matrix element only in terms of δMM ′ .
For brevity, let us introduce

(
(LS)J

∣∣∣∣ o
∣∣∣∣(LS)J

)
=

〈
(LS)J

∣∣∣∣ o
∣∣∣∣(LS)J

〉
√

2J + 1
(2.68)

(cf. Appendix B). The isospin T is fixed by requiring the state’s antisymmetry, and MT

is omitted, not accounting for charge-independence breaking at this point. Eq. (2.43)

implies that the only nontrivial matrix elements of c†rcΩcr will be between states with
L = J±1 and L′ = J±1. Some of the diagonal matrix elements were already presented
in [6].

The fully correlated radial part of the two-body kinetic energy has the diagonal and
off-diagonal matrix elements

(
(J ± 1, 1)J

∣∣∣∣ t̃[2]r

∣∣∣∣(J ± 1, 1)J
)

=
(
(J ± 1, 1)J

∣∣∣∣ c†rc
†
ΩtrcΩcr − tr

∣∣∣∣(J ± 1, 1)J
)

=
1

2

(
p2

r

1

2µ̃r(r)
+

1

2µ̃r(r)
p2

r

)
+

1

mN

(
3
√
J(J + 1)ϑ′(R+(r))

)2
+ w̃(r) .

(2.69)
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and

(
(J ∓ 1, 1)J

∣∣∣∣ t̃[2]r

∣∣∣∣(J ± 1, 1)J
)

=
(
(J ∓ 1, 1)1

∣∣∣∣ c†rc
†
ΩtrcΩcr − tr

∣∣∣∣(J ± 1, 1)1
)

= ±3i
√
J(J + 1)

[
pr
ϑ′(R+(r))

mR′+(r)
+
ϑ′(R+(r))

mR′+(r)
pr

]
.

(2.70)

The tensor correlations contribute an additional potential term reminiscent of centrifu-
gal potentials due to the radial dependence of ϑ(r). µ̃(r) and w̃(r) are unchanged from
Eqs. (2.57) and (2.58).

The mixing of different orbital angular momenta leads to the following expressions
for the fully correlated angular part of the kinetic two-body energy:

(
(J ∓ 1, 1)J

∣∣∣∣ t̃[2]Ω

∣∣∣∣(J ∓ 1, 1)J
)

=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
ΩtΩcΩcr − tΩ

∣∣∣∣(J ∓ 1, 1)J
)

=
1

mNR2
+(r)

[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ∓ 1, 1)J

)

+ sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ± 1, 1)J

)]

− 1

mN r2
(
(J ∓ 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ∓ 1, 1)J

)
.

(2.71)

The expressions for the momentum-dependent interaction are very similar. After
decomposing vp2

into radial and angular parts, we find the diagonal matrix element

(
(J ∓ 1, 1)J

∣∣∣∣ ṽp2

r

∣∣∣∣(J ∓ 1, 1)J
)

=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvp2

r cΩcr

∣∣∣∣(J ∓ 1, 1)J
)

= c†rv
p2

r cr + vp2
(R+(r))

(
3
√
J(J + 1)ϑ′(R+(r))

)2 (2.72)

for the radial part, where c†rv
p2

r cr is just the centrally correlated radial part of Eq. (2.64).
In addition, we have non-vanishing off-diagonal matrix elements:

(
(J ∓ 1, 1)J

∣∣∣∣ ṽp2

r

∣∣∣∣(J ± 1, 1)J
)

=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvp2

r cΩcr

∣∣∣∣(J ± 1, 1)J
)

= ±3i
√
J(J + 1)

[
pr
vp2

(R+(r))ϑ′(R+(r))

R′+(r)
+
vp2

(R+(r))ϑ′(R+(r))

R′+(r)
pr

]
.

(2.73)

The correlated angular part of the potential is diagonal:

(
(J ∓ 1, 1)J

∣∣∣∣ ṽp2

Ω

∣∣∣∣(J ∓ 1, 1)J
)

=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvp2

Ω cΩcr

∣∣∣∣(J ∓ 1, 1)J
)

=
vp2

(R+(r))

R2
+(r)

[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ∓ 1, 1)J

)

+ sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ± 1, 1)J

)]
.

(2.74)

The central components of the interaction are not affected by tensor correlations,

(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
ΩvccΩcr

∣∣∣∣(J ∓ 1, 1)J
)

= vc(R+(r)) , (2.75)
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and since the l2-potential is almost identical to vp2

Ω , we can read off

(
(J ∓ 1, 1)J

∣∣∣∣ ṽl2
∣∣∣∣(J ∓ 1, 1)J

)
=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvl2

ΩcΩcr

∣∣∣∣(J ∓ 1, 1)J
)

= vl2(R+(r))
[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ∓ 1, 1)J

)

+ sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ l2
∣∣∣∣(J ± 1, 1)J

)]
.

(2.76)

The correlated spin-orbit interaction is diagonal, too, and so we find

(
(J ∓ 1, 1)J

∣∣∣∣ ṽls
∣∣∣∣(J ∓ 1, 1)J

)
=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvls

ΩcΩcr

∣∣∣∣(J ∓ 1, 1)J
)

= vls(R+(r))
[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ l · s
∣∣∣∣(J ∓ 1, 1)J

)

+ sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ l · s
∣∣∣∣(J ± 1, 1)J

)]
.

(2.77)

The tensor interaction naturally has both diagonal and off-diagonal contributions:

(
(J ∓ 1, 1)J

∣∣∣∣ ṽt
∣∣∣∣(J ∓ 1, 1)J

)
=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvt

ΩcΩcr

∣∣∣∣(J ∓ 1, 1)J
)

= vt(R+(r))
[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ s12
∣∣∣∣(J ∓ 1, 1)J

)

± 2 cos
(
θ(J) (R+(r))

)
sin
(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ s12
∣∣∣∣(J ± 1, 1)J

)

+ sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ s12
∣∣∣∣(J ± 1, 1)J

)]

(2.78)

and
(
(J ∓ 1, 1)J

∣∣∣∣ ṽt
∣∣∣∣(J ± 1, 1)J

)
=
(
(J ∓ 1, 1)J

∣∣∣∣ c†rc
†
Ωvt

ΩcΩcr

∣∣∣∣(J ± 1, 1)J
)

= vt(R+(r))
[
cos2

(
θ(J) (R+(r))

) (
(J ∓ 1, 1)J

∣∣∣∣ s12
∣∣∣∣(J ± 1, 1)J

)

− sin2
(
θ(J) (R+(r))

) (
(J ± 1, 1)J

∣∣∣∣ s12
∣∣∣∣(J ∓ 1, 1)J

)]
,

(2.79)

where we have used that s12 is not just hermitian, but even symmetric (see Tabs. B.1
and B.2).

Centrally and Tensor-Correlated Operators

A general tensor-correlated operator

c†ΩocΩ = eigΩ o e−igΩ (2.80)

can be calculated by using the Baker-Campbell-Hausdorff formula,

eigΩoe−igΩ = o + i
[
gΩ, o

]
+
i2

2

[
gΩ,
[
gΩ, o

]]
+ . . . ≡ eLΩo , (2.81)

where the super-operator
LΩ ≡ i

[
gΩ, ◦

]
(2.82)

has been introduced. For r and pr, the series (2.81) terminates,

c†ΩrcΩ = r (2.83)
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and

c†ΩprcΩ = pr − ϑ′(r)s12(r,pΩ) . (2.84)

The latter implies

c†Ωp2
rcΩ =p2

r −
(
prϑ

′(r) + ϑ′(r)pr

)
s12(r,pΩ) + ϑ′(r)2s12(r,pΩ)2

=p2
r −

(
prϑ

′(r) + ϑ′(r)pr

)
s12(r,pΩ) (2.85)

+ ϑ′(r)2
(
(18 + 6l2)Π1 +

45

2
l · s +

3

2
s12(l, l)

)
,

where the decomposition formula (B.29) was used in the last line. Unfortunately, these
are the only simple cases, because the algebraic relations between s12(r,pΩ) and the
‘non-radial’ parts of the interaction, like l2 or l ·s, generate increasing powers of angular
momentum and tensor operators, e.g.,

[
s12(r,pΩ), l · s

]
= −i

(
2r2s12(pΩ,pΩ) + s12(l, l) −

1

2
s12

)
≡ −is12(pΩ,pΩ) , (2.86)

where

s12(l, l) ≡3(σ1 · l)(σ2 · l) − (σ1 · σ2)l
2 (2.87)

and

s12(pΩ,pΩ) ≡3(σ1 · pΩ)(σ2 · pΩ) − (σ1 · σ2)p
2
Ω (2.88)

(see Sect. B.4 for a complete listing). In order to use fully correlated operators in
practical calculations, the series needs to be truncated at a certain order of angular
momentum.

T. Neff suggests a truncation after third order in angular momentum [6], which
causes only a 0.005 MeV deviation in the deuteron binding energy, originating from
the omission of new central interaction terms generated at higher orders of the Baker-
Campbell-Hausdorff series (cf. Sect. B.4). For heavier nuclei, the approximation can
still be justified, because the terms generated by the correlator are short-ranged. Thus,
their effects are small due to the suppression of the two-nucleon wavefunctions by the
centrifugal barrier. Applying this truncation scheme, the correlated interaction can be
expressed in terms of the operators

B = { �
, l2, l · s, s12, s12(l, l), s12(pΩ,pΩ), l2l · s,

(
l2s12(pΩ,pΩ)

)
h
} , (2.89)

where the subscript h on the last operator indicates hermitization, i. e.,

(
l2s12(pΩ,pΩ)

)
h
≡ 1

2
(l2s12(pΩ,pΩ) + s12(pΩ,pΩ)l2) . (2.90)

The set B spans a space of ‘super-potential vectors’, P, whose components are the radial
dependencies of the corresponding interaction terms. On this space, LΩ is represented
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by the matrix

LΩ = iϑ(r)ΠS=1




0 0 0 −24 0 108 0 324
0 0 0 0 0 96 0 600
0 0 0 −18 0 153 0 477
0 0 0 3 0 0 0 0
0 0 0 0 0 15 0 51
0 2 −1 0 7 0 −3 0
0 0 0 0 0 36 0 477
0 0 0 0 0 0 −1 0




, (2.91)

which only needs to be exponentiated in order to obtain the correlated interaction,
including the angular part of the correlated kinetic energy, too, which can be readily
expressed in the basis B. The projection operator ΠS=1 ensures that the tensor corre-
lator only acts on the S = 1 central and l2-potentials. All other operators only give
nonzero contributions to the S = 1 channels anyway. Note that all operators of B
commute with ΠS=1.

The calculation method can be extended to include the correlated radial kinetic
energy and radial-momentum-dependent interaction terms by embedding P in a larger
space with the basis

B̄ = {
(
p2

r

)
h
,

�
, l2, l · s, s12, s12(l, l),

s12(pΩ,pΩ), l2l · s,
(
l2s12(pΩ,pΩ)

)
h
, (prs12(r,pΩ))h} ,

(2.92)

To take care of the non-commutativity of pr and vi(r), the subscripts on
(
p2

r

)
h

and
(prs12(r,pΩ))h are used to indicate hermitization, i.e., super-potential vectors which
have these components are to be understood in the sense of

(
v(r), 0, 0, 0, 0, 0, 0, 0, 0, 0

)T ⇐⇒ 1

2

(
p2

rv(r) + v(r)p2
r

)
(2.93)

and

(
0, 0, 0, 0, 0, 0, 0, 0, 0, v(r)

)T ⇐⇒ 1

2
(prv(r) + v(r)pr) s12(r,pΩ) . (2.94)

In the enlarged space P̄, one has

L̄Ω = iϑ(r)ΠS=1




0 0 0 0 0 0 0 0 0 0
0 0 0 0 −24 0 108 0 324 0
0 0 0 0 0 0 96 0 600 0
0 0 0 0 −18 0 153 0 477 0
0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 15 0 51 0
0 0 2 −1 0 7 0 −3 0 0
0 0 0 0 0 0 36 0 477 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0




, (2.95)



40 CHAPTER 2. UCOM

and the tensor-correlated interaction is given by the super-potential vector

Ṽ = (KΩ + exp L̄Ω)H− T , (2.96)

where

KΩ = Π1




0 0 0 0 0 0 0 0 0 0
18ϑ′(r)2 0 0 0 0 0 0 0 0 0
6ϑ′(r)2 0 0 0 0 0 0 0 0 0
45
2 ϑ
′(r)2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

45
2 ϑ
′(r)2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−2ϑ′(r) 0 0 0 0 0 0 0 0 0




(2.97)

represents the first and second order contributions3 to the correlated radial kinetic
energy (see Eq. (2.85)), and H and

T =

(
1

m
, 0,

1

mr2
, 0, 0, 0, 0, 0, 0, 0

)
(2.98)

are the Hamiltonian and the kinetic energy in the super-potential vector representation,
respectively. By applying the central correlator to Ṽ, the fully correlated interaction is
obtained.

2.5 Determination of Correlators

After the discussion of the central and tensor correlators in the preceding sections, the
task of actually determining the central and tensor correlation functions remains. In
Refs. [5] and [6] two general concepts to achieve this goal have been discussed in detail:
minimizing the energy of a specific trial state, and mapping the uncorrelated onto exact
two-body eigenstates of the Hamiltonian, similar to the treatment of the deuteron in
Sect. 2.3. The results obtained with both methods are very similar in most cases,
but the mapping methods can produce comparably long-ranged correlation functions,
like the tensor correlation function ϑd(r) constructed from the deuteron wavefunctions,
or R+(r) for purely repulsive ST -channels. This puts the two-body approximation in
question, so we will only use correlators obtained from energy minimization for many-
body calculations in this work.

In principle, the ideal procedure would be to consider the energy expectation value
as a functional of the correlation functions,

E[R+, ϑ] =

〈
Ψ
∣∣ H̃C2[R+, ϑ]

∣∣Ψ
〉

〈
Ψ
∣∣Ψ
〉 =

〈
Ψ
∣∣
[
C†r[R+]C†Ω[ϑ]HCΩ[ϑ]Cr[R+]

]C2 ∣∣Ψ
〉

〈
Ψ
∣∣Ψ
〉 , (2.99)

3The zeroth order contributions are due to the identity operator in P̄, which is included in the
exponential of L̄Ω.
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and determine optimal correlation functions for a given many-body trial state by varia-
tion. In practice, of course, one uses parametrizations for R+(r) and ϑ(r), and minimizes
the energy of a given trial state by varying their parameters, typically 4-5. Furthermore,
it is assumed that the parameters of the central and tensor correlators can be deter-
mined separately as they act on different domains. One could now determine ‘optimal’
correlation functions for every possible nucleus, but this was found to be unnecessary,
because correlators optimized for ‘heavier’ nuclei are practically identical to the ones
obtained by minimizing the energy of the two-nucleon system [6]. The parameters of
the employed correlation functions are listed in Appendix C. 4He-optimized correlators
are included for comparison, but not used in calculations.

2.6 Renormalization Aspects of the UCOM Approach

The introduction of correlation operators decouples the energy scales of the realistic
interactions — the correlation operator models the high-momentum/short-distance be-
havior, i.e., the short-range repulsion by the core and the admixing of higher angular
momenta by the tensor force, while the low-momentum/long-range behavior is specified
by the many-body state. In this sense, UCOM has a lot in common with renormalization
techniques, like those used by the Stony Brook group to construct the low-momentum
potential Vlow-k [39, 8]. However, there is no one-to-one correspondence: the UCOM
approach ensures the equivalence of the full on-shell T -matrices of the uncorrelated and
correlated interactions by using similarity transformations of finite range, i.e.,

c†T c −−−−−−→
r→∞,k→0

T (2.100)

as the relative distance r becomes large or the relative three-momentum k approaches
zero. Vlow-k, on the other hand, is derived by demanding the equivalence of the half-
on-shell T -matrices before and after the projection onto states with momenta below a
cutoff Λ,

Tlow-k(k
′, k; k2)

!
= T (k′, k; k2) , (2.101)

which is the minimal condition to ensure phase shift equivalence. The notation k2 in
the argument indicates that k is the three-momentum of the on-shell nucleon. Since the
phase-shifts are observables, they should not depend on Λ, and therefore T (k′, k; k2)
is required to be cutoff-independent. In this way, a flow equation for the potential is
obtained:

dT (k′, k; k2)

dΛ
= 0 =⇒ dVlow-k

dΛ
=

2

π

Vlow-k(k
′,Λ)T (Λ, k; Λ2)

1 − (k/Λ)2
, (2.102)

where conventional scattering units have been used, i.e., ~
2/mN = ~ = c = 1.

It was shown in [6] that the matrix elements of the correlated Bonn-A and AV18
interactions almost coincide in the 1S0 and 3S1 partial waves (see Fig. 2.9), similar to
what one observes for the Vlow-k matrix elements derived from Bonn-A and AV18 [8].
Thus, the unitary correlation operator method, just as the Vlow-k approach, extracts the
low-energy part of the input interactions in the studied partial waves.
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Figure 2.9: Diagonal and off-diagonal momentum space matrix elements of AV18 ( ) and
Bonn-A ( ), as well as the correlated AV18 ( ) and Bonn-A ( ). The central
correlator min (ST = 01) is used in the 1S0 partial wave, and the central correlator and tensor
correlators min and minγ (ST = 10) in the 3S1 partial wave (parameters cf. Appendix C).
Scattering units ~

2/mN = ~ = c = 1 are used, hence v(k, k) and ṽ(k, k′) are in units of fm.



Chapter 3

Fermionic Molecular Dynamics
(FMD)

Nuclear structure calculations are performed in the mean-field model of Fermionic
Molecular Dynamics (FMD) [13, 14]. Originally, it was developed to describe heavy
ion reactions in the low and intermediate energy regimes, below the particle production
threshold. It uses antisymmetrized Gaussian many-body states, whose dynamics are
governed by a time-dependent variational principle. The FMD states are found to be
very flexible — they can reproduce the familiar harmonic oscillator shell model states
just as well as model states with complex intrinsic structures, like multipole deforma-
tions and clustering, so it is well-suited for our purposes.

3.1 The FMD Model

3.1.1 Single-Particle States

In coordinate space, FMD single particle states are represented by Gaussians

〈
x
∣∣a, b

〉
= exp

(
−(x − b)2

2a

)
, (3.1)

where a is the complex width of the wave packet, and b = ρ + iaπ combines its mean
position and momentum:

ρ =

〈
a, b
∣∣x
∣∣a, b

〉
〈
a, b
∣∣a, b

〉 and π =

〈
a, b
∣∣p
∣∣a, b

〉
〈
a, b
∣∣a, b

〉 . (3.2)

The variances in coordinate and momentum space are determined by the real and imag-
inary parts of the width parameter:

3

2

|a|2
Re a

=

〈
a, b
∣∣ (x − ρ)2

∣∣a, b
〉

〈
a, b
∣∣a, b

〉 and
3

2

1

Re a
=

〈
a, b
∣∣ (p − π)2

∣∣a, b
〉

〈
a, b
∣∣a, b

〉 . (3.3)

The spin can be parametrized either by the projection on the quantization axis (i.e.,
spin up or down) or by a complex spinor allowing arbitrary directions. The isospin is

43
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given by its projection, fixing the nucleon to be either a proton or a neutron:
∣∣qk
〉

=
∣∣ak, bk

〉
⊗
∣∣ms,k

〉
⊗
∣∣mt,k

〉
(3.4)∣∣qk

〉
=
∣∣ak, bk

〉
⊗
∣∣χk

〉
⊗
∣∣mt,k

〉
. (3.5)

In some cases, we use superpositions of Gaussians to describe single-particle states:
∣∣qk
〉

=
∑

j

ck,j

∣∣qk,j

〉
. (3.6)

This increased flexibility of the single-particle state is particularly important to model
the exponentially decaying neutron or proton density of halo nuclei.

3.1.2 Many-Body States

General uncorrelated many-body states will be Slater determinants of the single-particle
states introduced in the previous section, i.e.,

∣∣Q
〉

= A
( ∣∣q1

〉
⊗ . . .⊗

∣∣qA
〉)
, (3.7)

where A denotes the antisymmetrization operator. Depending on whether we use one
or two Gaussians for the single-nucleon states, the many-body states will be referred to
as single and double Gaussian trial states, respectively.

A correlated many-body state can be defined by
∣∣Q̃
〉

= CΩCr

∣∣Q
〉
, (3.8)

but in computations one always evaluates the expectation values of correlated operators
in uncorrelated states, using the two-body approximation:

〈
Q̃
∣∣O
∣∣Q̃
〉

〈
Q̃
∣∣Q̃
〉 C2

=

〈
Q
∣∣
[
C†rC

†
ΩOCΩCr

]C2 ∣∣Q
〉

〈
Q
∣∣Q
〉 (3.9)

3.1.3 Matrix Elements

Since the FMD single-particle states do not form an orthogonal basis, this non-ortho-
gonality has to be accounted for in the evaluation of matrix elements. The overlap
between two single-particle states defines the overlap matrix n and its inverse o:

nkl ≡
〈
qk
∣∣ql
〉
, o ≡ n−1 . (3.10)

Using these definitions, the expectation values of one- and two-body operators become
〈
Q
∣∣A[1]

∣∣Q
〉

〈
Q
∣∣Q
〉 =

∑

kl

〈
qk
∣∣ a[1]

∣∣ql
〉
olk (3.11)

and 〈
Q
∣∣A[2]

∣∣Q
〉

〈
Q
∣∣Q
〉 =

1

2

∑

klmn
a

〈
qk, ql

∣∣ a[2]
∣∣qm, qn

〉
a
omkonl

=
1

2

∑

klmn

〈
qk, ql

∣∣ a[2]
∣∣qm, qn

〉
(omkonl − onkoml) , (3.12)

respectively.
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3.1.4 Interactions

With the abbreviations

λkl =
1

a∗k + al
, (3.13)

αkl = λkla
∗
kal , (3.14)

πkl = iλkl(b
∗
k − bl) , (3.15)

ρkl = λkl(alb
∗
k + a∗kbl) , (3.16)

the overlap between FMD single-particle states in coordinate space is

Rkl ≡
〈
ak, bk

∣∣al, bl

〉
= (2παkl)

3/2 exp

(
π2

kl

2λkl

)
. (3.17)

A calculation of the one-body part of the correlated kinetic energy now yields

〈
ak, bk

∣∣ t
∣∣al, bl

〉
=

1

2mN
(3λkl + π2

kl)Rkl ; (3.18)

recall that this is identical to the uncorrelated kinetic energy.

For use with the FMD program code, the radial functions of the correlated inter-
action are fitted to desired accuracy by a linear superposition of Gaussians (see Sect.
D.2). All matrix elements can then be expressed by analytical expressions, and one
does not need to evaluate integrals numerically. As an instructive example, consider the
spin-orbit interaction:

vls =
∑

i

γi exp

(
− r2

2κi

)
(r × p) · S . (3.19)

Its matrix elements can then be calculated by means of

vls
klmn =

〈
akbkχk, alblχl

∣∣ vls
∣∣ambmχm, anbnχn

〉

=RkmRln(ρklmn × πklmn) · Sklmn (3.20)

×
∑

i

γi

(
κi

αklmn + κi

)5/2

exp

(
− ρ2

klmn

2(αklmn + κi)

)
,

where

αklmn = αkm + αln , ρklmn = ρkm − ρln , πklmn =
1

2
(πkm − πln) , (3.21)

and Sklmn is the matrix element of the spin operator (cf. [40]). ρklmn and πklmn can
be interpreted as the matrix elements of the relative distance and momentum operators
of the interacting nucleons, and αklmn as the width of the wave packets in the relative
coordinate.
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3.2 Mean-Field Models and Symmetry

Exact many-body Hamiltonians are usually invariant under several symmetry groups.
Unfortunately, we run into serious problems if we consider systems with many particles
and strong correlations, because the simple mean-field states which are preferable to
describe such systems often violate these symmetries. Consider a product of plane
wave states, for example — such a state preserves the translational invariance of the
system, but is obviously ill-suited to describe cluster effects, since it is extended over
all space. The FMD states, on the other hand, reproduce intrinsic deformations very
well, but they are localized in space, and therefore they violate translational invariance.
Furthermore, they are no angular momentum eigenstates either, i.e., they also violate
rotational symmetry. The methods used to restore the broken symmetries in order to
obtain the symmetry-invariant physical ground state are outlined in this section. A
detailed discussion of the subject can be found in [41].

3.2.1 Center-of-Mass Motion

Consider the translationally invariant A-body Hamiltonian

H(xi) =
∑

i

p2
i

2mN
+
∑

i<j

v(rij) , rij = xi − xj . (3.22)

We can introduce collective and intrinsic coordinates by transforming to the center-of-
mass system,

xcm =
1

A

∑

i

xi , x′i = xi − xcm , r′ij = rij . (3.23)

This implies that the intrinsic coordinates x′i are functions of a set of 3A − 3 internal
coordinates ξν , since we have to conserve the overall number of degrees of freedom; thus,

x′i = x′i(ξ1, . . . , ξ3A−3) , (3.24)

and we have the constraints ∑

i

x′i(ξν) = 0 . (3.25)

The transformed Hamiltonian has the general structure

H(xcm, ξν) = Hcoll(xcm) + Hintr(ξν) + Hcoupl(xcm, ξν) . (3.26)

We could now solve the eigenvalue problem of the transformed Hamiltonian, but this
quickly becomes very complicated due to complex, often nonlinear dependencies between
the ξν and the xi, even if the coupling term vanishes due to symmetries or is small
enough to be treated perturbatively.

In order to facilitate calculations, one wants to retain a ‘simple’ structure for the
intrinsic Hamiltonian. To this end, the method of redundant variables was developed
(see [41] and references to the original literature therein). We embed the A-body Hilbert
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space HA represented in the single-particle coordinates x1, . . . ,xA into a larger space
H̄A by

xi =xi(x
′
1, . . . ,x

′
A,xcm) , i = 1, . . . , A ,

gi =gi(x
′
1, . . . ,x

′
A,xcm) , i = 1, . . . , 3 ,

(3.27)

where the x′i are cms-coordinates as above, and the redundant variables g1, . . . , g3 con-
tain the constraints. The physical submanifold of H̄A is characterized by the vanishing
of these unphysical degrees of freedom, i.e.,

g1 = g2 = g3 = 0 . (3.28)

Using the same notation as above, we have

xi = x′i + xcm , g =
1

A

∑

j

x′j (3.29)

or

x′i = xi −
1

A

∑

j

xj + g , xcm =
1

A

∑

j

xj − g . (3.30)

The derivatives are then given by (a, b = 1, 2, 3)

∂

∂xi,a
=
∑

b

∂xcm,b

∂xi,a

∂

∂xcm,b
+
∑

k,b

∂x′k,b

∂xi,a

∂

∂x′k,b

=
1

A

∂

∂xcm,a
+
∑

k,b

(δik − 1

A

∑

j

δjk)δab
∂

∂x′k,b

=
1

A

∂

∂xcm,a
+

∂

∂x′i,a
− 1

A

∑

j

∂

∂x′j,a
, (3.31)

where one has to remember that gi and xi,a are independent variables in the expanded
space. Thus, one finds the following transformation for the momenta:

pi =
1

A
pcm + p′i −

1

A

∑

j

p′j , (3.32)

where p′i is the canonical conjugate to x′i. Using

∑

i


 1

A
pcm + p′i −

1

A

∑

j

p′j




2

=

=
∑

i

[ 1

A2
p2

cm + p′2i +
2

A
pcm · p′i −

2

A2

∑

j

pcm · p′j −
2

A

∑

j

p′i · p′j +
1

A2

∑

j,k

p′j · p′k
]

=
1

A
p2

cm +
∑

i

p′2i +
2

A



∑

i

pcm · p′i −
∑

j

pcm · p′j


− 2

A



∑

i,j

p′i · p′j −
∑

j,k

p′j · p′k




=
1

A
p2

cm +
∑

i

p′2i − 1

A

∑

i,j

p′i · p′j , (3.33)
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the Hamiltonian now takes the form

H =
p2

cm

2AmN
+
∑

i

p′2i
2mN

+
∑

i<j

v(r′ij) −
1

2AmN

∑

i,j

p′ip
′
j , (3.34)

which does not change at all if one considers the physical submanifold g = 0. We also
see that the coupling term present in the general Hamiltonian (3.26) vanishes, owing
to translational invariance. The collective part is given by the kinetic energy of the
center-of-mass motion, and therefore its eigenstates are plane waves. Thus, a general
eigenstate of H decouples into an intrinsic and a collective part,

∣∣Ψ
〉

=
∣∣k
〉
cm

×
∣∣Φ
〉
intr
, (3.35)

so we need not worry about translation invariance if we treat the intrinsic Hamiltonian
with mean-field techniques, as we only have to multiply the mean-field state with a
plane wave to obtain the physical ground state. The intrinsic Hamiltonian

Hintr =
∑

i

p′2i
2mN

+ V − 1

2AmN

(
∑

i

p′i

)2

≡ H′ − T′cm (3.36)

is similar to the original one, with the exception that the kinetic energy of the center-
of-mass motion in the intrinsic system is subtracted. The reason for this becomes
a little clearer if one separates the NN -interaction in the intrinsic system in a shell
model potential and a residual part — there are spurious solutions from the center-
of-mass motion, which correspond to the movement of the nucleus as a whole in the
potential. These unphysical solutions mix with the physical ones, and therefore one
needs to correct for their contributions to the total energy etc.1 In the special case of a
harmonic oscillator potential, the center-of-mass motion and the single-particle motion
can be separated by means of a Talmi transformation ([38, 6]).

3.2.2 Angular Momentum Projection

Whenever a state is a superposition of different angular momentum eigenstates, rota-
tional symmetry is violated. The restoration of rotational symmetry by means of the
method of redundant variables, as discussed in the previous section, proves to be very
problematic in this case — the search for a suitable transformation to the intrinsically
deformed system remains an open problem, in part due to the non-Abelian character
of the rotation group. The supposedly obvious choice, using the principal axes of the
inertial tensor as the basis for the intrinsic system, unfortunately leads to a strong
coupling term in the decomposition of the Hamiltonian analogous to (3.26) (see e.g.
[42]). Naturally, the eigenvalue problem becomes rather complex, so one has to resort
to different techniques. This is where angular momentum projection (AMP) comes into
play, a special case of a generator-coordinate method [41, 43].

The arbitrariness in the orientation of the symmetry-violating wavefunction is re-
moved by integrating over all allowed orientations:

∣∣Ψ
〉

=

∫
dΩ f(Ω)R(Ω)

∣∣Φ
〉
, Ω = (α, β, γ) , (3.37)

1There would be no mixing in an exact treatment, see [41].
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where
∣∣Φ
〉

is the deformed many-body state, e.g., from a mean-field calculation, Ω is a
set of Euler angles corresponding to a given rotation, and

R(Ω) = e−iαJze−iβJye−iγJz . (3.38)

The integration in Eq. (3.37) is understood to run over the whole parameter space
of the rotation group SU(2), using the corresponding invariant Haar measure (see e.g.
[44])

dΩ = sinβdαdβdγ . (3.39)

In order to obtain angular momentum eigenstates
∣∣ΨJM

〉
, the weight function in Eq.

(3.37) is expanded in terms of the Wigner D-functions

DJ
KM (Ω) =

〈
JK
∣∣R(Ω)

∣∣JM
〉
. (3.40)

Eq. (3.37) yields

∣∣ΨJM
〉

=
2J + 1

8π2

∑

K

gJ
K

∫
dΩDJ∗

MK(Ω)R(Ω)
∣∣Φ
〉
≡
∑

K

gJ
KPJ

MK

∣∣Φ
〉
, (3.41)

where PJ
MK

∣∣Φ
〉

defines a generalized projection operator with the properties

PJ
MK =

∑

ν

∣∣νJM
〉〈
νJK

∣∣ , (3.42a)

(
PJ

MK

)†
= PJ

KM , (3.42b)

PJ
MKPJ ′

M ′K′ = δJJ ′δKM ′PJ
MK′ . (3.42c)

ν in Eq. (3.42a) is understood as a collective index for all non-rotational quantum
numbers. If

∣∣Φ
〉

is decomposed into eigenstates of Jz,

∣∣Φ
〉

=
∑

K

∣∣ΦK

〉
, Jz

∣∣ΦK

〉
= K

∣∣ΦK

〉
(3.43)

Eq. (3.42a) implies that

PJ
MK

∣∣Φ
〉

= PJ
MK

∑

K′

∣∣ΦK′

〉
=
∑

ν,K′

∣∣νJM
〉 〈
νJK

∣∣ΦK′

〉
, (3.44)

i.e., the projector transforms the K-component into a simultaneous eigenstate of J2 and
Jz with eigenvalues J and M , and annihilates all components of

∣∣Φ
〉

for which K 6= K ′.
The energy of the projected state is now given by

EJM = EJ =

〈
ΨJM

∣∣H
∣∣ΨJM

〉
〈
ΨJM

∣∣ΨJM
〉 =

∑
KK′

gJ∗
K gJ

K′hJ
KK′

∑
KK′

gJ∗
K gJ

K′nJ
KK′

, (3.45)

where

hJ
KK′ ≡

〈
Φ
∣∣HPJ

KK′

∣∣Φ
〉
, (3.46a)

nJ
KK′ ≡

〈
Φ
∣∣PJ

KK′

∣∣Φ
〉
. (3.46b)
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Naturally, EJ is independent of M due to the restored rotational invariance. The
coefficients gJ

K are obtained by solving the Hill-Wheeler equations

∑

K′

hJ
KK′gK′ = EJ

∑

K′

nJ
KK′gK′ , (3.47)

which constitute a generalized eigenvalue problem. Solving it corresponds to a diago-
nalization of H in the space spanned by the non-orthogonal states PJ

MK

∣∣Φ
〉
.

Variation Before and After the Projection

Up to this point, the symmetry-violating wavefunction
∣∣Φ
〉

has not been specified. In
our technical framework, we want to derive it from a FMD variational calculation, which
allows two possible ways to proceed:

(i) Projection after variation (PAV).
∣∣Φ
〉

is determined by requiring the functional

E[Φ] =

〈
Φ
∣∣H − Tcm

∣∣Φ
〉

〈
Φ
∣∣Φ
〉 (3.48)

to be minimal. The variation needs to be performed only once, but we technically
violate the variational principle, since we do not vary the projected wavefunction,
and we do not account for possible changes of the self-consistent mean-field within
the rotational bands.

(ii) Variation after projection (VAP). The proper variational principle

E[ΨJ ] =

〈
ΨJ
∣∣H − Tcm

∣∣ΨJ
〉

〈
ΨJ
∣∣ΨJ

〉 = minimal (3.49)

is used, i.e., the projected energy PJ(H − Tcm)PJ is minimized within the space
of FMD states

∣∣Φ
〉
. This method is preferable, but greatly increases the com-

putational effort, since many off-diagonal many-body matrix elements have to be
calculated repeatedly in order to perform the integration over the Euler angles in
(3.41) when the parameters of the FMD state

∣∣Φ
〉

are varied. In addition, the
variation has to be done for each angular momentum J separately.

Since the present work is more concerned with the correlated interactions rather
than detailed structure studies of specific isotopes, we will be content with the results
of PAV calculations for the time being.

A Note on the Implementation: The Zaremba-Conroy-Wolfsberg (ZCW)
Method

From the definition (3.41) of the projection operator PJ
MK , it is obvious that numerical

calculations of the energy and other observables require three-dimensional integrations.
Nowadays, numerical integrations rely on Monte-Carlo techniques, but in early imple-
mentation stages of the AMP program, the discretization of the angular integrals for
random Euler angles (α, β, γ) lead to convergence problems and unsatisfying results,
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most likely because the dimension of the integral is not large enough to make the sta-
tistical error of the Monte-Carlo method sufficiently small [45].

The solution to these problems was the use of a nonrandom method for integra-
tion, originally proposed independently by Zaremba and Conroy, and later refined by
Wolfsberg and co-workers [46]. They showed that it is possible to find nonrandom opti-
mal angles, which are ideal sampling points for integrands with uniformly convergent2

Fourier series (see, e.g., [44]). Using them improves the convergence of the integra-
tion algorithm and reduces the error of the result, which is of order O(1/N) for a
one-dimensional integration, as opposed to the statistical error O(1/

√
N) of the Monte

Carlo method.

2Uniform convergence means that the partial sums of the Fourier series converge to the true function
for arbitrary function arguments.



Chapter 4

Correlated Interactions and
Corrections

4.1 Correlated Interactions

With the unitary correlation operator method at hand, one can now construct correlated
versions of the realistic potentials introduced in Chapter 1.

4.1.1 Correlators for Argonne V18 and Bonn-A

The central and tensor correlators used for the AV18 and Bonn-A interactions are
shown in Figs. 4.2 and 4.3, respectively. The parameters of the correlation functions
can be found in Appendix C; they were determined in [6] by an energy minimization
as described in Sect. 2.5. A comparison shows that the central and tensor correlators
for the Argonne interaction tend to be stronger than those for the Bonn-A OBEPR
potential. This is not surprising, since it was already noted in Sect. 2.3 that AV18
has a stronger tensor force than Bonn-A, which causes a larger 3D1-wave admixture
to the deuteron groundstate wavefunction (see Fig. 4.1). However, both potentials are
constructed to reproduce the same low-energy observables, and hence they give the same
deuteron binding energies. In order to achieve this, the gain in binding energy provided
by AV18’s stronger tensor force has to be balanced by an increase in the repulsion
generated by its core.

The tensor correlators displayed in Fig. 4.3 are long-ranged compared to the central
correlators, hence one obtains a rather large correlation volume. Since the importance
of higher cluster orders increases with the probability to find more than two nucleons
inside the correlation volume, this raises concerns regarding the validity of the two-body
approximation (cf. Sect. 2.1.3). The ST = 11 channel proves to be unproblematic due
to the small values of the corresponding correlation functions, but in the ST = 10
channel, one encounters a similar situation as with the exact deuteron tensor correlator,
which was found to be of very long range in Sect. 2.3. To ensure the validity of the
two-body approximation, its range is restricted by minimizing the energy under the

52
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Figure 4.1: Deuteron wave functions ψ̃d
L=0,2(r) for the AV18 (left) and Bonn-A potential (right)

(cf. Ref. [6]).

following constraints:

∫
dr r2 ϑ(r)

!
=





0.1 fm3 α

0.2 fm3 β

0.5 fm3 γ

. (4.1)

In this way, the tensor correlators denoted minα, minβ, and minγ are obtained.

4.1.2 Correlated Interactions in Coordinate Space

In Figs. 4.4 to 4.6, we display the radial dependencies of the correlated AV18 and Bonn-
A OBEPR interactions in the ST = 10 channel. The interactions are given in terms of
the operators

{
(
p2

r

)
h
,

�
, l2, l · s, s12, s12(l, l), s12(pΩ,pΩ),

l2l · s,
(
l2s12(pΩ,pΩ)

)
h
, (prs12(r,pΩ))h} ,

(4.2)

(cf. Sect. 2.4), where the subscript h indicates hermitization. The correspondence
between the radial dependencies and the operators is obvious in most cases; the tensor
operators are denoted

t : s12 trp : s12(r,pΩ)

tll : s12(l, l) tpp : s12(pΩ,pΩ)

when they are referred to in superscripts. It should also be noted that we will use the
notation ṽ for the whole correlated interaction from now on, including the two-body
contributions from the kinetic energy (cf. Chapter 2).

The quadratic spin-orbit operator (l ·s)2 occurring in the AV18 interaction has been
decomposed into irreducible components,

(l · s)2 =
2

3
l2Π1 −

1

2
l · s +

1

6
s12(l, l) , (4.3)
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Figure 4.2: Central correlators for the AV18 (left) and Bonn-A OBEPR (right) interactions (cf.
Tabs. C.1, C.3 and Ref. [6]): depicted is the correlator minα in the ST = 00 channel ( ),
as well as the correlators min in the channels 01 ( ), 10 ( ), 11 ( ).
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and AV18’s charge-asymmetric and charge-dependent components (cf. Sect. 1.3, Eqs.
(1.23) and (1.25)) have been dropped, since they have only a small impact on the bulk
properties of the nuclei. Only the plots for the tensor correlator minα are shown, since
the overall structure of the radial dependencies is virtually identical for minβ and minγ

(cf. [6]).

The repulsive central core of AV18 is reduced in range by the central correlator, and
additional attraction is generated by the tensor correlator. In the case of Bonn-A, the
combined effects of the central and tensor correlator render the central part completely
attractive. The contributions from the correlated kinetic energy give AV18 a radial-
momentum-dependent potential, whose radial dependency is the correlated radial mass
introduced in Sect. 2.4, and make the l2-potential strongly attractive. The effects are
less dramatic for Bonn-A, which had strong momentum-dependent parts to begin with.
These parts are slightly weakened at small distances, but their overall range is increased
by contributions from the correlated kinetic energy. The spin-orbit interaction of AV18
is shifted to shorter ranges and obtains a slightly attractive part, while it is merely
‘washed out’ in the case of Bonn-A. The minimum of the tensor interaction is shifted
to smaller distances for both potentials — in the case of AV18, however, its strength is
slightly reduced, while it remains unchanged for Bonn-A. The uncorrelated AV18 has a
s12(l, l)-potential from the decomposition of the quadratic spin-orbit potential, which is
weakened considerably by the correlators.

This covers the range of ‘basic’ interaction terms, which are present in one or both
of the uncorrelated potentials. All other contributions are generated by the correlation
procedure. Note that the radial dependencies of these terms are all very short-ranged,
as we had already mentioned in the general discussion of the coordinate-space repre-
sentations of the correlated interaction in Sect. 2.4. In addition, they only contribute
for nonzero orbital angular momenta and remain finite, hence they are negligible in
comparison to the centrifugal barrier. To obtain a numerical estimate, consider the
centrifugal barrier acting in a state with relative orbital angular momentum L = 1:

〈
tΩ
〉
L=1

=
L(L+ 1)~c

mNr2
≈ 83 MeV fm2

r2
, (4.4)

i.e., its strength ranges from 166 MeV at r = 0.5 fm to 830 MeV at 0.1 fm, whereas
Figs. 4.5 and 4.6 show that the omitted interaction terms are more than an order of
magnitude smaller at these distances.

4.1.3 Correlated Interactions for the FMD model

Since the FMD code uses a Gaussian parametrization of interaction matrix elements,
it is technically advantageous to represent pr and l2 interaction terms symmetrically in
terms of radial derivatives and gradients,

←−(
r
∂

∂r

)
1

r
ṽp2

r(r)
1

r

−→(
∂

∂r
r

)
,

←
∇ ṽp2

(r)
→
∇ , (4.5)
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Figure 4.4: Radial dependencies of the AV18 and Bonn-A OBEPR interactions ( ) in the
ST = 10 channel, using the central and tensor correlators min and minα, respectively. The
uncorrelated interactions are shown for comparison ( ).
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Figure 4.5: (cont.) Radial dependencies of the AV18 and Bonn-A OBEPR interactions ( )
in the ST = 10 channel, using the central and tensor correlators min and minα, respectively.
The uncorrelated interactions are shown for comparison ( ).
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Figure 4.6: (cont.) Radial dependencies of the AV18 and Bonn-A OBEPR interactions ( )
in the ST = 10 channel, using the central and tensor correlators min and minα, respectively.
The uncorrelated interactions are shown for comparison ( ).
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where the arrows indicate the direction in which the derivative acts. Using Eq. (A.17),
we obtain what we refer to as the FMD form of these terms,

1

2

(
p2

r ṽ
p2

r(r) + ṽp2
r(r)p2

r

)
= prṽ

p2
r(r)pr −

1

2
ṽp2

r ′′(r) − ṽp2
r ′(r)
r

(4.6a)

ṽl2(r) l2 =
1

2

(
p2 r2 ṽl2(r) + r2 ṽl2(r)p2

)
− 1

2

(
p2

r r2 ṽl2(r) + r2 ṽl2(r) p2
r

)

= p r2 ṽl2(r)p − pr r2 ṽl2(r) pr (4.6b)

where the ṽi(r) are the radial dependencies of the correlated interaction, i.e., the two-
body part of the correlated Hamiltonian, with respect to the operators (4.2).

From Eqs. 4.6, the following radial dependencies for the FMD interactions are
obtained:

ṽc
FMD(r) = ṽc(r) − 1

2r

∂2

∂r2
(r ṽp2

r(r)) , (4.7a)

ṽ
p2

r
FMD(r) = ṽp2

r(r) − r2 ṽl2(r) , (4.7b)

ṽp2

FMD(r) = r2 ṽl2(r) . (4.7c)

The higher order tensor and orbital angular momentum interactions are omitted, since
their contributions can be neglected for the reasons discussed in the previous section.
We do keep the L = 1 contribution of l2l · s, however, by adding it to the spin-orbit
interaction:

ṽls
FMD(r) = ṽls(r) + 2ṽl2ls(r), (

〈
L = 1

∣∣ l2
∣∣L = 1

〉
= 2) . (4.8)

We will drop the subscript FMD from now on, since we will only discuss FMD interac-
tions in the remainder of this chapter.

Furthermore, we drop the residual tensor interaction ṽt, since it only gives very small
contributions — typically less than 0.1% — in FMD calculations [6, 45]. This can be
understood as a consequence of the vanishing directional average of the tensor operator,

∫
dΩ [3(σ1 · r̂)(σ1 · r̂) − σ1 · σ2] = 0 , (4.9)

and the averaging nature of the mean-field itself. Given the tendency towards the forma-
tion of energetically favorable α-clusters, we can then understand the small contributions
arising for non-spherical nuclei as residual effects due to

• α− α interactions, e.g., spin polarization,

• small deformations of the α due to the Coulomb force, and

• interactions with nucleons not bound in an α-cluster, whose density distribution
is concentrated at ranges affected only by the weak large distance tail of the
correlated tensor interaction.

The parametrized correlated interactions, used for calculations with the FMD pro-
grams in the present work, are listed in Appendix D. We will refer to these FMD
interactions as AV18α, Bonn-Aα, and Bonn-Aγ for the remainder of this work.
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Figure 4.7: Binding energy deviations and root-mean-square charge radii calculated with Bonn-
Aα ( ) and Bonn-Aγ ( ) compared to experimental values (bars).

4.1.4 Groundstate Properties of Selected Isotopes

In Fig. 4.7, we compare the binding energies and root-mean-square charge radii of
several stable isotopes, calculated using Bonn-Aα and -γ, with experimental data. All
experimental binding energies and charge radii referenced in this work have been taken
from [47] and [48], respectively. The results from FMD variational calculations were
obtained using single-Gaussian trial states with free spin (cf. Chapter 3), which are
the default choice for all calculations in this chapter unless noted otherwise. Since rp,
the rms-charge radius of the proton, is of the same order of magnitude as the nuclear
radii and interaction ranges, we have to include it when we compare our results to
experimental charge radii:

rcms =
√〈

r2ms,p

〉
+r2p , rp = 0.862 fm . (4.10)

Here,
〈
r2ms,p

〉
denotes the mean-square radius of the proton distribution, and the nu-

merical value for rp is taken from [49]1.

1The determination of rp from e−p-scattering is dated, but in reasonal agreement with the currently
recommended value rp = 0.870± 0.008|ex ± 0.006|th fm [24]. Modern methods to determine rp focus on
measurements and calculations of the Lamb shift.
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Figure 4.8: Binding energy deviations and root-mean-square charge radii calculated with
AV18α ( ) and Bonn-Aα ( ) compared to experimental values (bars).

Examining our results, we find that the binding energies of most nuclei are too
low, and the radii are too small at the same time. The binding energies obtained
with Bonn-Aγ are in better agreement with experiment, but due to the rather large
range of the tensor correlator minγ , we have to worry about the validity of the two-
body approximation (cf. Sect. 4.1.1). The root-mean-square charge radii rcms are
almost identical for both interactions, which illustrates that the difference in the tensor
correlators affects primarily the strength of the interaction’s radial dependencies rather
than its structure, i.e., the location of the energy minima. In addition, the trends of
the ∆EB/A-curves are very similar and the binding energies differ only by an almost
constant shift.

From looking at Fig. 4.8, in which the groundstate results obtained with the AV18α
interaction are compared to those of Bonn-Aα, it is evident that we cannot obtain
major improvements of our results by switching to another interaction, at least not one
that is phase-shift equivalent to Bonn-A. A comparison of AV18γ and Bonn-Aγ yields
the same picture. The reason for the similitude of the results becomes apparent when
the correlated interactions are examined in momentum space — as indicated in Sect.
2.6, the diagonal and off-diagonal matrix elements of the correlated Bonn-A and AV18
interactions are practically identical at laboratory energies below 300 MeV. Thus, all
interactions between on-shell and/or off-shell nucleons inside the nucleus are essentially
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Figure 4.10: Intrinsic one-body densities and radial density distributions of 8Be and 20Ne,
calculated using AV18α. Contours are in units of ρ0.
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Figure 4.11: Intrinsic one-body density of 24Mg, calculated with the AV18α interaction.
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due to the same potential, and in turn, the results for the groundstate properties are
identical.

In order to demonstrate the flexibility of the combined UCOM- and FMD-framework
(and complement existing results for the Bonn-Aγ interaction presented in [6]), we show
density cuts for magic and non-magic nuclei in Figs. 4.9 to 4.12, calculated with the
AV18α interaction. The doubly magic nuclei 4He, 16O, and 40Ca show the radially
symmetric density distributions one would expect from the shell model.

For more complex nuclei, we find distinct clustering effects, in particular multi-α
structures for even-even N = Z nuclei like 8Be, 20Ne, and 24Mg. Since these results
show that the formation of α-clusters is very common in light nuclei, we obtain a
first set of candidate configurations for multi-configuration mixing calculations of other
isotopes. In fact, recent calculations [45, 50] indicate that even the magic 16O might
have a considerable admixture of a 4α-tetrahedron configuration to its groundstate,
allowing it to gain several MeVs of binding energy after angular momentum projection,
and possibly explaining why its experimental charge radius, rcms = 2.7061 fm, is slightly
larger than that of 17O ( rcms = 2.6975 fm).

Fig. 4.12 shows the one-body density and radial density distribution of 11Li. The
variational calculation using a double-Gaussian trial state is able to describe the neutron
halo, as evidenced by the extended tail of the radial neutron density distribution.

When compared to the Bonn-Aγ results of [6], the density distributions show only
minor differences — they extend slightly further for the AV18α interaction. These
findings illustrate both the similarity of the correlated Bonn-A and AV18 interactions
and the similar structure of the α- and γ-correlated interactions’ radial dependencies.

4.2 Phenomenological Corrections

The results of Sect. 4.1.4 illustrate that the correlated interactions are a good starting
point for nuclear structure calculations, but evidently, something is still missing from
the picture. During their derivation, we made the following approximations:

• truncation of the cluster expansion after the second order (two-body approxima-
tion),

• restriction of the correlator ranges through constraints on the correlation volume
(cf. Sect. 4.1.1),

• truncation of the Baker-Campbell-Hausdorff series for the tensor-correlated inter-
action, and

• omission of higher order tensor and angular momentum operators.

The error due to the third and fourth approximations has been checked and found to
be negligibly small for the deuteron (see Sect. 2.4 and Ref. [6]). While there will
be some accumulation with increasing mass number, the centrifugal barrier becomes
increasingly important, too. As discussed earlier, the omitted interaction terms will
therefore be suppressed anyway.

The situation is far less clear for the two-body approximation. Results for centrally
correlated interactions in [4, 5] showed how higher cluster orders, although small in
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comparison to two-body contributions, can nevertheless have a significant influence on
the binding energy of a nucleus. The total binding energy EB is the result of cancella-
tions between the positive kinetic energy and the negative correlated NN interaction,
which are typically an order of magnitude larger than EB itself. Thus, the omitted con-
tributions from the higher cluster orders are one of the primary causes for differences
between the calculated and the experimental binding energies.

In a related manner, we restricted the correlation volume of the ST = 10 tensor
correlators to ensure the validity of the two-body approximation in the first place.
However, the exact deuteron tensor correlator derived in Sect. 2.3 shows that the
two-nucleon system actually requires long-ranged tensor correlations, whether we can
deal with them in calculations or not. The restriction of the tensor correlator ranges
prevents the system from becoming ‘perfectly’ correlated, and important contributions
to the binding energies are missing.

The third major cause is the omission of genuine three-nucleon and higher many-
nucleon forces, which cannot be determined from two-nucleon-scattering data and are
therefore not included in the uncorrelated AV18 and Bonn-A interactions in the first
place. As mentioned in Chapter 1, the results of quasi-exact Green’s Function Monte
Carlo (GFMC) performed by the Argonne group [51, 52, 53, 3] show that three-nucleon
forces must be included to obtain better agreement with experiment. Many phenomeno-
logical 3N -forces have been employed in calculations, but their parameters are reduced
to mere fit degrees of freedom in the end. There is hope that the chiral potential (cf.
Sect. 1.4) with its well-defined 3N forces provides a way to overcome these problems.

These three sources of error,

• the omission of higher cluster orders,

• the imperfect correlations due to the restricted tensor correlator range, and

• the lack of genuine three- and many-nucleon forces,

necessitate the introduction of corrections in order to achieve agreement between cal-
culation results and experimental data.

The evaluation of higher cluster orders is in principle only a problem of the calcu-
lational effort, both in the derivation of their terms and their evaluation in numerical
calculations. For the many-nucleon forces, on the other hand, we first need to have
a consistent, well-defined model, e.g., the chiral potential, which must then be exam-
ined in order to construct genuine n-body correlation operators. Afterwards, the whole
program of Chapter 2 would have to be carried out for all of these new correlators.

These calculations are very involved, and the implementation of these effects in the
FMD code will greatly increase the computational effort: in a nucleus of mass number
A, the number of possible nucleon pairs and triplets are given by

(
A

2

)
=

1

2
A(A− 1) = O(A2) and

(
A

3

)
=

1

6
A(A− 1)(A− 2) = O(A3) , (4.11)

which implies that the numerical effort for the calculation of two- and three-body matrix
elements scales with A4 and A6. Therefore, we relegate the introduction of three-body
correlations and three-body forces to a later time, and examine ways to simulate their
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effects by effective two-body corrections, whose parameters we will determine by fitting
experimental data.

The symmetries of the NN interaction — invariance under the Galilei algebra,
isospin transformations, as well as the parity and time-reversal operations — restrict
the structure of the correction, but still leave us with an infinite number of consistent
terms. Since we truncated the expansion of the tensor-correlated interaction after terms
of third order in angular momentum, it would be contradictory to use terms of higher
orders in l at this point, which limits the possible choices. In light of the discussion
in Sect. 4.1.3, it does not make sense to use l-operators other than l2 and l · s at all,
unless the radial potential function of the correction were large enough to compete with
the centrifugal barrier. One could hardly speak of a correction in this case. The tensor
operators contained in the correlated interaction,

s12, s12(l, l), s12(r,pΩ), s12(pΩ,pΩ), s12(r,pΩ) , (4.12)

cover most ways to construct s12(a,b) operators (aside from using p), and since they
are all negligible according to our previous discussions, we do not consider them either.
Higher powers of these operators can always be decomposed into products of the ba-
sic irreducible terms and angular momentum polynomials (cf. Appendix B), and are
therefore no suitable choices for correction terms. Thus, we are left with the operators

p2
r ,p

2,
�
, l · s , (4.13)

which make up the correlated interactions in the FMD picture.
Owing to the similarity of the results obtained for the various correlated interactions

in Sect. 4.1.4, it is sufficient to study the modifications for a single correlated interaction
only. Optimized versions for the other interactions can be obtained by a readjustment
of the corrections’ parameters.

4.2.1 Central and Momentum-Dependent Corrections

Looking at the binding energies and charge radii displayed in Figs. 4.7 and 4.8, the first
choice for a correction would be the addition of an attractive term to the central part
of the correlated interaction. Using a Gaussian radial dependency, we have

ṽc
mod(r) = ṽc(r) + γc exp

(
− r2

2κc

)
, γ < 0 . (4.14)

Choosing the Bonn-Aγ interaction as a test candidate, since its binding energies agree
better with experimental data, we immediately find that ṽc

mod(r) causes severe over-
binding of the ‘heavier’ nuclei around the Calcium region if we tune the parameters
γc and κc in order to reproduce the binding energy of 4He. Naturally, the already
too small radii decrease even further. A solution to this problem is the addition of a
short-ranged repulsive interaction. Since the over-binding grows worse with increasing
nucleon number, we choose to add a repulsive term to the momentum-dependent part
of Bonn-Aγ,

ṽp2

mod(r) = ṽp2
(r) + γp2

exp

(
− r2

2κp2

)
, γ > 0 , (4.15)
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Figure 4.13: ∆EB/A and ∆ rcms of 16O for the Bonn-Aγ interaction and ST = 10 corrections
with varying parameters.
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rather than just the p2
r-part, which increases the repulsive effect on the binding energies

of the heavier nuclei through the l2-term in

pṽp2
(r)p = prṽ

p2
(r)pr + ṽp2

(r)l2 . (4.16)

ST = 10 corrections

The spin and isospin spaces provide sufficient freedom to antisymmetrize a state of
four nucleons, hence we can assume that the coordinate space wavefunction will be
symmetric. Comparison with the harmonic oscillator shell model backs this assumption,
since neutrons and protons occupy the respective s-shells. Thus, in order to fit the
properties of 4He, we only need to introduce a correction to the even channels.

As we discussed in Sect. 4.1.1, the ST = 10 channel contains strong contributions
from the correlated tensor interaction, depending on the size and range of the corre-
sponding tensor correlators. Thus, the ST = 10 channel is more likely to be the source
of deviations from experimental data than the 01-channel, either due to non-negligible
many-body correlations, which we would expect for the correlator minγ , or the ‘se-
vere’ restriction of the correlation range in case of minα. For this reason, we introduce
a ST = 10 correction consisting of the aforementioned attractive local and repulsive
momentum-dependent central parts, and tune its parameters — γc, κc, γp2

, and κp2
—

to fit the binding energies and root-mean-square charge radii of the doubly magic nuclei
4He, 16O, and 40Ca. We keep an eye on the groundstate properties of the doubly-magic
48Ca, too, but do not use them as input for fitting.

Fig. 4.13 illustrates how the the binding energy and root-mean-square charge radius
of 16O change with the parameters of the correction. The behavior of the binding
energy is as expected — if the κi are held fixed (lower plot), increasing the strength of
the attractive central part will increase the binding energy, increasing the strength of the
repulsive part decreases it again, and vice versa. The same situation occurs if the γ i are
fixed and the ranges are varied (upper part). The behavior of the charge radius proves
to be more interesting. While a change of the γi at fixed κi produces the same trends as
for the binding energy, the charge radii appear to be almost insensitive to a change of
κc for fixed γi (upper right plot). We can explain this by inspecting the modified radial
dependencies displayed in Fig. 4.14: the location of the central interaction’s minimum
at r ≈ 1.2 fm will only change notably for large γc and short ranges κc, for which the
slope of the Gaussians changes strongly across the location of the minimum. If κc is
large, the Gaussian is rather flat, and only the energy of the minimum will be shifted
upward or downward, depending on γc. Since the momentum-dependent interaction is
purely repulsive, increasing its range κp2

will evidently be the primary cause for shifts
of the overall energy minimum to larger r. Under this aspect, it is sensible to fix the
value of κp2

first, e.g., by fitting a selected charge radius.
Mathematically, we can fit either two of the three doubly magic nuclei perfectly

with our modification’s four parameters. However, if 16O and 40Ca are fit, 4He becomes
under-bound, and tuning the correction to 4He and 16O gives bad results for 40Ca and
the ‘constraint’ 48Ca. Nevertheless, we can obtain a very good simultaneous description
of 4He and 40Ca, and get reasonable results for 16O and 48Ca (see Fig. 4.15). The
parameters of the corresponding correction, denoted Bonn-Aγ+ st10, are listed in Tab.
4.2 at the end of the section, and the modified radial dependencies are displayed in Fig.
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Figure 4.14: Modified radial dependencies of Bonn-Aγ + st10 interaction ( ) (cf. 4.2), in
comparison with Bonn-Aγ ( ). Note that both interactions are represented in the FMD
form.
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Figure 4.15: Binding energy deviations and rms charge radii for the lightest doubly magic
nuclei, calculated for Bonn-Aγ + st10, using single Gaussian states with free spin ( ) and
double Gaussian states with fixed spin ( ).

4.14. The ‘curve’ of the charge radii has a dent at 16O, while the results for the other
doubly magic nuclei agree fairly well with experiment. In a similar fashion, 16O is still
under-bound by about 0.1 MeV per nucleon, which results in a characteristic triangular
arc in the ∆EB/A plot. As already mentioned in Sect. 4.1.4, these deviations, in
particular the increased rcms when compared to the neighboring isotopes and predictions
for closed shell nuclei, are indications of a 4α-tetrahedron admixture to the groundstate,
which increases the charge radius towards the experimental value, and leads to a larger
groundstate binding energy after angular momentum projection.

The results obtained with the ST = 10 correction do not change notably if we shift
some or all of its strength to the ST = 01 channel, i.e., if we use potentials of the form

vi
ee(ε) ≡ vi (εΠ10 + (1 − ε)Π01) , i = c, p2 , (4.17)

where the index ee indicates a shift between the even channels. To illustrate this
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ST
Nucleus

00 01 10 11
# of NN -pairs

4He – 3 3 – 6
16O 6 30 30 54 120
40Ca 45 165 165 405 780

Table 4.1: Multiplicities of the four ST -channels in the doubly magic nuclei.

insensitivity, the binding energy deviations and charge radii of the Carbon and Calcium
isotopes are displayed in Fig. 4.16, for ε = 0.5, 0.75, and 1.0.

Given the differences in the radial dependencies of the even channels (see Fig. 4.17),
these findings are surprising, but they underline that the radii are primarily determined
by the location of the minima in the central part. If they are not dislocated notably, the
radii do not change. The insensitivity also implies that both even channels occur with
roughly the same multiplicities in the studied isotopes, since an unweighted shift would
otherwise create serious over- or under-binding. They can be estimated by comparison
with, e.g., the harmonic oscillator shell model: we only need to couple the quantum
numbers of a nucleon pair occupying given single-particle states, and explicitly count
the pairs which contribute to the different ST -channels. For the doubly magic nuclei,
we find the values listed in Tab. 4.1, which back our assumption.

Even-Odd Corrections

The isotope chains presented in Fig. 4.16 also show that there is still considerable
room for improvement. Since we are now aware that corrections to the even channels
are practically equivalent for the mass range under consideration, the obvious choice
is to introduce correction terms in the odd channels. If we add both a local and a
momentum-dependent Gaussian central correction restricted to the ST = 11 channel,
we would ideally need to determine all parameters of the correction — two strengths
and two ranges for each channel — by a simultaneous variation. In practice, this means
that the number of parameter sets which have to be checked becomes unfeasibly high,
since the calculational effort is of order N 8, where N is the number of possible values
for each of the parameters, and we would need to perform a minimization of each fit
nucleus — at least four, so that we can obtain a conclusive fit of eight nuclear properties
— for every possible parameter set.

In order to reduce the computation time, we need to fix some of the parameters to
reasonable values, preferably in a way that will retain the good results for 40Ca. As
we have discussed above, 4He will not be affected by a ST = 11 correction, since its
nucleons are coupled to even-channel pairs, so an ST = 10 part which gives a good fit
of the Helium data is chosen as the starting point. Two methods have been chosen to
proceed:

(i) The parameters γc
11, γ

p2

11 , κ
c
11, and κp2

11 are varied freely to improve the agreement
of the 16O results with experimental data. As Fig. 4.18 illustrates for two sample
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Figure 4.16: Shift between the ST = 10 and ST = 01 channels for the Bonn-Aγ + st10
interaction. Shown are ∆EB/A and rcms for Carbon and Calcium isotopes, for ε = 0.5 ( ),
0.75 ( ), and 1.0 ( ) . The results are almost indistinguishable.
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Figure 4.17: Radial dependencies of Bonn-Aγ in the ST = 10 ( ) and ST = 01
( ) channels.

corrections,

γc
11 = −8.353 MeV , κc

11 = 3.0 fm2 ,

γp2

11 = 20.587 MeV fm2 , κp2

11 = 2.0 fm2 ,
(vI)

and

γc
11 = −2.644 MeV , κc

11 = 6.0 fm2 ,

γp2

11 = 9.170 MeV fm2 , κp2

11 = 3.0 fm2 ,
(vII)

this comes at the price of worse results for 40Ca. Graphically speaking, varying
the parameters corresponds to ‘rotating’ the ∆EB/A- and rcms-curves around the
‘hub’ 4He without deforming them notably. Varying all four ST = 11 parameters
simultaneously still requires a computational effort of order N 4 and hence limits
the use of this method.
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Figure 4.18: Binding energy deviations and rms charge radii for selected doubly magic nuclei,
calculated for Bonn-Aγ + st10 + 11-vI ( ) and -vII ( ).

(ii) As an alternative approach, we use the ansatz

vi
eo(ε) = vi ((1 − ε)Π10 + εΠ11) , i = c, p2 , (4.18)

where the index eo now indicates a mixing of even and odd channels. The ranges
κc and κp2

are held fixed at their values from the pure ST = 10 correction, which
reduces the free parameters to ε, γc, and γp2

. To hold the 4He properties fixed,
we further require that the ST = 10 correction is reproduced independently of ε,
i.e.,

γc !
=

γc
10

1 − ε
, (4.19a)

γp2 !
=

γp2

10

1 − ε
. (4.19b)

The altered radial dependencies in the ST = 11 channel are displayed in Fig. 4.19,
alongside with ∆EB/A and rcms of our selected doubly magic nuclei (Fig. 4.20)
for ε = 0, 0.2, and 0.5. We observe that an increase of ε increases the difference
between the ∆EB/A of 16O and 40Ca, which is caused by the different relative
weight of the channels in these nuclei,

16O :
n11

n10
=

54

30
= 1.8 , 40Ca :

n11

n10
=

405

165
= 2.455 , (4.20)

(cf. Tab. 4.1). The ST = 11 correction is repulsive at short ranges, hence
16O becomes increasingly under-bound, while it is attractive at intermediate and
long ranges, causing the over-binding of 40Ca. The charge radii (except for 4He)

increase with ε due to the additional repulsion generated by vp2

11(r) first, but move
back towards the values of the pure ST = 10 correction as we approach ε = 0.5.
Thus, the attractive local central part becomes strong enough to outweigh the
repulsion and concentrates the two-body densities in the region of the minimum
at r ≈ 2 fm.
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Figure 4.19: Radial dependencies of Bonn-Aγ + st10 + 11-ε, for ε = 0 ( ) (unmodified
ST = 11 channel), 0.2 ( ), and 0.5 ( ).
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Figure 4.20: Binding energy deviations and rms charge radii for selected doubly magic nuclei,
calculated for Bonn-Aγ + st10 + 11-ε with ε = 0 ( )(ST = 10 correction), 0.2 ( ), and
0.5 ( ).

minα vs. minγ

As we have discussed in Sect. 4.1 and at the beginning of the present section, the
long range and large correlation volume of the tensor correlator minγ give serious cause
for concern regarding the validity of the two-body approximation: its range is almost
4 fm (see Fig. 4.3), which is about twice as large as the mean distance of the nucleons
inside the nucleus. Hence, there is a high probability to find three nucleons inside
the correlation volume simultaneously, and the three-nucleon correlations become large.
The range of minα, on the other hand, is only about 2 fm, and therefore comparable to
the nucleon mean distance, hence we expect that only two nucleons will be inside the
correlation volume most of the time, i.e., the two-body approximation is good. However,
minα also lacks binding energy contributions due to its restricted range, as indicated
before.

This lack of binding energy actually works to our advantage if we use Bonn-Aα as the
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Figure 4.21: ∆EB/A and rcms for selected doubly magic nuclei, calculated for Bonn-Aα + w.
Calculations were done using single-Gaussian trial states ( ) and double-Gaussian states
( ), respectively, with free spins.

fundament for our correction terms: the relative deviations in binding energy and charge
radii are more uniform in magnitude than for Bonn-Aγ. The binding energies calculated
for the latter are closer to experimental values, while both interactions were found to
yield the same radii in Sect. 4.1.4. The type of modifications studied in the previous
subsections increases both the radii and the binding energies, which quickly causes over-
binding for Bonn-Aγ if the radii are close to experiment. Since the unmodified Bonn-Aα
has smaller binding energies to begin with, the over-binding can be removed entirely.

Wigner corrections

While discussing the results for even-odd corrections with various shift parameters ε,
we found that a correction with ε = 0.5 would actually give good results if it were
not for the over-binding of 40Ca and 48Ca. We have argued that this can be cured by
starting from the Bonn-Aα interaction. Since we have also shown that shifts among the
even or the odd channels make no difference at all, we conclude that a simple Wigner
correction to the Bonn-Aα interaction can reproduce experimental data well enough
(see Fig. 4.21), while being structurally simple at the same time:

ṽc
mod,ST (r) =ṽc

ST (r) + γc exp

(
− r2

2κc

)
, (4.21)

ṽp2

mod,ST (r) =ṽp2

ST (r) + γp2
exp

(
− r2

2κp2

)
. (4.22)

The parameters of the final Wigner-corrected interaction, denoted Bonn-Aα + w, are
listed in Tab. 4.2.

4.2.2 Spin-Orbit Corrections

In the previous section, we have extensively studied ways to construct corrections using
the first three operators of our proposed basic set

{p2
r , l

2,
�
, l · s} , (4.23)
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Figure 4.22: Modified radial dependencies of the Bonn-Aα+w interaction ( ) , compared
to the uncorrected Bonn-Aα ( ).
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Figure 4.23: (cont.) Modified radial dependencies of the Bonn-Aα + w interaction ( ) ,
compared to the uncorrected Bonn-Aα ( ).

γc [ MeV] κc [ fm2] γp2
[ MeV fm2] κp2

[ fm2]

Bonn-Aα+ w (*) -6.102 3.470 13.050 3.000
Bonn-Aγ + st10 -5.525 6.875 19.831 3.950
Bonn-Aγ + st10 + 11 (ε = 0.2) -6.906 6.875 24.789 3.950

AV18α+ w (*) -7.261 2.750 14.050 2.500
AV18γ + st10 -5.529 6.350 20.450 4.000

Table 4.2: Local and momentum-dependent central corrections. Final parameters for the
interactions marked with an (*) were adopted from R. Roth [54].

so we now focus on the remaining type, spin-orbit corrections. We add another Gaussian
to the spin-orbit parts of the Bonn-Aα+ w and AV18α+ w interactions (cf. Tab. 4.2),
respectively,

ṽls
mod(r) = ṽls(r) + γls exp

(
− r2

2κls

)
, (4.24)

and determine its parameters by additionally fitting the properties of 24O 2. In this way,
we obtain the interactions denoted Bonn-Aα+wls and AV18α+wls, whose parameters
are listed in Tab. 4.3.

In Fig. 4.24, the binding energy deviations and charge radii are shown for selected

2Consider a Hartree-Fock Hamiltonian

H = T + U + Vr ' T + U , Vr =
∑

i,j

vij − U , (4.25)

where U denotes the mean-field potential, Vr the residual interaction, and vij a suitable NN -interaction
(e.g., a free NN -interaction ‘tamed’ by a Brueckner-type partial summation of ladder diagrams, or a
correlated interaction). The mean-field potential U[ρ(1)] depends on the single-particle densities in a
self-consistent fashion, hence the single-particle energy levels and therefore the shell closures are subject
to change over the whole nuclear chart. In particular, as the neutron dripline is approached, a new
magic number N = 16 [55] appears for the neutrons, and 24O is indeed doubly magic.
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Figure 4.24: ∆EB/A and rcms of selected nuclei for the Bonn-Aα+wls ( ) and AV18α+wls
( ) interactions. Results for Bonn-Aα+ w ( ) are shown for comparison.

stable nuclei. The spin-orbit modification improves the binding energies of the sd-
shell isotopes considerably, since there are more nucleons with higher orbital angular
momentum, while the effect is naturally less pronounced for the lighter p-shell nuclei. A
remarkable feature is the excellent reproduction of the charge radii. While the increase
of rcms is approximately linear over the p- and sd-shells for Bonn-Aα+w, the spin-orbit
modification produces just the right ‘dents’ in the rcms-curves.

The differences between Bonn-Aα+ wls and AV18α+ wls can be traced back to the
fit process — the former was tuned with emphasis on the charge radii of the p-shell
nuclei and 16O, while the parameters of the latter were adjusted with respect to the
sd-shell nuclei. The strategy employed for the AV18α+ wls interaction should actually
be better, because the description of the p-shell nuclei improves if double-Gaussian trial
states with free spin are used for the variational calculation. These are better suited to
model slowly decaying density distributions, e.g., exponential tails for halo nuclei (see
[6]), and therefore often produce slightly larger radii.

Figs. 4.25 and 4.26 display groundstate results for the Oxygen and Calcium isotopes,
respectively. As for the stable nuclei, the binding energies improve significantly. Again,
the sd-shell Calcium isotopes react stronger to the additional attraction, due to higher
orbital angular momenta of their nucleons.
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Figure 4.26: ∆EB/A [MeV] and rcms of the Calcium isotopes, calculated using the Bonn-
Aα+ wls ( ), AV18α+ wls ( ), and Bonn-Aα+ w ( ) interactions.
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γc [ MeV] κc [ fm2] γp2
[ MeV fm2] κp2

[ fm2] γls [ MeV] κls [ fm2]

AV18α+ wls -7.261 2.750 14.050 2.500 -2.700 3.000
Bonn-Aα+ wls -6.102 3.470 13.050 3.000 -3.000 3.000

Table 4.3: Parameters of the wls-Corrections, adopted from R. Roth [54].

Spin-Orbit Corrections and Three-Nucleon Forces

We introduced the spin-orbit correction in this section mainly for pragmatic reasons,
since it is the only remaining term which can provide degrees of freedom for a tuning
of the effective interactions. However, there might actually be a more fundamental
motivation for the introduction of an effective spin-orbit correction.

Since the introduction of the second generation realistic NN -interactions — Bonn-
A, AV18, etc., the so-called Ay puzzle has come under scrutiny. The vector analyzing
power Ay is a polarization observable in elastic nucleon-deuteron scattering processes,

Ay =
σ↑ − σ↓
σ↑ + σ↓

, (4.26)

where σi are the total cross sections for incoming nucleons with spin up or down per-
pendicular to the scattering plane [56]. All calculations using realistic NN -interactions
as input under-predict the size of Ay by about 30%. In [57], Hüber and Friar have per-
formed an extensive analysis of this problem, and shown that it is impossible to modify
the NN -interaction to reproduce the experimentally observed Ay while preserving the
correct description of scattering phase shifts. They conclude that the only consistent
way to resolve this issue is the introduction of spin-dependent 3N -forces — spin-orbit
forces, in particular, since Ay is mainly sensitive to the 3PJ phase shifts.

The idea that 3N forces are of spin-orbit type is supported by results of the Argonne
group, too. In [52], results of Green’s Function Monte Carlo calculations for 5He are
presented, which show that the AV18 potential under-predicts the p3/2 − p1/2 level
splitting by about 30 %, which is very close to the discrepancies quoted for Ay in the
literature.

Preliminary studies of the question whether our NN spin-orbit modification can
be understood as an effective approximation to more complicated 3N spin-orbit forces
have not yielded conclusive results thus far.

4.3 Scaling

An alternative approach to the addition of correction terms to the correlated interactions
discussed in the previous sections is the introduction of parameters into the correlated
interaction or the complete Hamiltonian to provide a possibility to fit binding energies
and charge radii on a nucleus-by-nucleus basis. Considering our experience with the
previous modifications, it is to be expected that we need at least two such parameters,
by which we can balance the repulsive and the attractive contributions to the nucleus’
binding energy. A possible and quite natural choice is to introduce an effective mass
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Figure 4.27: ∆EB/A and ∆ rcms of 20Ne, calculated for raw (upper figure) and fine (lower
picture) grids of the scale factors akin and aint, using a scaled Bonn-Aα interaction and single-
Gaussian trial states with fixed spin. The range of values was restricted in the lower density
plots to provide a clearer picture. The + symbols indicate values above ∆EB/A = 0.2MeV and
∆ rcms = 0.02MeV.
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into the kinetic energy by

m∗N = akinmN , T,Tcm −→ T

a2
kin

,
Tcm

a2
kin

, (4.27)

and an ‘effective range’ of the potential by globally rescaling the length units of the
correlated NN interaction3:

r −→ aintr , =⇒ p −→ p

aint
, (4.28)

hence the name ‘scaling’. In this context, akin and aint will be referred to as scale factors.
The modification can be interpreted as a many-body effect, i.e., the presence of other
nucleons affects the interaction and the motion of a nucleon pair through screening
(or anti-screening) effects. One may argue that the Coulomb interaction will undergo
screening effects, too, and an effective charge should therefore be introduced. In this
case, we would have to ask whether this effective charge is better obtained by including
another scale factor, or if it should be connected to akin or aint. Since we are going to
use the scale factors to fit the binding energy and charge radius of selected nuclei, a
third scale factor is clearly undesirable, since it would allow for an infinite degeneracy
of the fit parameters and render the fit procedure useless. Thus, any rescaling of the
Coulomb interaction needs to be done by either akin or aint. We will discuss the effects
of a scaled Coulomb interaction after outlining the general method and giving some
results.

To determine optimal scale factors for a given nucleus, we proceed in a straightfor-
ward fashion. The groundstate of a given nucleus is calculated for all possible combina-
tions of scale factors taken from a discrete grid in the space of akin and aint; to reduce
the computation time, these calculations were done using single-Gaussian trial states
with fixed spin (cf. Sect. 3) for the first tests. The upper part of Fig. 4.27 displays
density plots of the binding energy and charge radius deviations for 20Ne obtained from
this calculation. By choosing a rather large spacing of ∆a = 0.02 for the first run, we
can get an image of the ∆EB/A- and ∆ rcms-planes over a ‘wide’ range. Each of them
shows a distinct valley of small deviations, and these two valleys ‘cross’. This behavior
is common to all examined nuclei. Due to the crossing, we can find a set of parameters
for which the sum of the relative deviations,

χ ≡
√(

∆EB

EB

)2

+

(
∆ rcms

rcms

)2

(4.29)

becomes minimal. Before minimizing χ, however, we need to interpolate the values on
the grid. This procedure is performed with Mathematica, using its built-in interpolation
routines and interpolating functions of varying order. One recognizes quickly that the
chosen resolution of the grid is insufficient, hence we perform a second minimization
step: after determining the crossing region from the raw grid, we enhance the resolution
and recalculate the groundstates for the corresponding smaller intervals of akin and aint.
A spacing of ∆a = 0.05 has proven adequate for all examined nuclei. Density plots of

3The original idea was to consider a unitary scale transformation. This interpretation was ultimately
dropped due to the need for different scale parameters for the kinetic energy and the interaction.
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Figure 4.28: ∆EB/A and rcms for selected nuclei. The results were obtained using a scaled
Bonn-Aα interaction (cf. Tab. 4.4) for each nucleus, and single-Gaussian states with fixed spin.

∆EB/A and ∆ rcms for 20Ne obtained with the enhanced grid are displayed in the lower
half of Fig. 4.27. Due to the enhancement, a linear interpolation between neighboring
data points is now sufficient to obtain scale factors which reproduce the binding energies
and charge radii of the selected nuclei to accuracies of 0.5% and better (see Fig. 4.28).

Let us come back to the question of the effects of a scaled Coulomb interaction. The
change in the energies for each point of the (akin, aint) grid is

E′B = EB + VCoul

(
1 − 1

a

)
, (4.30)

where a is either akin or aint, depending on our choice. This change would need to be
compensated by a readjustment of akin and aint in order to fit the experimental data.
The valleys and cutting regions will simply be scaled in a hyperbolic fashion, similar to
the scaling of intervals in special relativity, but without reaching extreme cases, since a
is generally of order 1. The general features of the scaled interaction remain unchanged.

Tab. 4.4 lists scale factors for various nuclei, obtained using the outlined two-step
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4He 7Li 9Be 11B 12C 13C 14C 14N 16O 17O

akin 0.943 0.860 0.895 0.939 0.920 0.910 0.900 0.910 0.849 0.850
aint 0.873 0.745 0.780 0.820 0.810 0.809 0.810 0.815 0.785 0.785

18O 20Ne 24Mg 28Si 32S 40Ca 48Ca

akin 0.839 0.849 0.870 0.905 0.854 0.820 0.850
aint 0.770 0.775 0.790 0.825 0.785 0.775 0.790

Table 4.4: Scale factors akin and aint for selected stable nuclei, obtained for single Gaussian
trial states with fixed spin.
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Figure 4.29: ∆EB/A and rcms for N = Z nuclei. The scale factors were obtained by linear
( ) and quadratic ( ) interpolation of the optimal scale factors listed in Tab. 4.4.
Single-Gaussian trial states with fixed spin were used for the calculation.

method. Using these, we can try to predict optimal scale factors by interpolation or
extrapolation. In Fig. 4.29, groundstate results are shown for some N = Z nuclei,
whose scale factors were obtained by linear and quadratic interpolation. Interpolation
functions of higher order have been tested, but they were found to give no improvement
of the results — on the contrary, since higher orders allow steeper gradients between
the data points, the interpolations actually became worse. A similarly unsatisfying
picture emerges if one considers isotope chains, e.g., for Oxygen (Fig. 4.30). Using the
scale factors of the stable isotopes 16O to 18O as a starting point, somewhat reasonable
values for akin and aint can be obtained for the neighboring isotopes 15O and 19O, but
no further beyond these.

The main reason for the failure of the interpolation and extrapolation methods lies
in their inability to deal with changes in the deformations of neighboring nuclei, because
the scale factors can only concentrate or dilute existing density distributions. This is
closely related to the problem of choosing the nuclei whose optimal scale factors are to
be used as input data, which will obviously have considerable influence on the outcome
of the inter- and extrapolations. Consider again the Oxygen isotopes. Whether we
include 16O or not, given the issue of the tetrahedron-admixture to its ground state (cf.
sects. 4.1.4 and 4.2.1), will cause a prediction of akin = 0.848 or akin = 0.872 for 15O,
respectively, from a linear extrapolation. This inevitably leads to the conclusion that
we have to perform the optimization procedure for each nucleus of interest.
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A further disadvantage of the outlined method is the high amount of computation
time it requires, especially if we also vary the spin of the nuclei and move to larger
mass numbers. The deviation measure χ (4.29) could in principle be used to determine
the optimal scale factors in a variational scheme; however, since the calculation of each
gradient in the parameter space of akin and aint would involve two full minimizations, it
is not clear by how much this would reduce the overall computation time (if anything at
all). The brute-force two-step approach needed about 240 minimizations to obtain both
grids, where the grid was chosen with rather conservative margins. Considering the gen-
eral trend of the scale factors to move towards values smaller than 1 (see Tab. 4.4) to
counteract the under-binding and too small radii of the unmodified correlated interac-
tions, we are already able to reduce the grid size in eventually forthcoming calculations.
This will most probably be sufficient to compete with an automated minimization of χ.

4.4 Conclusions

Over the course of this chapter, we have constructed several modifications of the corre-
lated interactions used for FMD calculations. While all of them are able to improve the
agreement between the FMD groundstate results and experimental data, the addition
of phenomenological correction terms to the interaction is preferable: since their param-
eters are obtained by fitting the properties of a few nuclei, they have a high predictive
power. The scaling method, on the other hand, needs to be redone for every nucleus,
because the determination of scale factors by interpolation is very unreliable. Thus,
the predictive power of this approach is limited to quantities beyond EB and rcms —
spectra, density distributions, transition matrix elements, etc. In addition, the re-fitting
of the scale factors for every nucleus requires a considerable computational effort.



Chapter 5

Nuclear Structure

5.1 The Nuclear Chart

The mean-field groundstate results agree best with experimental data if the Bonn-
Aα+ wls and AV18α+ wls interactions are used (cf. Chapter 4). We therefore present
groundstate results for the range of nuclei covered in FMD calculations to this point.
Figs. 5.1 and 5.2 show the differences between calculated and experimental binding
energies for AV18α+ wls. The binding energies and charge radii are also listed in Tab.
5.1, alongside the results for Bonn-Aα+ wls and the experimental values [47, 48].

EB/A [ MeV] rcms [ fm]

Nucleus AV18α Bonn-Aα AV18α Bonn-Aα
+wls +wls

Exp
+wls +wls

Exp

3He −2.041 −2.052 −2.573 1.778 1.784 1.937
4He −6.980 −6.980 −7.074 1.679 1.678 1.676
6Li −3.761 −3.778 −5.333 2.158 2.175 2.552
7Li −4.000 −4.005 −5.606 2.273 2.298 2.395
9Be −4.870 −4.878 −6.463 2.458 2.492 2.518
10B −5.013 −5.009 −6.475 2.439 2.477 2.428
11B −5.570 −5.555 −6.928 2.440 2.486 2.406
12C −6.337 −6.303 −7.680 2.498 2.537 2.470
13C −6.610 −6.574 −7.470 2.491 2.535 2.463
14N −6.969 −6.924 −7.476 2.560 2.607 2.552
15N −7.502 −7.444 −7.699 2.574 2.620 2.609
16O −7.959 −7.891 −7.976 2.627 2.675 2.706
17O −7.647 −7.590 −7.751 2.649 2.702 2.698
18O −7.438 −7.389 −7.767 2.676 2.727 2.760
19F −7.346 −7.304 −7.779 2.770 2.830 2.898
20Ne −7.412 −7.381 −8.032 2.946 3.007 3.005
21Ne −7.352 −7.322 −7.972 2.934 2.998 2.967
22Ne −7.379 −7.344 −8.081 2.925 2.993 2.954
23Na −7.440 −7.408 −8.112 2.982 3.051 2.994
24Mg −7.506 −7.474 −8.261 3.042 3.114 3.058

Table 5.1: FMD results for the groundstates of stable nuclei.
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EB/A [ MeV] rcms [ fm]

Nucleus AV18α Bonn-Aα AV18α Bonn-Aα
+wls +wls

Exp
+wls +wls

Exp

25Mg −7.510 −7.484 −8.223 3.081 3.157 3.027
26Mg −7.577 −7.562 −8.334 3.118 3.189 2.999
27Al −7.782 −7.751 −8.332 3.071 3.149 3.053
28Si −7.665 −7.639 −8.448 3.125 3.199 3.123
29Si −7.979 −7.932 −8.449 3.120 3.195 3.113
30Si −8.092 −8.054 −8.521 3.136 3.207 3.160
31P −8.072 −8.070 −8.481 3.234 3.283 3.189
32S −8.163 −8.126 −8.493 3.260 3.350 3.252
33S −8.213 −8.180 −8.498 3.269 3.358 –
34S −8.283 −8.255 −8.584 3.294 3.374 3.285
36S −8.439 −8.419 −8.576 3.322 3.410 3.298
35Cl −8.257 −8.229 −8.521 3.337 3.422 3.365
37Cl −8.458 −8.440 −8.571 3.369 3.462 3.384
36Ar −8.227 −8.212 −8.520 3.381 3.472 3.391
38Ar −8.490 −8.480 −8.614 3.411 3.504 3.404
40Ar −8.367 −8.352 −8.596 3.431 3.519 3.427
39K −8.513 −8.505 −8.557 3.451 3.545 3.435
41K −8.430 −8.421 −8.576 3.466 3.566 3.452
40Ca −8.544 −8.539 −8.551 3.486 3.577 3.477
42Ca −8.494 −8.489 −8.617 3.502 3.597 3.506
43Ca −8.484 −8.487 −8.601 3.512 3.605 3.493
44Ca −8.488 −8.482 −8.658 3.516 3.611 3.515
46Ca −8.510 −8.511 −8.669 3.528 3.629 3.492
48Ca −8.555 −8.551 −8.667 3.544 3.652 3.474
45Sc −8.435 −8.436 −8.619 3.561 3.664 3.546
46Ti −8.386 −8.382 −8.656 3.607 3.706 3.606
47Ti −8.414 −8.415 −8.661 3.611 3.713 3.596
48Ti −8.447 −8.448 −8.723 3.626 3.725 3.592
49Ti −8.482 −8.475 −8.711 3.626 3.730 3.574
50Ti −8.517 −8.520 −8.756 3.637 3.736 3.571
50V −8.454 −8.457 −8.696 3.684 3.785 –
51V −8.513 −8.509 −8.742 3.675 3.785 3.600
50Cr −8.278 −8.394 −8.700 3.716 3.814 3.660
52Cr −8.351 −8.355 −8.776 3.753 3.859 3.645
53Cr −8.395 −8.404 −8.760 3.733 3.839 3.659
54Cr −8.444 −8.366 −8.778 3.735 3.873 3.685
55Mn −8.269 −8.293 −8.765 3.818 3.927 –
54Fe −8.235 −8.192 −8.737 3.839 3.996 3.693
56Fe −8.356 −8.371 −8.790 3.827 3.935 3.738
57Fe −8.341 −8.362 −8.770 3.845 3.957 3.754
58Fe −8.424 −8.441 −8.792 3.841 3.953 3.774
59Co −8.359 −8.380 −8.768 3.901 4.010 3.788

Table 5.1: FMD results for the groundstates of stable nuclei.
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EB/A [ MeV] rcms [ fm]

Nucleus AV18α Bonn-Aα AV18α Bonn-Aα
+wls +wls

Exp
+wls +wls

Exp

58Ni −8.214 −8.208 −8.732 3.934 4.077 3.775
60Ni −8.312 −8.236 −8.781 3.950 4.107 3.812
61Ni −8.322 −8.346 −8.765 3.955 4.070 3.821

Table 5.1: FMD results for the groundstates of stable nuclei.

5.2 Spectra and Densities

Using the various corrections discussed in the previous chapter, we are able to reproduce
experimental groundstate results with our FMD calculations rather well. Let us examine
the spectra now, and see how well the modified interactions reproduce them. All data
on experimental energy levels has been taken from [58].

The parameters of the scaled Bonn-Aα interactions used in this section are listed
in Tab. 5.2. They have been redetermined for each nucleus using single-Gaussian trial
states with free spin.

5.2.1 6Li

The lowest energy levels of 6Li after angular momentum projection are shown in Fig.
5.4. In a mean-field picture, both a proton and a neutron occupy single particle energy
levels in the p3/2-shell. Since the tensor force favors the alignment of nucleon spins, one
would expect that the angular momenta of the two p-shell nucleons couple to J = 3 in
the groundstate to provide optimal binding. Quite to the contrary, the experimental
groundstate is found to be Jπ = 1+, resulting from a distinct 4He + d structure which
can be understood by noting that the threshold for 4He + d-decay lies at an excitation
energy of just about 1.5 MeV [59].

The uncorrected Bonn-Aα and the Bonn-Aα+wls interaction both produce Jπ = 3+

groundstates, which is not surprising given the mean-field nature of the variation before
the angular momentum projection. What is surprising, however, is that Bonn-Aα + w
produces the correct groundstate, since the density distributions depicted in Fig. 5.5
become more dilute as a result of the Wigner correction. In the case of 6Li, this effect
seems to be beneficial to the formation of a cluster substructure, which is destroyed
again by the additional attraction generated by the spin-orbit correction term of Bonn-

7Li 9Be 12C 17O 20Ne 24Mg

akin 0.861 0.875 0.878 0.850 0.850 0.835
aint 0.746 0.765 0.785 0.785 0.775 0.765

Table 5.2: Scale factors for the nuclei discussed in Sect. 5.2, determined using single Gaussian
trial states with free spin.
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Figure 5.2: Nuclear chart beyond Z = 20 for the AV18α+wls potential, calculated using single
Gaussian states with free spin.
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Figure 5.4: Energy levels of 6Li.

E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rmms [ fm] rcms [ fm]

Bonn-Aα

3+ −9.610 6.010 2.000 12.000 2.100 2.280
2+ 3.990 5.840 2.020 5.370 2.180 2.360

Bonn-Aα+ w

1+ −25.100 0.002 2.000 1.970 2.230 2.400
3+ 0.768 6.120 2.000 12.300 2.220 2.390
2+ 3.490 5.980 2.020 5.760 2.260 2.430
1+ 5.090 6.020 2.010 1.750 2.280 2.440

Bonn-Aα+ wls

3+ −25.800 6.000 2.000 12.000 2.140 2.320
2+ 9.470 5.650 2.100 4.090 2.210 2.370

Table 5.3: Calculated levels of 6Li for Bonn-Aα and various modifications, using double Gaus-
sian trial states.

Aα + wls. Bonn-Aα + w also reproduces the second 1+ state rather well, although
further experimental 0+ and 2+ states are missing.

The expectation values of the angular momentum observables

J2 =
〈
J2
〉
, L2 =

〈
L2
〉
, S2 =

〈
S2
〉
, (5.1)

listed in Tab. 5.3 agree well with the given explanation of the calculated spectrum. For
the 3+ groundstates of Bonn-Aα and Bonn-Aα + wls, L2 ≈ 6 and S2 ≈ 2 suggest that
the valence nucleons are in a state with L = 2 and S = 1, as would be obtained by
coupling two p-shell nucleons. The quantum numbers L = 0 and S = 1 of the Bonn-
Aα+ w groundstate, on the other hand, agree with the cluster picture, since 4He and d
have angular momenta Jπ = 0+ and Jπ = 1+, respectively.

To conclude the discussion, let us have a look at the intrinsic one-body densities of 6Li
displayed in Fig. 5.5. As mentioned above, the addition of the Wigner correction dilutes
the density distribution, while the additional spin-orbit correction term concentrates it
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Figure 5.5: 6Li intrinsic one-body densities, calculated for Bonn-Aα and various modifications
using double Gaussian trial states. Values on the contours are densities in units of the nuclear
matter density ρ0 = 0.17 fm−3.

again. Common to all three interactions is the oblate core region of the nucleus, and
the slight hint of a dumb-bell or peanut shape of the densities, visible in the outermost
contours. This may be taken as further evidence of the clustering in 6Li, although
the shape is quite symmetric and would therefore be more in line with, say, a 3H +
3He structure. 3H + 3He is indeed a decay channel for an excited 6Li nucleus, but
the threshold lies about 16 MeV above the groundstate, making it unlikely that this
particular cluster structure should show more prominently in the intrinsic densities
than 4He + d.
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Figure 5.6: Rotational band of 7Li.

5.2.2 7Li

Fig. 5.6 shows the relative spectra of 7Li for Bonn-Aα and the various modified inter-
actions, obtained by performing an angular momentum projection. The corresponding
levels are listed in Tab. 5.4. We find that the order of the four lowest-lying states with
negative parity is reproduced accurately. The density cuts displayed in Fig. 5.7 show
that 7Li is approximately an oblate ellipsoid, hence we can try to group these levels into
a rotational band by comparing with a particle-plus-rotor model.

The rather large deformation suggests that the strong coupling limit is realized (cf.
[41]), i.e., the odd nucleon is adiabatically following the rotation of an A = 6 core, either
6He or 6Li. The latter should be favored, because its binding energy is larger:

EB(6Li) = −31.995 MeV, EB(6He) = −29.269 MeV . (5.2)

In this case, a spectrum of levels

EK(J) = εK +
1

2J (J(J + 1) −K2) (5.3)

with spacing ∆J = 1 is expected, where εK is the single-particle energy of the band
head, J denotes the total angular momentum, K the projection of J on the body-fixed
3-axis (the large axis of the ellipsoid), and J the moment of inertia. The reversed order
of the levels can be explained if the Coriolis interaction is taken into account in first
order perturbation theory. It contributes an additional term for K = 1/2 bands only,

EK(J) = ε1/2 +
1

2J

(
J(J + 1) − 1

4
+ a

(
J +

1

2

)
(−1)J+1/2

)
, (5.4)

where a is the so-called decoupling parameter. This can be understood if one notes that
K is also the projection of the valence particle’s angular momentum on the symmetry
axis of the rotor, because the angular momentum of the rotor has to be perpendicular
to the symmetry axis. K = 1/2 corresponds to the minimal possible projection, and
therefore to a maximal alignment between the angular momenta of rotor and valence
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E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rms [ fm] rcms [ fm]

Bonn-Aα

3/2− −11.020 2.010 0.770 3.730 2.040 2.150
1/2− 1.090 1.990 0.770 0.720 2.040 2.140
7/2− 4.700 12.070 0.770 15.860 2.050 2.150
5/2− 7.480 12.000 0.770 8.770 2.050 2.150

Bonn-Aα(sc.)

3/2− −38.590 2.070 0.890 3.720 2.280 2.350
7/2− 2.610 11.750 0.930 15.860 2.280 2.360
1/2− 2.650 2.030 0.840 0.670 2.280 2.350
5/2− 10.690 11.890 0.840 8.790 2.280 2.360

Bonn-Aα+ w

3/2− −30.807 2.028 0.764 3.758 2.227 2.311
1/2− 0.743 2.001 0.765 0.739 2.227 2.311
7/2− 4.320 11.661 0.774 15.508 2.235 2.317
5/2− 6.112 11.904 0.770 8.710 2.235 2.317

Bonn-Aα+ wls

3/2− −31.560 2.060 0.810 3.760 2.200 2.290
1/2− 1.760 2.040 0.790 0.770 2.200 2.290
7/2− 3.900 11.900 0.810 15.710 2.210 2.300
5/2− 8.280 11.820 0.780 8.740 2.210 2.300

Table 5.4: Calculated levels of 7Li for Bonn-Aα and various modifications.

particle. Eq. 5.4 implies that all levels for which J + 1
2 is even – 3/2−, 7/2−, . . . – are

shifted downwards if a is negative1.
Bonn-Aα and Bonn-Aα+w give the best reproduction of the first three states, aside

from the splitting between the 1/2− and 3/2− states still being a bit too large. Bonn-
Aα + wls drives these states as well as the 5/2− and 7/2− states further apart, which
can be attributed to the additional attractive spin-orbit force. The results for the scaled
Bonn-Aα are the continuation of this trend to the extreme – 7/2− and 1/2− overlap.
This has to be attributed to the increased range of the interaction’s rescaled spin-orbit
part.

Examining the root-mean-square mass and charge radii listed in Tab. 5.4, we find
confirmation for the 6Li+n picture. Extracting the rms radius of the proton distribution
from the charge radius,

rp,ms =
√
r2cms − r2p , rp = 0.862 fm , (5.5)

1Depending on which of the two experimental 5/2− levels one considers a member of the band, a
simple least-squares fit to the experimental data yields the following values for a, J and ε1/2:

Eexp

(
5

2

−
)

= 7.460 MeV : ε1/2 = −0.449 MeV,
1

2J
= 0.581 MeV, a = −1.631 ,

Eexp

(
5

2

−
)

= 6.680 MeV : ε1/2 = −0.437 MeV,
1

2J
= 0.542 MeV, a = −1.502 .
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Figure 5.7: 7Li intrinsic one-body densities, calculated for Bonn-Aα and various modifications.
Values on the contours are densities in units of ρ0 = 0.17 fm−3.
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Figure 5.8: Lowest energy levels of 8Be.

we find it to be usually about 0.2 fm smaller than rms, i.e., the neutron distribution
is more extended. The results for the expectation values listed in Tab. 5.4 also agree
with the 6Li + n model if we compare them with the 6Li results given in Tab. 5.3. We
found that the spins of the odd p-shell proton and neutron are coupled to S = 1 for all
6Li states. With the addition of a further neutron, the spins are re-coupled to a total
S = 1/2, which explains why S2 is always close to 3

4 .

The orbital angular momentum of the 3/2− and 1/2− states is found to be dominated
by a L = 1 component (L2 ≈ 2), which corresponds to the orbital angular momentum
of the odd neutron. For the 5/2− and 7/2− states, we find L2 ≈ 12, i.e., L = 3, and
hence a ∆L = 2 change of the core’s orbital angular momentum, as was to be expected
for an axially symmetric rotor.

Fig. 5.7 illustrates how the nucleon density distributions are affected by the modi-
fications applied to Bonn-Aα. The net effect of all modifications is very similar for 7Li:
the densities are washed out over a larger spatial area, which was to be expected, since
we used the corrections to increase the charge radii2. As a result, the cluster structure
becomes less pronounced. For the scaled Bonn-Aα interaction, the cluster structure is
almost completely dissolved.

5.2.3 8Be

For 8Be, angular momentum projection of the double-Gaussian variational state yields
the rotational spectrum displayed in Fig. 5.8, which agrees very well with experiment.
The 0+, 2+, 4+ structure implies that 8Be can be considered approximately axially sym-
metric for the groundstate rotational band, which is confirmed by the density cuts
displayed in Fig. 5.9.

The intrinsic 8Be state has a very pronounced 2α-structure, which is hardly surpris-
ing given that α + α is the main decay channel of 8Be (Γ = 6.8 eV [58], corresponding
to T1/2 ≈ 10−16 s). This structure is manifest in the S2 values listed in Tab. 5.5: since

2The densities calculated with the scaled Bonn-Aα interactions are not properly rotated to their
principal axes by the corresponding FMD program. However, this does not affect the results.



5.2. SPECTRA AND DENSITIES 97

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

0.001

0.01

0.1

0.
5

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

0.001

0.001

0.01

0.01

0.1

0.5
1.0
1.5 1.

5

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

0.001

0.001

0.01

0.01

0.1

0.51
.0

1.5 1.
5

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

8Be

Bonn-Aα

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

0.001

0.001

0.01

0.1

0.5

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

0.
00

1

0.
00

1

0.01

0.01

0.1

0.5 1.
0

1.0

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

0.
00

1

0.
00

1

0.01

0.01

0.1

0.51
.0 1.
0

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

8Be

Bonn-Aα+ w

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

0.001

0.001

0.01

0.1

0.
5

-4 -2 0 2 4
y [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

0.
00

1

0.
00

1

0.01

0.01

0.1

0.51
.0 1.
0

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

z 
[fm

]

8Be

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

0.
00

1

0.
00

1

0.01

0.01

0.1

0.5 1.
0

1.0

-4 -2 0 2 4
x [fm]

-4

-2

0

2

4

y 
[fm

]

8Be

Bonn-Aα+ wls

Figure 5.9: 8Be intrinsic one-body densities, calculated for Bonn-Aα and various modifications
using double-Gaussian trial states. Values on the contours are in units of ρ0 = 0.17 fm−3.

the groundstate of the α is Jπ = 0+, all spins are coupled to zero in the respective
subclusters of 8Be, and correspondingly S2 ≈ 0.

The density cuts also show that the structure of the intrinsic state is practically
the same for Bonn-Aα + w and Bonn-Aα + wls. Since the mean-field groundstate of
4He has L = 0, spin-orbit forces do not contribute to its binding energy, and for nuclei
with a multi-α structure, their effects are usually negligibly small, too. One noteworthy
counter-example is 24Mg, which will be discussed in Sect. 5.2.8.
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E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rmms [ fm] rcms [ fm]

Bonn-Aα

0+ −30.144 0.028 0.027 0.000 2.123 2.273
2+ 3.533 5.975 0.026 5.964 2.130 2.280
4+ 13.098 19.957 0.020 19.994 2.157 2.306

Bonn-Aα+ w

0+ −52.527 0.017 0.016 0.000 2.335 2.471
2+ 3.182 6.009 0.014 6.000 2.344 2.479
4+ 11.952 19.971 0.012 19.993 2.372 2.506

Bonn-Aα+ wls

0+ −53.032 0.080 0.080 0.000 2.303 2.442
2+ 3.191 5.986 0.078 5.986 2.314 2.453
4+ 12.120 19.889 0.058 19.999 2.339 2.476

Table 5.5: Calculated levels of 8Be for Bonn-Aα and various modifications, using double Gaus-
sian trial states.
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Figure 5.10: Groundstate rotational band of 9Be.

5.2.4 9Be

9Be is known to have one of the largest intrinsic deformations among the stable nuclei,
which is evident from the density cuts displayed in Fig. 5.12. The nucleus has a very
pronounced α + 5He structure, hence we should compare with a two-center shell model
to clarify the structure of the spectra displayed in Figs. 5.10 and 5.11 (see [60] and
references therein).

Fig. 5.10 shows the groundstate rotational band [61], which is reproduced rather
well by all versions of Bonn-Aα, aside from the missing 5/2− state for the Bonn-Aα+w
interaction. As mentioned in Sect. 5.2.2, the ∆J = 1 spacing of the spectrum is in-
dicative of a strong coupling between the motion of a 8Be core (cf. Sect. 5.2.3) and an
additional neutron. For the 3/2− groundstate, the Coriolis force gives no contributions
to the energy in first order perturbation theory, hence the ordering of the rotational
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E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rms [ fm] rcms [ fm]

Bonn-Aα

3/2− −22.740 2.780 0.760 3.710 2.160 2.290
5/2− 2.670 7.130 0.760 8.720 2.170 2.290
7/2− 7.500 14.200 0.760 15.780 2.180 2.310

Bonn-Aα(sc.)

3/2− −60.900 2.900 0.820 3.720 2.380 2.500
5/2− 2.450 7.270 0.810 8.730 2.380 2.500
7/2− 6.380 14.530 0.800 15.810 2.390 2.510

Bonn-Aα+ w

3/2− −49.119 2.788 0.760 3.726 2.406 2.508
7/2− 6.831 14.377 0.767 15.961 2.422 2.525

Bonn-Aα+ wls

3/2− −50.640 2.830 0.780 3.730 2.370 2.480
5/2− 2.540 7.180 0.770 8.750 2.380 2.480
7/2− 6.930 14.310 0.770 15.800 2.390 2.500

Table 5.6: Calculated levels of 9Be for Bonn-Aα and various modifications.

states is not interchanged. In the two-center shell model, the groundstate of 9Be is cor-
rectly predicted to be 3/2−, which fixes the angular momentum of the valence neutron.
Coupling of the orbital angular momenta of core and valence neutron, we obtain

0 ⊗ 1 = 1 (5.6)

2 ⊗ 1 = 1 ⊕ 2 ⊕ 3 (5.7)

4 ⊗ 1 = 3 ⊕ 4 ⊕ 5 , (5.8)

and subsequent coupling with the total spin S = 1/2 of the system yields

(0+ ⊗ 1−) ⊗ 1

2
=

1

2

−
⊕ 3

2

−
(5.9)

(2+ ⊗ 1−) ⊗ 1

2
=

1

2

−
⊕ 3

2

−
⊕ 3

2

+

⊕ 5

2

+

⊕ 5

2

−
⊕ 7

2

−
(5.10)

(4+ ⊗ 1−) ⊗ 1

2
=

5

2

−
⊕ 7

2

−
⊕ 7

2

+

⊕ 9

2

+

⊕ 9

2

−
⊕ 11

2

−
. (5.11)

The lowest states of the rotational spectrum appear twice in the coupling scheme, which
can explain why the L2 values listed in Tab. 5.6 correspond to mixtures of states with
∆L = 1, e.g., for the 3/2− state, we find L2 ≈ 2.8, which suggests a mixing between a
strong L = 1 and a small L = 2 component.

In Fig. 5.11, we show the full projected spectrum of 9Be. The unmodified Bonn-Aα
reproduces the order of the 1/2+, 5/2+, 3/2+ triplet, but the splitting of the levels is
smaller than for the experimental values. These states are, in fact, considered to be
members of a further rotational band, starting from the band-head K = 1/2, which can
be explained from the two-center shell model (cf. [60]). Bonn-Aα+ wls and the scaled
Bonn-Aα come close to reproducing these states, but the former reverses the order of
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Figure 5.12: 9Be intrinsic one-body densities. Values on the contours are in units of ρ0 =
0.17 fm−3.
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Figure 5.13: Groundstate rotational band of 12C.

the 1/2+ and 5/2+ states, while the 1/2+ is missing from the spectrum for the latter
interaction. The reversion of the order is most likely a result of an increase of the level
splitting due to the enhanced spin orbit force, similar to what we found for 7Li.

A more interesting finding is the way the modifications affect states of different par-
ities although the added terms are parity-conserving. States whose parity corresponds
to that of the groundstate gain a lot more binding energy than those with opposite
parity. Furthermore, the density cuts of 7Li and 9Be in Figs. 5.7 and 5.12 show that the
corrections wash out the cluster structure of the nuclei. The densities become smoother,
more similar to rotational ellipsoids, i.e., their rotational symmetry is enhanced. At the
same time, the binding energy gains achieved by angular momentum projection are re-
duced. One could say that the modified corrections already produce some of the effects
of the angular momentum projection. Naturally, it then becomes harder to reproduce
rotational states which are superimposed on clustered structures — the clusters would
need to be reformed from the smooth state, which requires energy, hence the splitting
between the rotational excitations of the groundstate and the clusters is increased. In
comparison, the splitting between these kinds of excitations is small for the Bonn-Aα
interaction, which has the strongest clustering. It is to be expected that the agreement
with the experimental spectra will be much better if one performs the variation after
the angular momentum projection and uses multi-configuration mixing. At the same
time, these methods should reduce the size of the necessary correction terms notably.

5.2.5 12C

In Fig. 5.13, we show the groundstate rotational band of 12C, calculated for Bonn-Aα
and the various modifications. The expectation values listed in Tab. 5.7 are in good
agreement with the picture of an axially deformed rotor. The unmodified Bonn-Aα-
interactions reproduces the levels of the rotational band already almost perfectly. With
the added Wigner correction, the density distributions are washed out (see Fig. 5.14),
and the splitting of the levels is reduced. The additional spin-orbit correction restores
the level splitting to roughly the correct size, while the even stronger spin-orbit force of
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Figure 5.14: 12C intrinsic one-body densities. Values on the contours are in units of ρ0 =
0.17 fm−3.
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E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rms [ fm] rcms [ fm]

Bonn-Aα

0+ −37.520 1.130 1.150 0.020 2.040 2.220
2+ 4.030 6.310 0.740 6.000 2.040 2.220
4+ 13.090 19.440 0.280 20.670 2.040 2.220

Bonn-Aα(sc.)

0+ −92.450 2.080 2.080 0.000 2.300 2.460
2+ 6.820 6.420 1.320 6.000 2.300 2.460
4+ 16.870 17.660 0.640 20.020 2.300 2.460

Bonn-Aα+ w

0+ −74.047 0.352 0.352 0.000 2.442 2.596
2+ 2.688 6.107 0.257 6.000 2.442 2.596
4+ 9.282 19.598 0.102 19.998 2.442 2.596

Bonn-Aα+ wls

0+ −79.120 1.650 1.660 0.010 2.380 2.540
2+ 4.560 6.390 1.040 6.010 2.380 2.540
4+ 13.230 18.870 0.430 20.700 2.380 2.540

Table 5.7: Calculated levels of 12C.

the scaled Bonn-Aα drives the states even further apart.

A hint at the reason of the reduced level splitting produced by Bonn-Aα + w is
provided by the triangular contour at the center of the xy-density cut depicted in Fig.
5.14. There is an experimental 0+

2 state at E−E0 = 7.654 MeV, which has been shown
to have the structure of an oblate triangle of three α clusters (see [15, 62, 63]). The
notable increase of the mass and charge radii for the Bonn-Aα + w interaction (cf.
Tab. 5.7), which cannot be solely explained by the inflation of the nucleus due to the
correction terms, can now be understood as the result of such a 3α-admixture to the
mean-field state. Since the aforementioned 0+

2 ‘groundstate’ of this configuration has
the same quantum numbers as the oblate groundstate found for the other interactions,
the two states can mix in the angular momentum projection. This mixing can also
explain why the splitting between the 0+ and 2+ states is reduced — it is actually the
0+ state which is ‘lifted’ energetically.

The additional spin-orbit correction term in Bonn-Aα+wls dissolves the 3α-structure
again, which is evident from the density cuts and the decrease of the radii listed in Tab.
5.7.

5.2.6 17O

The results for 17O are rather unspectacular. The groundstate corresponds to a neutron
moving around a spherical 16O core, hence the core cannot rotate. In a spherical shell
model picture, the neutron is occupying the 2d5/2 level. The lowest experimental levels
agree well with the shell model, including the gap between the two groups of positive
parity states belonging to different main shells, and the placing of negative parity states
in this gap.
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Figure 5.15: 17O intrinsic one-body densities. Values on the contours are in units of ρ0 =
0.17 fm−3.
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E0 [ MeV] L2 S2 J2 rms [ fm] rcms [ fm]

Bonn-Aα

5/2+ −69.190 6.000 0.750 8.750 2.180 2.310

Bonn-Aα(sc.)

5/2+ −127.670 6.000 0.750 8.750 2.600 2.700

Bonn-Aα+ w

5/2+ −126.428 6.000 0.750 8.750 2.603 2.702

Bonn-Aα+ wls

5/2+ −129.060 6.000 0.750 8.750 2.600 2.700

Table 5.8: Calculated levels of 17O.
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Figure 5.16: Groundstate rotational band of 20Ne.

The expectation values for the 5/2+ ground state are listed in Tab. 5.8. The
angular momenta correspond exactly to the quantum numbers of the odd neutron:
L = 2, S = 1/2, J = 5/2. The density cuts are practically identical for all modified
Bonn-Aα interactions, showing a perfect sphere. As for the other discussed nuclei, the
densities are spread over a larger volume than for the unmodified Bonn-Aα interaction.

5.2.7 20Ne

Fig. 5.16 shows the groundstate rotational band of 20Ne, and Tab. 5.9 lists the expec-
tation values for the corresponding states. Again, the axially deformed rotor proves to
be a valuable model for the rotational band.

The net effect of the spin-orbit correction is found to be rather small for the low
levels, because their splitting is practically the same for Bonn-Aα+w and Bonn-Aα+wls.
Moreover, the scaled Bonn-Aα interaction does not affect the level splitting much either,
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Figure 5.17: 20Ne intrinsic one-body densities. Values on the contours are in units of ρ0 =
0.17 fm−3.
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E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rms [ fm] rcms [ fm]

Bonn-Aα

0+ −82.60 0.080 0.050 0.130 2.410 2.560
2+ 1.330 5.900 0.040 5.860 2.410 2.560
4+ 4.710 20.110 0.040 20.110 2.410 2.570

Bonn-Aα(sc.)

0+ −162.510 0.340 0.120 0.220 2.850 2.990
2+ 1.130 6.450 0.120 6.370 2.850 2.990
4+ 3.940 20.380 0.110 20.380 2.860 2.990

Bonn-Aα+ w

0+ −151.203 0.051 0.014 0.037 2.882 3.018
2+ 1.142 6.067 0.013 6.057 2.883 3.019
4+ 3.881 20.027 0.013 20.026 2.887 3.022

Bonn-Aα+ wls

0+ −153.210 0.270 0.110 0.160 2.870 3.000
2+ 1.240 6.360 0.110 6.280 2.870 3.000
4+ 4.100 20.530 0.110 20.520 2.870 3.010

Table 5.9: Calculated levels of 20Ne.

Bonn-Aα Bonn-Aα (sc.) Bonn-Aα+ w Bonn-Aα+ wls

V ls [ MeV] −2.496 −5.184 −0.495 −1.531
V ls

corr [ MeV] −2.316
EB [ MeV] −76.386 −160.857 −146.081 −147.610

Table 5.10: Contributions of the spin-orbit interaction to the binding energy of 20Ne in FMD
variational calculations.

although its scaled spin-orbit interaction has had rather dramatic effects in the nuclei
discussed so far. Upon inspection of the mean-field groundstates, we find that the spin-
orbit force contributes only about 3% of the final binding energy (see Tab. 5.10), with
the notable exception of the Bonn-Aα+w interaction, for which the contribution is less
than 1%. The reason for this is the multi-α-structure, because the spin-orbit force is
zero for the s-wave 4He. All spin-orbit effects in mean-field states with multi-α-structure
are therefore a result of residual interactions like spin-polarization effects between the
α-particles. This also explains why the spin-orbit forces are so weak for Bonn-Aα+ w:
the spreading of the density distributions (see Fig. 5.17) increases the size of the α
particles, but it also increases their mean distance in the nucleus.

5.2.8 24Mg

We conclude our discussion of spectra and densities by presenting results for 24Mg. As
we see in Fig. 5.18, the groundstate rotational band is reproduced well by all interactions
(with the possible exception of Bonn-Aα + w, see below). The situation is different in
the case of the K = 2-band, whose band-head is the 2+ state lying slightly above the
4+ level of the experimental groundstate band. In a rotating-liquid-drop model, such
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Figure 5.18: Groundstate rotational band of 24Mg.

E0 [ MeV] E − E0 [ MeV] L2 S2 J2 rmms [ fm] rcms [ fm]

Bonn-Aα

0+ −97.418 1.937 1.936 0.001 2.462 2.598
2+ 1.153 7.865 1.923 5.997 2.462 2.598
4+ 3.985 21.703 1.884 20.205 2.464 2.599
4+ 9.151 20.254 1.497 19.595 2.466 2.602

Bonn-Aα (sc.)

0+ −199.090 2.770 2.800 0.030 2.920 3.060
2+ 1.180 8.980 2.810 5.960 2.920 3.060
4+ 4.840 23.610 2.840 20.080 2.920 3.060

Bonn-Aα+ w

0+ −176.890 0.264 0.255 0.008 3.081 3.194
2+ 0.925 6.222 0.252 6.024 3.082 3.194
2+ 2.578 6.270 0.227 6.131 3.082 3.195
4+ 2.739 20.212 0.236 20.150 3.083 3.196
3+ 3.445 12.161 0.227 12.072 3.083 3.196
4+ 4.905 19.244 0.243 19.219 3.085 3.198

Bonn-Aα+ wls

0+ −183.620 2.799 2.796 0.003 2.977 3.092
2+ 1.369 8.828 2.801 5.723 2.978 3.093
4+ 4.418 22.996 2.870 20.099 2.980 3.095

Table 5.11: Calculated levels of 24Mg.
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Bonn-Aα Bonn-Aα (sc.) Bonn-Aα+ w Bonn-Aα+ wls

V ls [ MeV] −21.647 −47.424 −2.444 −11.059
V ls

corr [ MeV] −15.086
EB [ MeV] −89.627 −198.840 −170.508 −179.371

Table 5.12: Contributions of the spin-orbit interaction to the binding energy of 24Mg in FMD
variational calculations.

bands are the result of collective roto-vibrational motion. However, we should note that
this simple model predicts a quadratic J-dependence for the consecutive band members,
i.e.,

EK=2(J) = EK=2 +
1

2J (J(J + 1) −K2) (5.12)

(cf. Sect. 5.2.2), which is clearly not the case for the (2+, 3+, 4+) triplet in the
experimental spectrum. Aside from the overidealization of the nucleus as a liquid drop,
this is due to the omission of non-collective excitations, which can have significant
influence on the shape (and therefore the moment of inertia) of the nucleus, too.

While no trace of the K = 2 band can be found in the spectra of the scaled Bonn-Aα
and Bonn-Aα + wls interactions, Bonn-Aw produces all experimental levels up to the
second 4+ state, although the ordering of the close-lying second 2+ and first 4+ state
is interchanged. Regarding the structure of this spectrum, one cannot help but wonder
if this first 4+ is actually the member of the groundstate rotational band, because the
splitting of the first 0+ and 2+ states is smaller than for the other interactions, probably
as a result of a smaller moment of inertia. Grouping the levels in this fashion, we note
that the spacings of the upper (2+, 3+, 4+) triplet indeed resemble those of a collective
rotational band.

From the above discussion, it is obvious that a simple collective model would yield
results which are similar to the ones obtained in our UCOM/FMD framework. However,
the expectation values listed in Tab. 5.11 suggest that the situation is indeed more
complex in a truly microscopic treatment. Especially the high values obtained for S2

imply that many of the spins are not simply paired, as one conventionally assumes for
inert rotating cores. This should also be the reason why the spin-orbit force gives larger
relative contributions to the binding energy of 24Mg than for 20Ne (cf. Sect. 5.2.7),
although 24Mg’s intrinsic state has a pronounced multi-α structure, too, as can be seen
in Fig. 5.19.

Fig. 5.19 also illustrates that the 6α-structure of 24Mg is dissolved very thoroughly
by both Bonn-Aα + wls and the scaled Bonn-Aα interaction. This can be understood
if one considers the ‘evolution’ of the interaction over the several modification steps.
Bonn-Aα retains the α-cluster structure although the spin-orbit interaction contributes
almost 25% percent of the binding energy (see Tab. 5.12), suggesting that the spin-
orbit force primary adds binding between spin-polarized αs. With the addition of the
Wigner correction, the contributions of the spin-orbit force are reduced for the same
reason observed in the previous sections. However, now that the clusters have become
more dilute, the addition of the spin-orbit correction causes an increased attraction
primarily between nucleon-pairs, rather than α-clusters, which makes it energetically
favorable to dissolve the α-clusters. The effect is taken to the extreme for the scaled
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Figure 5.19: 24Mg intrinsic one-body densities. Values on the contours are in units of ρ0 =
0.17 fm−3.
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interaction, which combines the reduction of the density with an ‘excessively’ strong
rescaled spin-orbit force.

5.3 Conclusions

While all modified correlated interactions constructed in Chapter 4 improve the agree-
ment between the FMD groundstate results and experimental data, the studied spectra
and densities provide further arguments in favor of the introduction of phenomenological
correction terms.

When it comes to the spectra, they give more controlled results than the scaled
interactions. The determination of the scale factors akin and aint, as described in Sect.
4.3, ultimately yields a unique, ideal set, or at least one that is very close to it. Hence,
there will always be cases where the rescaled spin-orbit force dramatically increases the
level splitting, up to the point of reordering the level-sequence of studied spectra. This
behavior is clearly undesirable.

In the studied cases, we have seen that both the Wigner and Wigner+LS corrections
have their merits and drawbacks. Bonn-Aα + wls, while yielding the best results for
the variational calculations, predicts the wrong groundstate for 6Li and produces level-
splittings which are too large in some cases. It also dissolves the cluster structure of
24Mg, which we would like to retain due to experimental evidence of its presence. Bonn-
Aα+ w, on the other hand, fails to reproduce the 5/2− state of the 9Be spectrum and
shows signs of mixing between 0+ states of 12C, but it retains the 6α structure of 24Mg
and apparently ‘reproduces’ this nucleus’ K = 2 band. Under these aspects, it seems
unwise to make a definite choice between the two modifications at this time.

As was discussed in Sect. 5.2.4, variation-after-projection and multi-configuration
mixing are likely to improve the results for the unmodified Bonn-Aα interaction, making
it possible to reduce the strength of the corrections. This would be very desirable,
because although it underbinds the nuclei, Bonn-Aα gives the best reproduction of the
structure of the experimental spectra in many cases.



Chapter 6

Summary and Outlook

The current status of realistic nucleon-nucleon interactions was reviewed in Chapter
1, with special emphasis on the Bonn-A and AV18 interactions used in our nuclear
structure calculations. This review attempts to provide a condensed, but comprehen-
sive overview of the theoretical considerations underlying the realistic models, and the
methods which are used in their construction. Since the derivation of the NN in-
teraction from chiral perturbation theory has produced a consistent potential of high
accuracy, it was included in the review, in part for comparison to Bonn-A and AV18,
but also with the prospect of a future use in calculations.

The Unitary Correlation Operator Method (UCOM) introduced in Chapter 2 com-
bines the technical advantages of simple mean-field model spaces with the modern re-
alistic nucleon-nucleon interactions. The importance of a proper treatment of central
and tensor correlations in the many-nucleon system has been discussed, and the con-
struction of the unitary central and tensor correlation operators was described in detail.
The tensor correlator systematically induces the alignment of spin and relative distance
vectors into simple mean-field states, and the central correlator provides the necessary
degrees of freedom to model the correlation hole created by the repulsive short-range
core common to all realistic NN interactions. Since this amounts to a decoupling of the
short- and long-range behavior, or equivalently, the high- and low-momentum scales,
the connection to the Vlow-k low-momentum interaction [8] was outlined.

The FMD mean-field model was summarized in Chapter 3, and ways to deal with
the violation of the translational and rotational symmetries by the mean-field were
discussed. The former was shown to primarily cause a shift of the system’s energy by
a spurious contribution from the nucleus’ collective translational motion. The use of
angular momentum projection to obtain the rotationally invariant physical groundstate
was explained.

The correlated interactions obtained by applying the UCOM similarity transforma-
tion to the realistic Bonn-A and AV18 interactions, together with the global Wigner
or Wigner+Spin-Orbit correction constructed in Chapter 4 of this work, enables us to
describe the groundstate properties of more than 200 nuclei up to masses A = 60 in
good agreement with experimental data. The correlated interaction and the 4 to 6 pa-
rameters of the correction are fixed only once, and no further ‘effective’ parameters are
introduced and used to tune the results on a nucleus-by-nucleus basis. Thus we obtain a
model with very high predictive power. With the additional use of angular momentum
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projection after the variation, the agreement of binding energies, radii, and spectra with
experimental data is surprisingly good, as we have seen in Chapter 5. Variation after
projection and configuration mixing improve the FMD results even further [50].

The combined framework of the UCOM and FMD is all the more attractive for the
relatively low numerical effort it requires, as opposed to, e.g., the quasi-exact Green’s
Function Monte Carlo technique employed by the Argonne group. It has enabled us to
cover the nuclear chart up to masses A = 60 thus far. An FMD variational calculation
of a heavy A = 60 nucleus takes roughly a day on a standard issue PC, so the mass
range may be extended even further. In contrast, the GFMC calculations, which were
performed with the Argonne supercomputer (although in various expansion stages) have
reached A = 12 up to now.

The next steps are the application of correlated interactions in Hartree-Fock- and
RPA-calculations in the intermediate and heavy mass region, and the inclusion of non-
collective excitations. In addition, as indicated in Sect. 4.2.2, the examination and
inclusion of three-nucleon contributions and genuine three-nucleon forces might provide
a means to supersede the phenomenological modifications.



Appendix A

UCOM Formulas

This appendix collects UCOM formulas and operator relations from the original publi-
cations [4, 5, 6, 7] and provides some minor corrections.

A.1 Momentum Operators

A.1.1 Radial Momentum

The central correlator (Sect. 2.2) used to shift particles in their relative coordinate r is
constructed from the radial momentum operator pr

pr =
1

2
(p · r̂ + r̂ · p) . (A.1)

Its coordinate space representation is

〈
r
∣∣ pr

∣∣ψ
〉

= −
(
i

r
+

∂

∂r

)〈
r
∣∣ψ
〉

= −i1
r

∂

∂r
r
〈
r
∣∣ψ
〉
, (A.2)

yielding

〈
r
∣∣ p2

r

∣∣ψ
〉

= −1

r

∂

∂r

(
r
1

r

∂

∂r
r
〈
r
∣∣ψ
〉)

= −1

r

∂2

∂r2
r
〈
r
∣∣ψ
〉
. (A.3)

When we switch to spherical coordinates in coordinate space, we have to carefully
inspect how this affects the boundary conditions of the problem as well. From a math-
ematical point of view, it is sloppy to simply write down differential operators as co-
ordinate space representations of an observable, because the boundary conditions are
an important part of its definition — of particular interest to us is their impact on the
operator’s hermiticity (strictly: its self-adjointness). If the radial momentum operator
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is to be hermitian on some Hilbert space H(R3) 1,

〈
ψ
∣∣ pr

∣∣φ
〉

= − i

∞∫

0

dr r2ψ∗(r)
1

r

∂(rφ(r))

∂r
= −ir2ψ∗(r)φ(r)

∣∣∣
∞

0
+ i

∞∫

0

dr
∂(rψ∗(r))

∂r
rφ(r)

!
=
〈
φ
∣∣ pr

∣∣ψ
〉∗

(A.4)

has to be satisfied by making the surface term vanish at r = 0, thus the wavefunctions
have to satisfy the following conditions:

rψ(r)
r→0−→ 0 , rψ(r)

r→∞−→ 0 . (A.5)

A.1.2 Orbital Momentum

The relative momentum operator p can be decomposed into a radial and an orbital
part,

p = pr + pΩ . (A.6)

The operators

pr ≡ r̂ pr and pΩ ≡ 1

2r
(l × r̂ − r̂ × l) (A.7)

do not commute; using the elementary commutation relation of position and momentum
we find [

pr,pΩ

]
=
i

r
pΩ (A.8)

and

pr · pΩ − pΩ · pr = i

(
pr

1

r
+

1

r
pr

)
= − 1

r2
+

2i

r
pr . (A.9)

Definition (A.7) implies that pΩ commutes with (well-behaved) functions of the relative
distance operator, [

pΩ, f(r)
]

= 0 , (A.10)

but the orbital momentum operator does not commute with the relative position vector
operator: [

pΩk, rl

]
= i
(rkrl

r2
− δkl

)
. (A.11)

By setting k = l and summing in eq. (A.11), we obtain

r · pΩ − pΩ · r = 2i . (A.12)

1Usually, one simply assumes H = L2(R3). In order to formally show that L2(R3) is suitable for
the spectral theory of the Hamiltonian and other observables, one has to do quite a deal of work. A
free Hamiltonian, for instance, is not bounded, i.e., not continuous on L2(R3), the space of square-
integrable complex valued functions over three-dimensional space, and the addition of an interaction
makes it semi-bounded at best. A possible solution to the problem comes with the introduction of weak
derivatives, and Hilbert spaces of weakly derivable functions, the so-called Sobolev spaces. One can then
define continuations of the Hamiltonian’s expectation values to the space L2(R3). Similar methods are
used to extend the Fourier transformation from Schwartz space to L2(R3), another property which is
naively taken for granted. A good discussion of these topics can be found in [64].
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Some additional helpful identities are

pr · pΩ + pΩ · pr = − 1

r2
, (A.13)

p2
Ω =

1

r2
(
l2 + 1

)
. (A.14)

A.1.3 Representations of Momentum-Dependent Terms

Momentum-dependent interaction terms can be represented in several ways2:

1

2

(
p2

rf(r) + f(r)p2
r

)
= prf(r)pr −

1

2
f ′′(r) (A.15)

= (p · r̂) f(r) (r̂ · p) − 1

2
f ′′(r) − f ′(r)

r
(A.16)

= pf(r)p − f(r)
l2

r2
− 1

2
f ′′(r) − f ′(r)

r
, (A.17)

where f(r) is some well-behaved function of the relative distance operator r — in prac-
tice, this is either the radial dependency of a momentum-dependent potential, or an
effective mass term. Of the above, we usually use the symmetric form, similar to the p2

terms in the definition of the Bonn-A OBEPR potential. The non-hermitian definition

p̂r ≡ p · r̂ (A.18)

was used for the radial momentum operator in [4, 5], so eq. (A.16) provides the trans-
formation rule for expressions appearing in these references, most notably the kinetic
energy potential w̃ (cf. Sect. 2.4).

A.2 Relations for Correlated Operators

In order to calculate central- and tensor-correlated operators, algebraic relations for the
correlation generators and the various operators of the uncorrelated interactions are
required. These are used in the Baker-Campbell-Hausdorff formula

exp (iλA) B exp (−iλA) =
∑

n

1

n!
(iλ)n

[
A,B

]
(n)
, (A.19)

where [
A,B

]
(0)

= B and
[
A,B

]
(n)

=
[
A,
[
A,B

]
(n−1)

]
. (A.20)

While the operator transformations induced by the central correlator can be computed
comparably simple, it is appropriate to perform the more complex calculations of al-
gebraic relations involving the generator gΩ in the irreducible spherical tensor repre-
sentation of the operators (see Appendix B). The results obtained in [6] by using this
approach are summarized below. Keep in mind that s12(r,pΩ) is implicitly symmetrized
in its arguments.

2These identities are misprinted in Refs. [6, 7].
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A.2.1 Centrally Correlated Operators

In this section the centrally correlated versions of several basic operators are calculated.
Recall the action of the central correlator and its adjoint on a relative wavefunction:

〈
r
∣∣ c
∣∣φ
〉

= R−(r)
〈
R−(r)r̂

∣∣φ
〉

(A.21)

and

〈
r
∣∣ c†
∣∣φ
〉

= R+(r)
〈
R+(r)r̂

∣∣φ
〉
, (A.22)

with

R±(r) =
R±(r)

r

√
R′±(r) . (A.23)

Angular Momentum Operators

Using spherical coordinates in the center-of-mass system, the components of the relative
orbital angular momentum operator’s coordinate space representation are given by

〈
r
∣∣ lx
∣∣ψ
〉

= −i
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)〈
r
∣∣ψ
〉
, (A.24)

〈
r
∣∣ ly
∣∣ψ
〉

= −i
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)〈
r
∣∣ψ
〉
, (A.25)

〈
r
∣∣ lz
∣∣ψ
〉

= −i ∂
∂φ

〈
r
∣∣ψ
〉
. (A.26)

This implies that [
li, pr

]
= 0 , (A.27)

and therefore
c†r l cr = l . (A.28)

Since spin operators do not act in coordinate space at all, one obviously has

[
σ, pr

]
= 0 , i.e., c†r σ cr = σ . (A.29)

Position Operators

〈
φ
∣∣ c†rr cr

∣∣ψ
〉

=

∫
d3rd3r′

〈
φ
∣∣ c†r
∣∣r
〉 〈

r
∣∣ r
∣∣r′
〉 〈

r′
∣∣ cr

∣∣ψ
〉

=

∫
d3r d3r′

〈
φ
∣∣ c†r
∣∣r
〉
rδ3(r′ − r)

〈
r′
∣∣ cr

∣∣ψ
〉

=

∫
dr dΩ r2

〈
φ
∣∣ c†r
∣∣r
〉
rr̂
〈
r′
∣∣ cr

∣∣ψ
〉

=

∫
dr dΩ r2

(
R−(r)

r

)2

R′−(r)
〈
φ
∣∣R−(r)r̂

〉
rr̂
〈
R−(r)r̂

∣∣ψ
〉

=

∫
dr− dΩ r

2
−
〈
φ
∣∣r−

〉
R+(r−)r̂−

〈
r−
∣∣ψ
〉

(A.30)
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Eqs. (A.21) and (A.22) were used in the third line, and in the last line coordinates were
changed to

r− = R−(r)r̂ , d3r− = r2− dr−dΩ = (R−(r))2R′−(r) drdΩ . (A.31)

Since the R±(r) are mutually inverse, the remaining r-dependences can be replaced by

r = R+(r−) . (A.32)

Owing to unitarity, the transformation behaviour of r carries over to all functions of
this operator which can be expanded into a well-defined Taylor series.

Momentum Operators

The matrix element of the centrally correlated radial momentum operator is

〈
φ
∣∣ c†rprcr

∣∣ψ
〉

=

∫
d3r d3r′

〈
φ
∣∣ c†r
∣∣r
〉 〈

r
∣∣ pr

∣∣r′
〉 〈

r′
∣∣ cr

∣∣ψ
〉

= −i
∫
d3r d3r′

〈
φ
∣∣ c†r
∣∣r
〉 1

r

∂

∂r
rδ3(r′ − r)

〈
r
∣∣ cr

∣∣ψ
〉

= −i
∫
drdΩ R−(r)

√
R′−(r)

〈
φ
∣∣R−(r)r̂

〉 ∂
∂r
R−(r)

√
R′−(r)

〈
R−(r)r̂

∣∣ψ
〉

= −i
∫

dr−
R′−(r)

dΩ r−
√
R′−(r)

〈
φ
∣∣r−

〉
R′−(r)

∂

∂r−
r−
√
R′−(r)

〈
r−
∣∣ψ
〉

= −i
∫
dr−dΩ r2−

〈
φ
∣∣r−

〉 1√
R′+(r−)

1

r−

∂

∂r−
r−

1√
R′+(r−)

〈
r−
∣∣ψ
〉
, (A.33)

where the coordinate transformation (A.31) and the relation

R′±(r) =
[
R′∓(R±(r))

]−1
(A.34)

for the derivatives of the central correlation functions were used. The latter is an
immediate consequence of them being mutually inverse. Thus, one has

c†rprcr =
1√
R+(r)

pr
1√
R+(r)

. (A.35)

Using the previous results, the centrally correlated orbital momentum operator is
found to be3

c†rpΩkcr = c†r
1

2r
[εklm (llr̂m − r̂llm)] cr = c†r

1

2r
cr [εklm (llr̂m − r̂llm)]

=
1

2R+(r)
[εklm (llr̂m − r̂llm)] =

r

R+(r)
pΩk . (A.36)

3This relation is misprinted in Ref. [4].
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Summary

c†r r cr = R+(r)r̂ c†r r cr = R+(r) (A.37a)

c†r r̂ cr = r̂ (A.37b)

c†rprcr =
1√
R+(r)

pr
1√
R+(r)

c†rpΩkcr =
r

R+(r)
pΩk (A.37c)

c†r l cr = l c†r σ cr = σ (A.37d)



Appendix B

Partial Wave Analysis of Tensor
Operators

In this appendix, the calculation of interaction operator matrix elements in partial
wave states is outlined. After introducing irreducible spherical tensors and partial wave
states, the matrix elements of some basic operators are summarized, which can then be
used to derive the reduced matrix elements of the various complex interaction operators
which are present in the uncorrelated and correlated interactions. Tables of these matrix
elements in the lowest partial waves are given for convenience. Throughout the present
work, the conventions of the Particle Data Group [24] for the Wigner-Eckart theorem
and the Clebsch-Gordan coefficients are used.

B.1 Plane and Partial Wave States

Consider the eigenstates of the relative momentum and orbital angular momentum
operators,

∣∣klm
〉
, which satisfy the orthogonality and completeness relations

〈
k′l′m′

∣∣klm
〉

=
δ(k − k′)
kk′

δll′δmm′ (B.1)

∑

l,m

∫
dk k2

∣∣klm
〉〈
klm

∣∣ =
�
. (B.2)

Their momentum space representation is

〈
k′
∣∣klm

〉
=
δ(k′ − k)

kk′
Ylm(k̂) . (B.3)

Using the expansion

〈
r
∣∣k
〉

=
1

(2π)3/2
eik·r =

√
2

π

∞∑

l=0

l∑

m=−l

iljl(kr)Y
∗
lm(k̂)Ylm(r̂) , (B.4)
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we find the coordinate space representation with the correct normalization factors in
scattering units (~ = c = ~

2/mN = 1):

〈
r
∣∣klm

〉
=

∫
d3k′

〈
r
∣∣k′
〉 〈

k′
∣∣klm

〉

=

√
2

π

∑

l′,m′

il
′

∫
d3k′ jl′(k

′r)Y ∗l′m′(k̂
′
)Ylm(r̂)

δ(k′ − k)

k′k
Ylm(k̂)

=

√
2

π

∑

l′,m′

il
′

jl′(kr)Yl′m′(r̂)

∫
dΩkY

∗
l′m′(Ωk)Ylm(Ωk)

=

√
2

π
iljl(kr)Ylm(r̂) , (B.5)

where the orthogonality relation of the spherical harmonics was used in the third line.
Analogously to

∣∣klm
〉

we can define a set of states
∣∣rlm

〉
,

〈
r′
∣∣rlm

〉
=
δ(r − r′)
rr′

Ylm(r̂′) , (B.6)

which satisfy the completeness and orthogonality relations

〈
r′l′m′

∣∣rlm
〉

=
δ(r − r′)
rr′

δll′δmm′ (B.7)

and

∑

l,m

∫
dr r2

∣∣rlm
〉〈
rlm

∣∣ =
�
. (B.8)

Their projections on general momentum and plane wave states are given by

〈
k
∣∣rlm

〉
=

√
2

π
i−ljl(kr)Ylm(k̂) (B.9)

and

〈
kl′m′

∣∣rlm
〉

=

√
2

π
i−ljl(kr)δll′δmm′ , (B.10)

respectively. Starting from (B.7), we arrive at a useful relation for the delta function:

〈
r′l′m′

∣∣rlm
〉

=
∑

l′′,m′′

∫
dk′′ k′′2

〈
r′l′m′

∣∣k′′l′′m′′
〉 〈
k′′l′′m′′

∣∣rlm
〉

= il
′−l 2

π

∫
dk′′ k′′2jl(k

′′r′)jl(k
′′r)δll′δmm′

=
2

π

∫
dk′′ k′′2jl(k

′′r′)jl(k
′′r)δll′δmm′ ,

(B.11)

i.e., ∫
dk k2jl(kr

′)jl(kr) =
π

2

δ(r − r′)
rr′

. (B.12)
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The 2s+1lj partial wave states can now be defined by

∣∣k(ls)jm
〉

=
∑

ml,ms

〈
lmlsms

∣∣jm
〉 ∣∣klml

〉
⊗
∣∣sms

〉
, (B.13)

with the new completeness relation

∑

l,s

|l+s|∑

j=|l−s|

∑

m

∫
dk k2

∣∣k(ls)jm
〉〈
k(ls)jm

∣∣ =
�
. (B.14)

B.2 Irreducible Spherical Tensor Operators

In classical theoretical physics, a (Cartesian) tensor Ti1,...,in of rank n is defined via its
transformation behavior under the matrix representation of the orthogonal group O(3),
which describes the action of rotations and reflections on the real three-dimensional
vector space R

3:

T ′i1,...,in =
∑

k1,...,kn

Ri1k1 . . . RinknTk1,...,kn , R ∈ O(3) . (B.15)

As it turns out in (relativistic) quantum mechanics, we need to describe rotations by
SU(2), the covering group of O(3), due to the non-classical spin degree of freedom, which
introduces fermions into the particle spectrum as SU(2)’s half-integer representations.

On the abstract Hilbert space of quantum mechanics, the rotation group is rep-
resented by unitary operators. In the classical limit, the transformation behaviour of
the classical tensor has to be reproduced by the expectation value of the corresponding
tensor operator, and since this has to be true for arbitrary states, we find, e.g., for a
vector operator

U†(R)viU(R) =
∑

j

Rijvj . (B.16)

By looking at an infinitesimal rotation, one finds the commutator

[
vk, jl

]
= iεklmvk (B.17)

(see, e.g., [65]), which is now understood as the defining property of a quantum-mechanical
vector operator. For a scalar operator, one obviously has

U†(R) s U(R) = s =⇒
[
s, j
]

= 0 , (B.18)

and in the case of higher tensor operators, the commutators can be found by looking at
corresponding dyadic products of vector operators, e.g.,

[
tik, jl

]
= iεklmtim + iεilntnk . (B.19)

This provides us with a consistent prescription to define tensor operators of arbitrary
rank. However, as one already notices in classical physics, Cartesian coordinates are
not always the ideal choice for calculations. Objects like the quadrupole tensor of
electrodynamics, for example, can be represented more economically in a spherical basis,
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where it is manifest that it only has five independent components, a fact that is obscured
at first by writing it as a general 3×3-matrix in a Cartesian basis. The choice of spherical
coordinates particularly facilitates calculations for systems with rotational symmetries,
so a closer look at the rotation group is in order.

One of the most important properties of SU(2) is its compactness, which can easily
be deduced from the fact that the Euler angles parametrizing an arbitrary rotation
are elements of finite intervals. A theorem of group theory [44] states that finite-
dimensional unitary representations exist for any compact group, which implies that
we can decompose any (reducible) infinite-dimensional representation of H into a direct
sum of irreducible representations. The latter are characterized by the eigenvalues of
the group’s Casimir operators, i.e., its invariants. SU(2)’s basic Casimir operator is
j2, thus the decomposition can be done by using a complete set of angular momentum
eigenstates as a basis for H. This is essentially a Clebsch-Gordan decomposition, which
is familiar from angular momentum coupling. In general terms, a tensor product of
irreducible representations is usually reducible, so it can be decomposed into irreducible
representations by switching to an appropriate new basis, e.g., a basis of coupled states
in angular momentum theory.

The decomposition of H has consequences for the operators defined on it, too. Since
any non-singular operator t maps the Hilbert space onto itself, we can conclude that it
is possible to decompose t’s representation as an infinite-dimensional matrix acting on
H. In the case of the rotation group, we arrive at the notion of an irreducible spherical
tensor operators of rank k

t(k)
q , q = −k, . . . , k , (B.20)

where q, commonly referred to as the magnetic quantum number, is the generalization
of m for angular momentum operators. When represented as matrices in a basis of
angular momentum eigenstates, these operators show block structures due to the fact
that a rank-k operator can at most connect states with ∆j ≤ k. In practice, one usually
has additional selection rules due to parity and other internal symmetries, which restrict
the operators and depopulate their matrix representations even further, and therefore
calculations are greatly facilitated.

In general, two irreducible spherical tensor operators of ranks k1 and k2 which act
on the same Hilbert space can be coupled to an irreducible tensor operator of rank k
by using the Clebsch-Gordan coefficients:

{
a(k1)b(k2)

}(k)

q
=
∑

q1,q2

〈
k1q1, k2q2

∣∣kq
〉
a(k1)

q1
b(k2)

q2
. (B.21)

In some cases, we need a hermitized coupled product of tensor operators acting on the
same Hilbert space. It will be denoted by the shorthand expression

(ab)(k)
q =

1

2

({
a(k1)b(k2)

}(k)

q
+
{

b(k2)a(k1)
}(k)

q

)
(B.22)

For two spherical tensor operators of rank 1 which act on different Hilbert spaces,
Eq. (B.21) defines a scalar product by

a(1) · t(1) = −
√

3
{

a(1) ⊗ t1
}(0)

, (B.23)
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and for rank 2 tensor operators one finds

a(2) · t(2) = −
√

5
{

a(2) ⊗ t2
}(0)

. (B.24)

Here, we indicate that the operators act on different spaces by explicitly writing out the
tensor product sign ⊗. Concrete examples are the spin-orbit and tensor operators. For
the former, the scalar product reads

l · s = l(1) · s(1) = −
√

3
{

l(1) ⊗ s(1)
}(0)

, (B.25)

and the latter is given by

s12(a,b) =
3

2
[(σ1 · a)(σ2 · b) − (σ1 · σ2)(a · b) + a ↔ b]

= 3
{

a(1)b(1)
}(2)

· s(2) = 3
√

5
{

(ab)(2) ⊗ s(2)
}(0)

,

(B.26)

where the operators s(1) and s(2) act on spin space.

B.3 Decomposition of Reducible Tensor Operators

In this section we list decomposition formulas for reducible tensor operators occuring
in the correlated and uncorrelated NN interactions. The derivation was performed in
[6], using the irreducible spherical tensor representation of the operators.

(l · s)2 =
2

3
l2ΠS=1 −

1

2
l · s +

1

6
s12(l, l) (B.27)

s12(pΩ,pΩ) =2r2s12(pΩ,pΩ) + s12(l, l) −
1

2
s12(r̂, r̂) (B.28)

s12(r,pΩ)2 =6(l2 + 3)ΠS=1 +
45

2
l · s +

3

2
s12(l, l) (B.29)

The explicit dependencies of the tensor operators on the radial coordinate are cancelled
by corresponding factors of pΩ (see (A.7) or (B.40)), hence they only act on directional
variables in coordinate space.

B.4 Algebra of Cartesian Tensor Operators

This section lists the algebraic relations needed to calculate tensor-correlated interac-
tions up to next-to-next-to-leading order in angular momentum, as derived in Ref. [6].
Recall

s12(pΩ,pΩ) = 2r2s12(pΩ,pΩ) + s12(l, l) −
1

2
s12(r̂, r̂) . (B.30)
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[
s12(r,pΩ), s12

]
= − 24iΠS=1 − 18i l · s + 3i s12 (B.31)[

s12(r,pΩ), l · s
]

= − i s12(pΩ,pΩ) (B.32)
[
s12(r,pΩ), l2

]
=2i s12(pΩ,pΩ) (B.33)[

s12(r,pΩ), s12(l, l)
]

=7i s12(pΩ,pΩ) (B.34)
[
s12(r,pΩ), s12(pΩ,pΩ)

]
=i(96l2 + 108)ΠS=1 + i(36l2 + 153)l · s

+ 15i s12(l, l) (B.35)
[
s12(r,pΩ), l2l · s

]
= − 3is12(pΩ,pΩ)

− i

2

(
l2s12(pΩ,pΩ) + s12(pΩ,pΩ)l2

)
(B.36)

[
s12(r,pΩ), l2s12(pΩ,pΩ)

]
=i(144 l4 + 600 l2 + 324)ΠS=1

+ i(36 l4 + 477 l2 + 477)l · s + i(27 l2 + 51)s12(l, l) (B.37)

B.5 Reduced Matrix Elements of Tensor Operators

B.5.1 The Wigner-Eckart Theorem

The significance of the Wigner-Eckart theorem

〈
n′j′m′

∣∣ t(k)
q

∣∣njm
〉

= (−1)2k
〈
jmkq

∣∣j′m′
〉
〈
n′j′
∣∣∣∣ t(k)

∣∣∣∣nj
〉

√
2j + 1

(B.38)

lies in the way it separates the geometrical and dynamical parts of an expectation
value. The Clebsch-Gordan coefficient reflects the orientation of the system with respect
to a chosen quantization axis (usually the z-axis), which is completely specified by
the quantum numbers m,m′, and q; the reduced matrix element, on the other hand,
contains the information about the dynamics of the tensor operator, and is completely
independent of the magnetic quantum numbers.

B.5.2 Reduced Matrix Elements of Basic Operators

Coordinate Space Operators

The reduced matrix elements of the basic operators r, pΩ, and l in angular momentum
eigenstates are needed to calculate the matrix elements of the various tensor operators
(see tables B.1 and B.2). Since all of the above operators are vector operators, they can
only connect states with ∆l = ±1, while all other matrix elements vanish. It should be
noted that a slightly different prescription for the reduced matrix elements is used in
Ref. [6, 7].

〈
l′
∣∣∣∣ r(1)q

∣∣∣∣l
〉

= (
√
l + 1δl′,l+1 −

√
lδl′,l−1)r , (B.39)

〈
l′
∣∣∣∣ p(1)

Ω,q

∣∣∣∣l
〉

=
(
(l + 1)3/2δl′,l+1 + l3/2δl′,l−1

) i
r

(B.40)
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and

〈
l′
∣∣∣∣ l(1)q

∣∣∣∣l
〉

=
√
l(l + 1)(2l + 1)δll′ . (B.41)

Spin Operators

In spin space, we need the matrix elements of the total spin operator

s(1) =
1

2

(
σ(1) ⊗ �

+
� ⊗ σ(1)

)
, (B.42)

and the rank 2 tensor operator which is needed to construct the cartesian tensor oper-
ators s12:

s(2) =
{

s(1)s(1)
}(2)

. (B.43)

The only non-vanishing matrix elements are between s = 1 states:

〈
1
∣∣∣∣ s(1)

∣∣∣∣1
〉

=
√

6 (B.44)

and

〈
1
∣∣∣∣ s(2)

∣∣∣∣1
〉

= 2
√

5 . (B.45)

B.5.3 Reduced Matrix Elements of Cartesian Tensor Operators

The reduced matrix element of a general product like (B.21) can be calculated with the
help of the Wigner 6j-symbols [66]:

〈
l′
∣∣∣∣ {a(k1)b(k2)}(k)

∣∣∣∣l
〉

=

(−1)l′+l−k
√

2k + 1
∑

l′′

{
k1 k2 k
l l′ l

} 〈
l′
∣∣∣∣ a(k1)

∣∣∣∣l′′
〉 〈
l′′
∣∣∣∣ b(k2)

∣∣∣∣l
〉
.

(B.46)

As an example, we derive the matrix elements of s12(r,pΩ), which is used to construct
the generator of tensor correlations gΩ. In coordinate space, the matrix elements of
(rpΩ)(2) need to be evaluated:

〈
l′
∣∣∣∣ {rpΩ}(2)

∣∣∣∣l
〉

=(−1)l′+l−2
√

5
∑

l′′

{
1 1 2
l l′ l′′

}〈
l′
∣∣∣∣ r(1)

∣∣∣∣l′′
〉 〈
l′′
∣∣∣∣ p(1)

Ω

∣∣∣∣l
〉

=(−1)l′+l−2
√

5
∑

l′′

{
1 1 2
l l′ l′′

}(√
l′′ + 1δl′,l′′+1 −

√
l′′δl′,l′′−1

)
r

× i

r

(
(l + 1)3/2δl′′,l+1 − (l)3/2δl′′,l−1

)

=i
√

5

({
1 1 2
l l′ l + 1

}(√
l + 2(l + 1)3/2δl′,l+2 − (l + 1)2δll′

)

+

{
1 1 2
l l′ l − 1

}(
l2δll′ −

√
l − 1l3/2δl′,l−2

))
, (B.47)
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where the exponent (−1)l′+l−2 is always even due to the Kronecker deltas, i.e., the factor
is always 1. A similar calculation yields

〈
l′
∣∣∣∣ {pΩr}(2)

∣∣∣∣l
〉

=i
√

5

({
1 1 2
l l′ l + 1

}(√
l + 1(l + 2)3/2δl′,l+2 + (l + 1)2δll′

)

−
{

1 1 2
l l′ l − 1

}(
l2δll′ +

√
l(l − 1)3/2δl′,l−2

))
, (B.48)

hence

〈
l′
∣∣∣∣ (rpΩ)(2)

∣∣∣∣l
〉

=
i

2

√
5

({
1 1 2
l l′ l + 1

}
(2l + 3)

√
(l + 1)(l + 2)δl′,l+2

−
{

1 1 2
l l′ l − 1

}
(2l − 1)

√
(l − 1)lδl′,l−2

)
.

(B.49)

Using
{

1 1 2
l l + 2 l + 1

}
=

1√
5

1√
2l + 3

and

{
1 1 2
l l − 2 l + 1

}
=

1√
5

1√
2l − 1

, (B.50)

one finally has

〈
l′
∣∣∣∣ (rpΩ)(2)

∣∣∣∣l
〉

=
i

2

(√
(l + 1)(l + 2)(2l + 3)δl′,l+2 −

√
(l − 1)l(2l − 1)δl′,l−2

)
.

(B.51)

The reduced matrix element of a scalar product between two rank-k tensor operators
a(k) in coordinate and s(k) in spin space can be calculated with [66]

〈
(l′1)j

∣∣∣∣ r(k) · s(k)
∣∣∣∣(l1)j

〉
= (−1)j+l+1

√
2j + 1

{
l′ l k
1 1 j

}〈
l′
∣∣∣∣ r(k)

∣∣∣∣l
〉 〈

1
∣∣∣∣ s(k)

∣∣∣∣1
〉
.

(B.52)
Note that the formulae given for the ‘basic’ reduced matrix elements are specified in
an uncoupled basis, so the 6j-symbol is needed to switch to the (ls)j-coupling, i.e., the
appropriate irreducible representation for such scalar products. With

{
j + 1 j − 1 2

1 1 j

}
=

{
j − 1 j + 1 2

1 1 j

}
=

1√
5

(−1)2j

√
2j + 1

(B.53)

one obtains
〈
(j ± 1, 1)j

∣∣∣∣ s12(r,pΩ)
∣∣∣∣(j ∓ 1, 1)j

〉
= ±3i

√
j(j + 1)(2j + 1) , (B.54)

for the only nonzero matrix elements.
For convenience, the non-vanishing reduced matrix elements of s12(r,pΩ) in the

lowest partial waves are listed together with those of the various interaction operators
in tables B.1 and B.2. In the tables, the shorthand notation

(
(l′s)j

∣∣∣∣ o
∣∣∣∣(ls)j

)
≡
〈
(l′s)j

∣∣∣∣ o
∣∣∣∣(ls)j

〉
√

2j + 1
(B.55)
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partial wave
(
(ls)j

∣∣∣∣ ◦
∣∣∣∣(ls)j

)
l2 l · s l2l · s s12 s12(l, l)

1P1

(
(10)1

∣∣∣∣ ◦
∣∣∣∣(10)1

)
2 0 0 0 0

3P0

(
(11)0

∣∣∣∣ ◦
∣∣∣∣(11)0

)
2 −2 −4 −4 10

3P1

(
(11)1

∣∣∣∣ ◦
∣∣∣∣(11)1

)
2 −1 −2 2 −5

3P2

(
(11)2

∣∣∣∣ ◦
∣∣∣∣(11)2

)
2 1 2 −2

5 1
1D2

(
(20)2

∣∣∣∣ ◦
∣∣∣∣(20)2

)
6 0 0 0 0

3D1

(
(21)1

∣∣∣∣ ◦
∣∣∣∣(21)1

)
6 −3 −18 −2 21

3D2

(
(21)2

∣∣∣∣ ◦
∣∣∣∣(21)2

)
6 −1 −6 2 −21

3D3

(
(21)3

∣∣∣∣ ◦
∣∣∣∣(21)3

)
6 2 12 −4

7 6
1F3

(
(30)3

∣∣∣∣ ◦
∣∣∣∣(30)3

)
12 0 0 0 0

3F2

(
(31)2

∣∣∣∣ ◦
∣∣∣∣(31)2

)
12 −4 −48 − 8

5 36
3F3

(
(31)3

∣∣∣∣ ◦
∣∣∣∣(31)3

)
12 −1 −12 2 −45

3F4

(
(31)4

∣∣∣∣ ◦
∣∣∣∣(31)4

)
12 3 36 −2

3 15
1G4

(
(40)4

∣∣∣∣ ◦
∣∣∣∣(40)4

)
20 0 0 0 0

3G3

(
(41)3

∣∣∣∣ ◦
∣∣∣∣(41)3

)
20 −5 −100 − 10

7 55
3G4

(
(41)4

∣∣∣∣ ◦
∣∣∣∣(41)4

)
20 −1 −20 2 −77

3G5

(
(41)5

∣∣∣∣ ◦
∣∣∣∣(41)5

)
20 4 80 − 8

11 28
1H5

(
(50)5

∣∣∣∣ ◦
∣∣∣∣(50)5

)
30 0 0 0 0

3H4

(
(51)4

∣∣∣∣ ◦
∣∣∣∣(51)4

)
30 −6 −180 − 4

3 78
3H5

(
(51)5

∣∣∣∣ ◦
∣∣∣∣(51)5

)
30 −1 −30 2 −117

3H6

(
(51)6

∣∣∣∣ ◦
∣∣∣∣(51)6

)
30 5 150 − 10

13 45
1I6

(
(60)6

∣∣∣∣ ◦
∣∣∣∣(60)6

)
42 0 0 0 0

3I5
(
(61)5

∣∣∣∣ ◦
∣∣∣∣(61)5

)
42 −7 −294 − 14

11 105
3I6

(
(61)6

∣∣∣∣ ◦
∣∣∣∣(61)6

)
42 −1 −42 2 −165

3I7
(
(61)7

∣∣∣∣ ◦
∣∣∣∣(61)7

)
42 6 252 − 4

5 66
1J7

(
(70)7

∣∣∣∣ ◦
∣∣∣∣(70)7

)
56 0 0 0 0

3J6

(
(71)6

∣∣∣∣ ◦
∣∣∣∣(71)6

)
56 −8 −448 − 16

13 136
3J7

(
(71)7

∣∣∣∣ ◦
∣∣∣∣(71)7

)
56 −1 −56 2 −221

3J8

(
(71)8

∣∣∣∣ ◦
∣∣∣∣(71)8

)
56 7 392 − 14

17 91

Table B.1: Non-vanishing diagonal reduced matrix elements. The matrix elements of
s12 are misprinted in Tab. B.4 of Ref. [6].

partial wave
(
(l′s′)j′

∣∣∣∣ ◦
∣∣∣∣(ls)j

)
s12 s12(pΩ,pΩ) l2 s12(pΩ,pΩ) s12(r,pΩ)

3S1 −3 D1

(
(01)1

∣∣∣∣ ◦
∣∣∣∣(21)1

)
2
√

2 −9
√

2 −27
√

2 −3 i
√

2
3P2 −3 F2

(
(11)2

∣∣∣∣ ◦
∣∣∣∣(31)2

)
6
√

6
5 −15

√
6 −105

√
6 −3 i

√
6

3D3 −3 G3

(
(21)3

∣∣∣∣ ◦
∣∣∣∣(41)3

)
12
√

3
7 −42

√
3 −546

√
3 −6 i

√
3

3F4 −3 H4

(
(31)4

∣∣∣∣ ◦
∣∣∣∣(51)4

)
4
√

5
3 −54

√
5 −1134

√
5 −6 i

√
5

3G5 −3 I5
(
(41)5

∣∣∣∣ ◦
∣∣∣∣(61)5

)
6
√

30
11 −33

√
30 −1023

√
30 −3 i

√
30

3H6 −3 J6

(
(51)6

∣∣∣∣ ◦
∣∣∣∣(71)6

)
6
√

42
13 −39

√
42 −1677

√
42 −3 i

√
42

Table B.2: Non-vanishing off-diagonal reduced matrix elements.
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is used (cf. Sect. 2.3), which allows for a direct comparison with Ref. [6]. The subscript
h indicates that the operator

(
l2 s12(pΩ,pΩ)

)
h
≡ 1

2
(l2 s12(pΩ,pΩ) + s12(pΩ,pΩ) l2) , (B.56)

is hermitized, which is necessary since l2 and s12(pΩ,pΩ) do not commute.



Appendix C

Correlators

In this appendix, the parameters of the correlators used in this work are presented for
reference. They were determined by T. Neff in Refs. [6, 7].

C.1 Parametrizations

The central correlation functions R+(r) will be given in terms of the parametrizations

R+(r) = r + α
( r
β

)η
exp

(
− exp

r

β

)
, (C.1)

and

R+(r) = r + αγη
(
1 − exp

{
−
( r
γ

)η})
exp

(
− exp

r

β

)
. (C.2)

The tensor correlation functions are parametrized by

ϑ(r) = αγη
(
1 − exp

{
−
( r
β

)η})
exp

(
− r

β

)
(C.3)

and

ϑ(r) = αγη
(
1 − exp

{
−
( r
β

)η})
exp

(
− exp

r

β

)
. (C.4)

As outlined in sect. 2.5, parameter sets are obtained by

(i) minimizing the energy in the two-nucleon system (min) and

(ii) minimizing the 4He binding energy (min-4He),

where greek letters in the tables indicate different constraints on the correlation range
via the following measures:

∫
dr r2 (R+(r) − r)

!
=

{
0.1 fm4 α

0.2 fm4 β
,

∫
dr r2 ϑ(r)

!
=





0.1 fm3 α

0.2 fm3 β

0.5 fm3 γ

. (C.5)
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C.2 Argonne-V18 Potential

Correlator ST Type α [ fm] β [ fm] γ [ fm] η

minα 00 C.2 1.804 1.272 0.424 1
minβ 00 C.2 2.306 1.603 0.307 1
min 01 C.1 1.379 0.885 0.372
min 10 C.1 1.296 0.849 0.419
min 11 C.2 3.102 1.374 0.187 1

min–4He 01 C.1 1.380 0.981 0.336
min–4He 10 C.1 1.372 0.907 0.419

Table C.1: Parameters of the central correlation functions R+(r) for the Argonne V18 potential.

Correlator ST Type α β [ fm] γ [ fm] η

minα 10 C.4 0.530 1.298 1000 1
minβ 10 C.4 0.579 1.717 1.590 1
minγ 10 C.4 0.786 2.665 0.488 1
min 10 C.3 0.341 2.153 0.407 1
minα 11 C.4 −0.081 3.477 0.420 1
min 11 C.3 −0.027 1.685 0.864 1

minα–4He 10 C.4 0.590 1.266 100 1
minβ–4He 10 C.4 0.520 1.554 100 1
minγ–4He 10 C.4 0.621 2.446 0.883 1
min–4He 10 C.3 0.361 4.017 0.303 1

Table C.2: Parameters of the tensor correlation functions ϑ(r) for the Argonne V18 potential.

C.3 Bonn-A Potential

Correlator ST Type α [ fm] β [ fm] γ [ fm] η

minα 00 C.2 0.250 1.406 1000 2
minβ 00 C.2 0.348 1.797 1.449 2
min 01 C.1 1.199 0.808 0.734
min 10 C.1 1.132 0.779 0.848
min 11 C.1 0.658 1.198 0.798

min–4He 01 C.1 1.344 0.899 0.699
min–4He 10 C.1 1.256 0.853 0.811

Table C.3: Parameters of the central correlation functions R+(r) for the Bonn-A OBEPR
potential.
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Correlator ST Type α β [ fm] γ [ fm] η

minα 10 C.4 0.412 1.287 4.994 2
minβ 10 C.4 0.408 1.834 1.215 2
minγ 10 C.4 0.420 2.745 0.925 2
min 10 C.3 0.170 2.372 0.863 2
minα 11 C.4 −0.032 3.353 1.106 3
min 11 C.3 −0.014 1.699 1.197 3

minα–4He 10 C.4 0.468 1.241 100 2
minβ–4He 10 C.4 0.398 1.472 100 2
minγ–4He 10 C.4 0.383 2.551 1.109 2
min–4He 10 C.3 0.152 7.201 0.741 2

Table C.4: Parameters of the tensor correlation functions ϑ(r) for the Bonn-A OBEPR poten-
tial.



Appendix D

FMD Interactions

In this appendix we provide the parameters of the fitted interactions used for calculations
in the FMD basis as a reference. The Coulomb interaction is hard-coded in the FMD
code and therefore not contained in the parameter sets. Details on the implementation
of interaction matrix elements can be found in [40].

D.1 Fit Model

The radial dependencies of the interaction terms are parametrized by Gaussians

Gκ(x) = exp

(
−x

2

2κ

)
(D.1)

of range
√
κ. The subscripts σ, τ and στ indicate the spin and isospin parts of the

different operators, where

σ : σ1 · σ2

τ : τ 1 · τ 2

στ : (σ1 · σ2)(τ 1 · τ 2) .

Central Interactions

Central potentials in the FMD interaction file include both the correlated central inter-
action and the local potential part of the correlated kinetic energy.

v : ṽ(r) + w̃(r) ' γGκ(r) (D.2)

Tensor Interactions

vt : ṽt(r) ' γr2Gκ(r) (D.3)

Spin-Orbit Interactions

vls : ṽls(r) ' γGκ(r) (D.4)
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Momentum-Dependent Interactions

Momentum-dependent potential terms are fits of the correlated radial and gradient
masses µ̃r∗(r) and µ̃∇(r) introduced for the FMD representation of the interactions.
Additional terms of this type are due to the ‘FMD-transformed’ correlated p2 or l2

parts (see section 4.1).

vp2
r :

1

2µ̃r∗
' γr2Gκ(r) (D.5)

vp2
:

1

2µ̃∇

' γGκ(r) (D.6)

D.2 Fitted Interactions

The fit of Argonne V18α was performed for this work, while the parameter files for
Bonn-Aα and Bonn-Aγ were kindly provided by T. Neff [45].

D.2.1 Argonne V18α

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vp2
-0.204797700 0.010000000 vp2

-0.261667850 0.040000000

vp2
0.248098720 0.016000000 vp2

0.156125400 0.064000000

vp2
-0.523286180 0.128000000 vp2

0.325362330 0.256000000

vp2
0.106209950 0.512000000 vp2

-0.088362290 1.024000000

vp2
0.063260170 1.560000000 vp2

-0.029023420 2.048000000

vp2
0.004890130 3.072000000 vp2

0.000077710 4.096000000

vp2

σ -0.041267760 0.010000000 vp2

σ -0.048356290 0.040000000

vp2

σ 0.053805780 0.016000000 vp2

σ 0.030266680 0.064000000

vp2

σ -0.147652330 0.128000000 vp2

σ 0.150501960 0.256000000

vp2

σ 0.014311810 0.512000000 vp2

σ -0.025512440 1.024000000

vp2

σ 0.015994610 1.560000000 vp2

σ -0.006575260 2.048000000

vp2

σ 0.000893480 3.072000000 vp2

σ 0.000168180 4.096000000

vp2

τ -0.031206960 0.010000000 vp2

τ -0.030863030 0.040000000

vp2

τ 0.043155570 0.016000000 vp2

τ 0.022282290 0.064000000

vp2

τ -0.179060090 0.128000000 vp2

τ 0.268850530 0.256000000

vp2

τ -0.079585070 0.512000000 vp2

τ -0.036911880 1.024000000

vp2

τ 0.034863090 1.560000000 vp2

τ -0.018463000 2.048000000

vp2

τ 0.003880770 3.072000000 vp2

τ -0.000398520 4.096000000

Table D.1: Correlated AV18 potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators min α(ST = 10), min (ST = 11) (cf. tables C.1 and C.2).
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γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vp2

στ -0.005572680 0.010000000 vp2

στ -0.003583380 0.040000000

vp2

στ 0.008080280 0.016000000 vp2

στ -0.007648060 0.064000000

vp2

στ -0.054349650 0.128000000 vp2

στ 0.103940600 0.256000000

vp2

στ -0.028623070 0.512000000 vp2

στ -0.013022990 1.024000000

vp2

στ 0.011408640 1.560000000 vp2

στ -0.006349010 2.048000000

vp2

στ 0.001299670 3.072000000 vp2

στ -0.000156710 4.096000000

vp2
r 1.440618900 0.010000000 vp2

r 0.638814520 0.040000000

vp2
r 0.707699380 0.016000000 vp2

r 0.118425390 0.064000000

vp2
r -0.002340050 0.128000000 vp2

r -0.019883660 0.256000000

vp2
r 0.070290750 0.512000000 vp2

r 0.013073400 1.024000000

vp2
r -0.008385870 1.560000000 vp2

r 0.003371700 2.048000000

vp2
r -0.000532390 3.072000000 vp2

r 0.000055950 4.096000000

v
p2

r
σ -1.114853970 0.010000000 v

p2
r

σ -0.368056240 0.040000000

v
p2

r
σ 0.481761040 0.016000000 v

p2
r

σ 0.287613090 0.064000000

v
p2

r
σ -0.321512420 0.128000000 v

p2
r

σ -0.199781720 0.256000000

v
p2

r
σ 0.022729100 0.512000000 v

p2
r

σ 0.003058130 1.024000000

v
p2

r
σ -0.001781940 1.560000000 v

p2
r

σ 0.000638690 2.048000000

v
p2

r
σ -0.000094690 3.072000000 v

p2
r

σ 0.000005370 4.096000000

v
p2

r
τ -3.596230380 0.010000000 v

p2
r

τ -1.026676180 0.040000000

v
p2

r
τ 2.422157780 0.016000000 v

p2
r

τ 0.813676140 0.064000000

v
p2

r
τ -0.480467890 0.128000000 v

p2
r

τ -0.098169560 0.256000000

v
p2

r
τ 0.063452220 0.512000000 v

p2
r

τ -0.004162230 1.024000000

v
p2

r
τ 0.002505740 1.560000000 v

p2
r

τ -0.001349670 2.048000000

v
p2

r
τ 0.000225900 3.072000000 v

p2
r

τ -0.000046160 4.096000000

v
p2

r
στ -1.312220130 0.010000000 v

p2
r

στ -0.423072110 0.040000000

v
p2

r
στ 0.636624410 0.016000000 v

p2
r

στ 0.266226600 0.064000000

v
p2

r
στ -0.271126300 0.128000000 v

p2
r

στ -0.096026770 0.256000000

v
p2

r
στ 0.035195000 0.512000000 v

p2
r

στ -0.001512510 1.024000000

v
p2

r
στ 0.000953160 1.560000000 v

p2
r

στ -0.000467030 2.048000000

v
p2

r
στ 0.000078090 3.072000000 v

p2
r

στ -0.000015170 4.096000000

v -3.580775810 0.010000000 v 1.516114490 0.040000000
v 3.096871070 0.016000000 v 0.685958350 0.064000000

Table D.1: Correlated AV18 potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators min α(ST = 10), min (ST = 11) (cf. tables C.1 and C.2).



D.2. FITTED INTERACTIONS 137

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

v -0.745238900 0.128000000 v 0.321870820 0.256000000
v -0.309266370 0.512000000 v 0.185505570 1.024000000
v -0.299240760 1.560000000 v 0.168604330 2.048000000
v -0.037206770 3.072000000 v 0.006824810 4.096000000

vσ 0.057668100 0.010000000 vσ -1.453794170 0.040000000
vσ 0.390036770 0.016000000 vσ 1.320639150 0.064000000
vσ 0.306871020 0.128000000 vσ -0.670471650 0.256000000
vσ 0.104854490 0.512000000 vσ 0.108789840 1.024000000
vσ -0.135477370 1.560000000 vσ 0.083096380 2.048000000
vσ -0.019380430 3.072000000 vσ 0.003786560 4.096000000

vτ -0.621547020 0.010000000 vτ -2.426321990 0.040000000
vτ 1.381312840 0.016000000 vτ 2.320184870 0.064000000
vτ -0.100413860 0.128000000 vτ -0.772757310 0.256000000
vτ 0.362654460 0.512000000 vτ -0.094086350 1.024000000
vτ 0.078761290 1.560000000 vτ -0.048586920 2.048000000
vτ 0.011612680 3.072000000 vτ -0.002344940 4.096000000

vστ -0.087987430 0.010000000 vστ -1.451478690 0.040000000
vστ 0.397913900 0.016000000 vστ 1.311978010 0.064000000
vστ 0.239361790 0.128000000 vστ -0.513554000 0.256000000
vστ 0.249734700 0.512000000 vστ 0.044631600 1.024000000
vστ -0.112352070 1.560000000 vστ 0.102143520 2.048000000
vστ -0.039722400 3.072000000 vστ 0.013454710 4.096000000

vls 0.195587890 0.010000000 vls 0.122919950 0.040000000
vls 0.233614120 0.016000000 vls 0.239968120 0.064000000
vls -1.419286310 0.128000000 vls -0.949923280 0.256000000
vls -0.028819120 0.512000000 vls 0.009346350 1.024000000
vls -0.017686780 1.560000000 vls 0.010158210 2.048000000
vls -0.002645560 3.072000000 vls 0.000518590 4.096000000

vls
σ -0.589433560 0.010000000 vls

σ -0.668921190 0.040000000
vls
σ 0.622642980 0.016000000 vls

σ 0.577874250 0.064000000
vls
σ -0.810313230 0.128000000 vls

σ -0.390511960 0.256000000
vls
σ 0.114773340 0.512000000 vls

σ -0.066438240 1.024000000
vls
σ 0.072826570 1.560000000 vls

σ -0.045690160 2.048000000
vls
σ 0.010871570 3.072000000 vls

σ -0.002166400 4.096000000

Table D.1: Correlated AV18 potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators min α(ST = 10), min (ST = 11) (cf. tables C.1 and C.2).
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D.2.2 Bonn-Aα

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vp2
-0.011989400 0.010000000 vp2

0.179003070 0.040000000

vp2
0.153402990 0.016000000 vp2

0.141178880 0.064000000

vp2
0.172823350 0.128000000 vp2

0.020798310 0.256000000

vp2
-0.016915190 0.512000000 vp2

0.073986920 1.024000000

vp2
-0.077440740 1.536000000 vp2

0.048021690 2.048000000

vp2
-0.013223290 3.072000000 vp2

0.003518150 4.096000000

vp2

σ 0.018835730 0.010000000 vp2

σ 0.033920040 0.040000000

vp2

σ -0.016646930 0.016000000 vp2

σ -0.018734360 0.064000000

vp2

σ 0.023003580 0.128000000 vp2

σ 0.004748490 0.256000000

vp2

σ -0.022072480 0.512000000 vp2

σ 0.035023890 1.024000000

vp2

σ -0.034662600 1.536000000 vp2

σ 0.020719310 2.048000000

vp2

σ -0.005474890 3.072000000 vp2

σ 0.001378240 4.096000000

vp2

τ -0.087248210 0.010000000 vp2

τ -0.090773900 0.040000000

vp2

τ 0.098408890 0.016000000 vp2

τ 0.095085930 0.064000000

vp2

τ -0.051226420 0.128000000 vp2

τ 0.068274420 0.256000000

vp2

τ -0.012920870 0.512000000 vp2

τ -0.063412310 1.024000000

vp2

τ 0.066106680 1.536000000 vp2

τ -0.036823270 2.048000000

vp2

τ 0.008242770 3.072000000 vp2

τ -0.001318930 4.096000000

vp2

στ -0.018120730 0.010000000 vp2

στ -0.001916640 0.040000000

vp2

στ 0.047908220 0.016000000 vp2

στ 0.055498500 0.064000000

vp2

στ 0.009680040 0.128000000 vp2

στ 0.032997690 0.256000000

vp2

στ -0.004532550 0.512000000 vp2

στ -0.026609950 1.024000000

vp2

στ 0.025651250 1.536000000 vp2

στ -0.013996840 2.048000000

vp2

στ 0.003095270 3.072000000 vp2

στ -0.000502930 4.096000000

vp2
r 13.996259930 0.010000000 vp2

r 3.328033340 0.040000000

vp2
r -1.507563040 0.016000000 vp2

r -0.858087600 0.064000000

vp2
r 0.857723370 0.128000000 vp2

r 0.245546020 0.256000000

vp2
r 0.029240680 0.512000000 vp2

r 0.006624110 1.024000000

vp2
r -0.004483010 1.536000000 vp2

r 0.001739180 2.048000000

vp2
r -0.000277740 3.072000000 vp2

r 0.000018330 4.096000000

v
p2

r
σ -1.705146490 0.010000000 v

p2
r

σ -0.530747720 0.040000000

Table D.2: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).



D.2. FITTED INTERACTIONS 139

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

v
p2

r
σ 1.208952750 0.016000000 v

p2
r

σ 0.348990740 0.064000000

v
p2

r
σ -0.179172680 0.128000000 v

p2
r

σ -0.088826290 0.256000000

v
p2

r
σ 0.027982950 0.512000000 v

p2
r

σ -0.008552710 1.024000000

v
p2

r
σ 0.004703330 1.536000000 v

p2
r

σ -0.002014030 2.048000000

v
p2

r
σ 0.000338700 3.072000000 v

p2
r

σ -0.000062420 4.096000000

v
p2

r
τ -0.011954490 0.010000000 v

p2
r

τ -0.277367840 0.040000000

v
p2

r
τ 0.970240190 0.016000000 v

p2
r

τ 0.359716130 0.064000000

v
p2

r
τ -0.102066590 0.128000000 v

p2
r

τ -0.080606210 0.256000000

v
p2

r
τ 0.069078020 0.512000000 v

p2
r

τ -0.010517200 1.024000000

v
p2

r
τ 0.005125700 1.536000000 v

p2
r

τ -0.002051530 2.048000000

v
p2

r
τ 0.000323570 3.072000000 v

p2
r

τ -0.000058450 4.096000000

v
p2

r
στ -1.751613740 0.010000000 v

p2
r

στ -0.561803750 0.040000000

v
p2

r
στ 0.439042240 0.016000000 v

p2
r

στ 0.248843300 0.064000000

v
p2

r
στ -0.177210620 0.128000000 v

p2
r

στ -0.087388690 0.256000000

v
p2

r
στ 0.022478910 0.512000000 v

p2
r

στ 0.002120650 1.024000000

v
p2

r
στ -0.000966090 1.536000000 v

p2
r

στ 0.000331160 2.048000000

v
p2

r
στ -0.000045500 3.072000000 v

p2
r

στ 0.000003780 4.096000000

v -20.453574810 0.010000000 v -0.410591800 0.040000000
v 2.251952100 0.016000000 v -4.704468050 0.064000000
v -1.831477170 0.128000000 v 2.152963270 0.256000000
v -1.310669650 0.512000000 v 0.919449830 1.024000000
v -1.097564980 1.536000000 v 0.652269350 2.048000000
v -0.161669080 3.072000000 v 0.032296780 4.096000000

vσ -5.876027080 0.010000000 vσ -1.745570720 0.040000000
vσ 2.410505980 0.016000000 vσ 1.410109220 0.064000000
vσ 1.307923450 0.128000000 vσ -1.206104290 0.256000000
vσ 0.521746140 0.512000000 vσ -0.181214680 1.024000000
vσ 0.094663240 1.536000000 vσ -0.031819950 2.048000000
vσ 0.002942200 3.072000000 vσ -0.000198040 4.096000000

vτ -6.506861010 0.010000000 vτ -2.375955180 0.040000000
vτ 4.096523020 0.016000000 vτ 1.731517310 0.064000000
vτ 1.344593100 0.128000000 vτ -1.457000890 0.256000000
vτ 0.800538330 0.512000000 vτ -0.375874610 1.024000000
vτ 0.288286460 1.536000000 vτ -0.145314690 2.048000000

Table D.2: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).
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γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vτ 0.030739340 3.072000000 vτ -0.005746300 4.096000000

vστ -5.027466370 0.010000000 vστ -4.907261310 0.040000000
vστ 0.197595800 0.016000000 vστ 0.963735560 0.064000000
vστ 0.174901770 0.128000000 vστ -0.673543190 0.256000000
vστ 0.348851760 0.512000000 vστ -0.056078400 1.024000000
vστ 0.023522390 1.536000000 vστ 0.012027300 2.048000000
vστ -0.017777810 3.072000000 vστ 0.009468500 4.096000000

vls -23.378608440 0.010000000 vls -10.913388700 0.040000000
vls -1.375718570 0.016000000 vls -0.781809590 0.064000000
vls -2.667546660 0.128000000 vls -0.058147420 0.256000000
vls -0.208192290 0.512000000 vls 0.111380860 1.024000000
vls -0.125525460 1.536000000 vls 0.074117220 2.048000000
vls -0.018594610 3.072000000 vls 0.003734850 4.096000000

vls
σ -2.017380260 0.010000000 vls

σ -1.699444480 0.040000000
vls
σ -1.215418650 0.016000000 vls

σ -0.729095950 0.064000000
vls
σ -0.539664260 0.128000000 vls

σ -0.202176220 0.256000000
vls
σ 0.019098180 0.512000000 vls

σ -0.024957230 1.024000000
vls
σ 0.025307020 1.536000000 vls

σ -0.014855290 2.048000000
vls
σ 0.003526040 3.072000000 vls

σ -0.000695730 4.096000000

Table D.2: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).

D.2.3 Bonn-Aγ

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vp2
-0.030633680 0.010000000 vp2

0.166639390 0.040000000

vp2
0.175807190 0.016000000 vp2

0.143011490 0.064000000

vp2
0.180020470 0.128000000 vp2

0.016092510 0.256000000

vp2
-0.027051130 0.512000000 vp2

0.042666270 1.024000000

vp2
-0.036969410 1.536000000 vp2

0.047406960 2.048000000

vp2
-0.010126440 3.072000000 vp2

0.002671410 4.096000000

vp2

σ 0.012620970 0.010000000 vp2

σ 0.029798810 0.040000000

vp2

σ -0.009178870 0.016000000 vp2

σ -0.018123490 0.064000000

vp2

σ 0.025402630 0.128000000 vp2

σ 0.003179890 0.256000000

vp2

σ -0.025451130 0.512000000 vp2

σ 0.024583670 1.024000000

Table D.3: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).
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γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vp2

σ -0.021172150 1.536000000 vp2

σ 0.020514400 2.048000000

vp2

σ -0.004442610 3.072000000 vp2

σ 0.001096000 4.096000000

vp2

τ -0.068603930 0.010000000 vp2

τ -0.078410220 0.040000000

vp2

τ 0.076004690 0.016000000 vp2

τ 0.093253310 0.064000000

vp2

τ -0.058423540 0.128000000 vp2

τ 0.072980220 0.256000000

vp2

τ -0.002784930 0.512000000 vp2

τ -0.032091660 1.024000000

vp2

τ 0.025635350 1.536000000 vp2

τ -0.036208550 2.048000000

vp2

τ 0.005145920 3.072000000 vp2

τ -0.000472200 4.096000000

vp2

στ -0.011905970 0.010000000 vp2

στ 0.002204580 0.040000000

vp2

στ 0.040440160 0.016000000 vp2

στ 0.054887630 0.064000000

vp2

στ 0.007281000 0.128000000 vp2

στ 0.034566290 0.256000000

vp2

στ -0.001153910 0.512000000 vp2

στ -0.016169730 1.024000000

vp2

στ 0.012160800 1.536000000 vp2

στ -0.013791930 2.048000000

vp2

στ 0.002062990 3.072000000 vp2

στ -0.000220680 4.096000000

vp2
r 15.324151010 0.010000000 vp2

r 3.662108070 0.040000000

vp2
r -2.449254360 0.016000000 vp2

r -1.043334050 0.064000000

vp2
r 0.895580910 0.128000000 vp2

r 0.239420330 0.256000000

vp2
r 0.028721550 0.512000000 vp2

r -0.002214700 1.024000000

vp2
r -0.005351400 1.536000000 vp2

r 0.000727260 2.048000000

vp2
r -0.000104410 3.072000000 vp2

r -0.000006950 4.096000000

v
p2

r
σ -1.262516130 0.010000000 v

p2
r

σ -0.419389480 0.040000000

v
p2

r
σ 0.895055640 0.016000000 v

p2
r

σ 0.287241920 0.064000000

v
p2

r
σ -0.166553490 0.128000000 v

p2
r

σ -0.090868190 0.256000000

v
p2

r
σ 0.027809910 0.512000000 v

p2
r

σ -0.011498980 1.024000000

v
p2

r
σ 0.004413870 1.536000000 v

p2
r

σ -0.002351340 2.048000000

v
p2

r
σ 0.000396470 3.072000000 v

p2
r

σ -0.000070850 4.096000000

v
p2

r
τ -1.339845580 0.010000000 v

p2
r

τ -0.611442570 0.040000000

v
p2

r
τ 1.911931510 0.016000000 v

p2
r

τ 0.544962570 0.064000000

v
p2

r
τ -0.139924140 0.128000000 v

p2
r

τ -0.074480510 0.256000000

v
p2

r
τ 0.069597150 0.512000000 v

p2
r

τ -0.001678390 1.024000000

v
p2

r
τ 0.005994090 1.536000000 v

p2
r

τ -0.001039610 2.048000000

v
p2

r
τ 0.000150250 3.072000000 v

p2
r

τ -0.000033170 4.096000000

Table D.3: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).



142 APPENDIX D. FMD INTERACTIONS

γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

v
p2

r
στ -2.194244100 0.010000000 v

p2
r

στ -0.673161990 0.040000000

v
p2

r
στ 0.752939350 0.016000000 v

p2
r

στ 0.310592120 0.064000000

v
p2

r
στ -0.189829800 0.128000000 v

p2
r

στ -0.085346790 0.256000000

v
p2

r
στ 0.022651950 0.512000000 v

p2
r

στ 0.005066920 1.024000000

v
p2

r
στ -0.000676620 1.536000000 v

p2
r

στ 0.000668460 2.048000000

v
p2

r
στ -0.000103280 3.072000000 v

p2
r

στ 0.000012210 4.096000000

v -20.474598490 0.010000000 v -0.417964390 0.040000000
v 2.262382860 0.016000000 v -4.715754160 0.064000000
v -1.776428100 0.128000000 v 2.077466200 0.256000000
v -1.211264210 0.512000000 v 0.838438280 1.024000000
v -1.045901420 1.536000000 v 0.622971680 2.048000000
v -0.154830920 3.072000000 v 0.030949060 4.096000000

vσ -5.883034980 0.010000000 vσ -1.748028250 0.040000000
vσ 2.413982900 0.016000000 vσ 1.406347180 0.064000000
vσ 1.326273140 0.128000000 vσ -1.231269980 0.256000000
vσ 0.554881290 0.512000000 vσ -0.208218530 1.024000000
vσ 0.111884420 1.536000000 vσ -0.041585840 2.048000000
vσ 0.005221590 3.072000000 vσ -0.000647280 4.096000000

vτ -6.485837330 0.010000000 vτ -2.368582590 0.040000000
vτ 4.086092260 0.016000000 vτ 1.742803430 0.064000000
vτ 1.289544030 0.128000000 vτ -1.381503820 0.256000000
vτ 0.701132880 0.512000000 vτ -0.294863070 1.024000000
vτ 0.236622900 1.536000000 vτ -0.116017010 2.048000000
vτ 0.023901180 3.072000000 vτ -0.004398580 4.096000000

vστ -5.020458470 0.010000000 vστ -4.904803780 0.040000000
vστ 0.194118880 0.016000000 vστ 0.967497600 0.064000000
vστ 0.156552080 0.128000000 vστ -0.648377500 0.256000000
vστ 0.315716610 0.512000000 vστ -0.029074550 1.024000000
vστ 0.006301200 1.536000000 vστ 0.021793190 2.048000000
vστ -0.020057200 3.072000000 vστ 0.009917740 4.096000000

vls -23.332946770 0.010000000 vls -10.858671580 0.040000000
vls -1.484701070 0.016000000 vls -0.875446090 0.064000000
vls -2.546259550 0.128000000 vls -0.155836790 0.256000000
vls -0.122052350 0.512000000 vls 0.092440500 1.024000000
vls -0.094485090 1.536000000 vls 0.059533480 2.048000000

Table D.3: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).
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γ[fm−1] κ[fm2] γ[fm−1] κ[fm2]

vls -0.015030760 3.072000000 vls 0.003002370 4.096000000

vls
σ -2.063041940 0.010000000 vls

σ -1.754161600 0.040000000
vls
σ -1.106436140 0.016000000 vls

σ -0.635459450 0.064000000
vls
σ -0.660951370 0.128000000 vls

σ -0.104486850 0.256000000
vls
σ -0.067041760 0.512000000 vls

σ -0.006016870 1.024000000
vls
σ -0.005733360 1.536000000 vls

σ -0.000271550 2.048000000
vls
σ -0.000037800 3.072000000 vls

σ 0.000036750 4.096000000

Table D.3: Correlated Bonn-A potential, using central correlators minα(ST = 00), min (ST =
01, 10, 11) and tensor correlators minα(ST = 10), min (ST = 11) (cf. tables C.3 and C.4).



Appendix E

Notation and Conventions

E.1 Units and Constants

Throughout this work, we primarily use

~ = c = 1 .

The value of the conversion factor is

~c = 197.327053 MeV fm . (E.1)

Nucleon Properties

mp [ MeV] 938.27231 proton mass [24]
mn [ MeV] 939.56563 neutron mass [24]
mN [ MeV] 938.91897 average nucleon mass [24]

rp [ fm] 0.862 proton charge radius [49]

E.2 Common Functions

jl(kr) spherical Bessel function
Pl(cosθ) Legendre polynomial
W (r) Woods-Saxon function (see eq. (1.21)
Y m

l (Ω) spherical harmonic
Y(x) Yukawa function (see eq. (1.14))
Z(x) derived Yukawava function (see eq. (1.14))

E.3 Operators and Vectors

Vectors are denoted by bold-face letters, i.e. x. For operators, a font of the Roman
family is used: O. Vector operators are therefore written in bold-face Roman style:
L. Several common vectors and operators are listed below. Note that although the
relative momentum vector will be denoted k, the more common notation p is used for
the relative momentum operator.

144
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Symbol Conventions

Vector Operator

â general unit vector
xi xi single particle position
pi pi single particle momentum

r = x1 − x2 r relative position of two particles
k = 1

2(p1 − p2) p relative momentum of two particles
q q momentum transfer

xcm xcm center-of-mass position
pcm pcm center-of-mass position

Operator Conventions

o k-body operator in k-body space
O operator in many-body space

O[k] irreducible k-body part of an operator in many-body space
oi1...ik k-body operator in many-body space with respect to the sub-

space of particles i1, . . . , ik

C correlation operator in many-body space
c = C2 correlation operator in two-body space

Õ = C†OC correlated operator in many-body space

ÕC2 correlated operator in two-body approximation

t
(k)
q irreducible spherical tensor operator of rank k

E.4 Pauli Matrices

The Pauli matrices, denoted σ in spin and τ in isospin space, are

σ1 = τ1 =

(
0 1
1 0

)
, σ2 = τ2 =

(
0 −i
i 0

)
, σ3 = τ3 =

(
1 0
0 −1

)
.

The projection operators on spin singlet and triplet spaces read

Π0 =
1

4
(1 − σ1 · σ2) and Π1 =

3

4
(1 + σ1 · σ2) .

The isospin projectors are given by the same relations with σ replaced by τ .

E.5 Clebsch-Gordan Coefficients

The notation 〈
j1m1j2m2

∣∣JM
〉

is used for Clebsch-Gordan coefficients, since it better reflects the underlying unitary
transformation between different bases.
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Dominik Nickel gebührt Dank für interessante Diskussionen über fachliche und außer-
fachliche Themen.
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des Sonderforschungsbereiches 634.

Meinem Vater Heinrich, sowie meinem Bruder Stefan und seiner Familie danke
ich für die anhaltende seelische und moralische Unterstützung während des Studiums,
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