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Abstract
We use the Bogoliubov theory of atoms in an optical lattice to study the
approach to the Mott-insulator transition. We derive an explicit expression
for the superfluid density based on the rigidity of the system under phase
variations. This enables us to explore the connection between the quantum
depletion of the condensate and the quasi-momentum distribution on the one
hand and the superfluid fraction on the other. The approach to the insulator
phase may be characterized through the filling of the band by quantum depletion,
which should be directly observable via the matter–wave interference patterns.
We complement these findings by self-consistent Hartree–Fock–Bogoliubov–
Popov calculations for one-dimensional lattices, including the effects of a
parabolic trapping potential.

1. Introduction

Spectacular progress has been made in experimental studies of atoms loaded into an optical
lattice in the region of the Mott superfluid insulator quantum phase transition [1, 2]. In this
paper, we shall discuss the superfluid density and the quasi-momentum distribution, which
is directly related to the matter–wave interference patterns that can be observed in such
experiments. To do this we use the Bogoliubov method [3], as developed for use in optical
lattices [4]. In a previous paper [5], we used this method to produce results for squeezing that
are consistent with those of other approaches previously reported in the literature [6–9]. In this
paper we shall show how it can be used to predict the decrease in the superfluid fraction and
the corresponding variations in the matter–wave interference fringes that should be directly
observable in future experiments. This extends our previous studies based on exact calculation
for small one-dimensional systems [10] into the experimentally relevant regime of lattice sizes
and particle numbers.
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We first introduce the Bose–Hubbard Hamiltonian for atoms in an optical lattice [11]. We
then describe briefly our method for determining the superfluid fraction based on the rigidity
of the system under a twist of the condensate phase [12]. Using a perturbative formulation
analogous to the Drude weight [13], the Bogoliubov approximation gives us a particularly
direct way of finding this quantity. It also gives a simple picture of how superfluidity is
suppressed by quantum depletion of the condensate. We shall compare the results for various
quantities calculated using the Bogoliubov approximation with exact numerical calculations
for the case of modest numbers of atoms and lattice sites [10].

2. The Bose–Hubbard model and superfluidity

The Bose–Hubbard Hamiltonian for atoms in a one-dimensional optical lattice with I sites has
the form [11]

Ĥ =
I∑

i=1

n̂iεi − J
I∑

i=1

(â†
i+1âi + â†

i âi+1) +
V

2

I∑
i=1

n̂i (n̂i − 1). (1)

Here, J represents the coupling between adjacent lattice sites due to tunnelling and V is the
strength of repulsion between atoms on the same site. The non-interacting energy of the
atoms on each site, εi , will have some variation, that is typically smooth on the scale of the
condensate. We shall consider below both the case where this is a constant, and the extension
to the case where it varies in a trapped condensate. This Bose–Hubbard Hamiltonian should
be an appropriate model when the loading process produces atoms in the lowest vibrational
state of each well, with a chemical potential smaller than the distance to the first vibrationally
excited state. This is known to be possible from the results of recent experiments [1, 2, 14].

The concept of superfluidity is closely related to the existence of a condensate in the
interacting many-body system. Formally, the one-body density matrix, ρ(1)(�x, �x ′), has to have
exactly one macroscopic eigenvalue, which defines the number of particles in the condensate;
the corresponding eigenvector describes the condensate wavefunction, φ0(�x) = ei�(�x)|φ0(�x)|.
A spatially varying condensate phase, �(�x), is associated with a velocity field for the
condensate by

�v0(�x) = h̄

m
�∇�(�x). (2)

This irrotational velocity field is identified with the velocity of the superfluid flow, �vs(�x) ≡
�v0(�x) [15, 16], and enables us to derive an expression for the superfluid fraction, fs . Consider
a system with a finite linear dimension, L, in the �e1-direction and a ground-state energy,
E0, calculated with periodic boundary conditions. Now we impose a linear phase variation,
�(�x) = θx1/L, with a total twist angle θ over the length of the system in the �e1-direction.
The resulting ground-state energy, Eθ , will depend on the phase twist. For very small twist
angles, θ � π , the energy difference, Eθ − E0, can be attributed to the kinetic energy, Ts , of
the superflow generated by the phase gradient. Thus,

Eθ − E0 = Ts = 1
2 m N fs �v2

s , (3)

where m is the mass of a single particle and N is the total number of particles, so that m N fs
is the total mass of the superfluid component. Replacing the superfluid velocity, �vs , with the
phase gradient according to equation (2) leads to a fundamental relation for the superfluid
fraction,

fs = 2m

h̄2

L2

N

Eθ − E0

θ2
= 1

N

Eθ − E0

J (�θ)2
, (4)
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where the second equality applies to a lattice system on which a linear phase variation has
been imposed. Here the distance between sites is a, the phase variation over this distance is
�θ and the number of sites is I . In this case, J ≡ h̄2/(2ma2).

Technically the phase variation can be imposed through so-called twisted boundary
conditions [12]. In the context of the discrete Bose–Hubbard model it is, however, more
convenient to map the phase variation by means of a unitary transformation onto the
Hamiltonian. The resulting ‘twisted’ Hamiltonian,

Ĥθ =
I∑

i=1

n̂iεi − J
I∑

i=1

(e−i�θ â†
i+1âi + ei�θ â†

i âi+1) +
V

2

I∑
i=1

n̂i (n̂i − 1), (5)

exhibits additional phase factors, e±i�θ —the so-called Peierls phase factors—in the hopping
term [17, 18]. These phase factors show that the twist is equivalent to the imposition of an
acceleration on the lattice for a finite time. It is interesting to note that the present experiments
enable us to make a specific connection between the formal and operational aspects of the
system.

We calculate the change in energy, Eθ − E0, under the assumption that the phase change,
�θ , is small, so that we can write

e−i�θ � 1 − i�θ − 1
2 (�θ)2. (6)

Using this expansion, the twisted Hamiltonian (5) takes the following form:

Ĥθ � Ĥ0 + �θ Ĵ − 1
2 (�θ)2T̂ = Ĥ0 + Ĥpert, (7)

where we retain terms up to second order in �θ . The current operator, Ĵ (note that the physical
current is given by this expression multiplied by 1

h̄ ), and the hopping operator, T̂ , are given by

Ĵ = iJ
I∑

i=1

(â†
i+1âi − â†

i âi+1) (8)

T̂ = −J
I∑

i=1

(â†
i+1âi + â†

i âi+1). (9)

The change in the energy, Eθ − E0, due to the imposed phase twist can now be evaluated in
second order perturbation theory,

Eθ − E0 = �E (1) + �E (2). (10)

The first order contribution to the energy change is proportional to the expectation value of the
hopping operator,

�E (1) = 〈�0|Ĥpert |�0〉 = − 1
2 (�θ)2〈�0|T̂ |�0〉. (11)

Here, |�0〉 is the ground state of the original Bose–Hubbard Hamiltonian (1). The second
order term is related to the matrix elements of the current operator involving the excited states,
|�ν〉(ν = 1, 2, . . .), of the original Hamiltonian,

�E (2) = −
∑
ν 	=0

|〈�ν |Ĥpert|�0〉|2
Eν − E0

= −(�θ)2
∑
ν 	=0

|〈�ν | Ĵ |�0〉|2
Eν − E0

. (12)

Thus we obtain for the energy change up to second order in �θ

Eθ − E0 = (�θ)2

(
−1

2
〈�0|T̂ |�0〉 −

∑
ν 	=0

|〈�ν| Ĵ |�0〉|2
Eν − E0

)
= I (�θ)2 D,

D ≡ 1

I

(
−1

2
〈�0|T̂ |�0〉 −

∑
ν 	=0

|〈�ν | Ĵ |�0〉|2
Eν − E0

)
. (13)
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The quantity D, defined above, is formally equivalent to the Drude weight used to specify the
DC conductivity of charged fermionic systems [13]. The superfluid fraction is then given by
the contribution of both the first and second order terms:

fs = f (1)
s − f (2)

s ;
f (1)
s ≡ − 1

2N J
(〈�0|T̂ |�0〉),

f (2)
s ≡ 1

N J

(∑
ν 	=0

|〈�ν | Ĵ |�0〉|2
Eν − E0

)
.

(14)

Here, N is the number of atoms in the lattice. In general, both the first and the second order
term contribute. For a translationally invariant lattice, the second term vanishes (as is going
to be shown later) in the Bogoliubov limit that we shall use in this study. However, in exact
calculations and in the Bogoliubov approximation for an inhomogeneous lattice, the second
order term plays a role.

We can further understand this approach to the superfluid density by calculating the flow
that is produced by the application of the phase twist. To do this, we work out the expectation
value of the current operator expressed in terms of the twisted variables:

Ĵθ = iJ
I∑

i=1

(e−i�θ â†
i+1âi − ei�θ â†

i âi+1). (15)

We expand this to find the lowest order contributions, i.e.

Ĵθ � Ĵ + J�θ

I∑
i=1

(â†
i+1âi + â†

i âi+1) = Ĵ − T̂�θ. (16)

We use first order perturbation theory on the wavefunction to obtain the following expression:

〈�(�θ)| Ĵθ |�(�θ)〉 = 2�θ

(
−1

2
〈�0|T̂ |�0〉 −

∑
ν 	=0

|〈�ν | Ĵ |�0〉|2
Eν − E0

)
(17)

= 2N J fs�θ. (18)

If we note that the kinetic energy for a small quasi-momentum q on a lattice is given by
Jq2a2, we can define the effective mass as m∗ = h̄2

2J a2 . Here, the quasi-momenta are given
by q = 2π

Ia j with j = 1, . . . , (I − 1) and lattice spacing a. Thus, the physical current,
equation (18) multiplied by 1

h̄ , can be expressed as

〈�(�θ)| Ĵθ |�(�θ)〉 = N fs �θ
h̄

m∗a2
. (19)

This is the total flux and we need to divide by I to get the flux density, i.e.

1

I
〈�(�θ)| Ĵθ |�(�θ)〉 =

(
h̄�θ

m∗a

)(
N fs
a I

)
= vsns . (20)

So we see that the Drude formulation of the superfluid fraction (14) gives an intuitively
satisfying expression for the amount of flowing superfluid.

3. The Bogoliubov approximation to the Bose–Hubbard Hamiltonian

We use the Bogoliubov approximation for the Bose–Hubbard model in the limit where quantum
fluctuations, or equivalently depletion of the condensate, are not too great. In the limit where
the quantum depletion can be completely ignored, we can replace the creation and annihilation
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operators, â†
i and âi , on each site with a c-number, zi . This leads to a set of coupled non-linear

Schrödinger, i.e. Gross–Pitaevskii (GP), equations for these amplitudes [19]:

ih̄∂t zi = −J (zi+1 + zi−1) + V zi z
∗
i zi . (21)

This equation can be used to study the properties of the condensate loaded into the lattice
when the tunnelling kinetic energy is large enough compared to the interaction energy, though
small enough for the one-band Bose–Hubbard model to be valid. We then include the quantum
fluctuations in our description of the system using the Bogoliubov approximation, where we
suppose that we can write the full annihilation operator in terms of the c-number part and a
fluctuation operator, thus:

âi = (zi + δ̂i) exp

(
−i

µt

h̄

)
. (22)

This form will be useful when we are looking at the properties of a time-independent or
adiabatic ground state. In using this method we are assuming that the fluctuation part is small.
The Bogoliubov method gives us expressions for the averages of the squares of the fluctuation
operator and allows us to determine whether this assumption is valid. We shall examine
its validity by comparing the results for various physical quantities with exact numerical
calculations based on the Bose–Hubbard Hamiltonian.

3.1. Bogoliubov theory for the translationally invariant lattice

The ground-state solution for the translationally invariant lattice gives the eigenvalue

µ = n0V − 2J, (23)

where

n0 = N/I (24)

is the mean number of atoms on each site of the lattice. We take N to be the total number of
atoms and I to be the number of sites in the one-dimensional lattice.

The Bogoliubov equations for the lattice have the following form:

ih̄∂t δ̂i = (2n0V − µ)δ̂i − J (δ̂i+1 + δ̂i−1) + n0V δ̂
†
i . (25)

This is solved by constructing quasi-particles for the lattice which diagonalize the
Hamiltonian [4], i.e.

δ̂i = 1√
I

∑
q

[uq α̂q ei(qia−ωq t) − vq∗α̂†
q e−i(qia−ωq t)] (26)

δ̂
†
i = 1√

I

∑
q

[uq∗α̂†
q e−i(qia−ωq t) − vq α̂qei(qia−ωq t)], (27)

where a is the lattice spacing. The quasi-particle operators obey the usual Bose commutation
relations,

[α̂q , α̂
†
q ′ ] = δqq ′, (28)

and have the following expectation values at some temperature T :

〈α̂†
q α̂q ′ 〉 = δqq ′[exp(h̄ωq/kbT ) − 1]−1. (29)

We then find the following equations for the excitation amplitudes and frequencies:

h̄ωq uq =
[

n0V + 4J sin2

(
qa

2

)]
uq − n0V vq , (30)

−h̄ωqv
q =

[
n0V + 4J sin2

(
qa

2

)]
vq − n0V uq . (31)
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Thus, the expressions for the uq and vq yield

|uq |2 = K (q) + n0V + h̄ωq

2h̄ωq
(32)

|vq |2 = K (q) + n0V − h̄ωq

2h̄ωq
, (33)

where the phonon excitation frequencies are given by

h̄ωq = √
K (q)[2n0V + K (q)] (34)

K (q) = 4J sin2

(
qa

2

)
. (35)

3.2. Expressions for the number superfluid fraction in the translationally invariant lattice

Having obtained the expressions for the excitations, we can now determine the superfluid
fraction. The quantity we need to calculate is just the first order term of the Drude
expression (14), because the second order term vanishes in the Bogoliubov limit due to the
translational invariance of the lattice (see equation (48)), i.e.

fs = − 1

2N J
〈�0|T̂ |�0〉 = 1

2N

I∑
i=1

〈�0|â†
i+1âi + â†

i âi+1|�0〉. (36)

In the Bogoliubov approximation, this has the form

fs = 1

2N

I∑
i=1

〈�0|(δ̂†
i+1 + zi+1)(δ̂i + zi ) + (δ̂

†
i + zi)(δ̂i+1 + zi+1)|�0〉

= 1

2N

I∑
i=1

〈�0|2z2
i + δ̂

†
i+1δ̂i + δ̂

†
i δ̂i+1|�0〉. (37)

We can now express the fluctuation operators, equations (26) and (27), in terms of the quasi-
particle operators that diagonalize the quadratic Hamiltonian. This leads to an expression for
the superfluid fraction at finite temperature,

fs = 1

2N

[ I∑
i=1

2z2
i +

1

I

〈∑
q

[uq α̂qeiq(i+1)a − vq α̂†
q e−iq(i+1)a]

×
∑

q ′
[uq ′

α̂
†
q ′ e−iq ′ia − vq ′

α̂q ′ eiq ′ia]

〉

+
1

I

I∑
i=1

〈 ∑
q

[uq α̂†
q e−iqia − vq α̂q eiqia]

×
∑

q ′
[uq ′

α̂q ′ eiq ′(i+1)a − vq ′
α̂

†
q ′ e−iq ′(i+1)a]

〉]
, (38)

and we find in the zero-temperature limit of a translationally invariant lattice

fs = I

N

[
z2 +

1

I

∑
q

|vq |2 cos(qa)

]
. (39)

Here, the summation runs over all quasi-momenta q = 2π
Ia j with j = 1, . . . , (I − 1), and we

have called z the value of all zi in a translationally invariant system. This shows that in the
limit of zero lattice spacing (while keeping q finite) the superfluid fraction is unity, as we have
the normalization condition:
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I z2 +
∑

q

|vq |2 = N. (40)

These expressions give a direct insight into the change of the superfluid fraction as atoms
are pushed out of the condensate due to interactions. In equation (39), the sum involving
the Bogoliubov amplitudes, vq , characterizes the difference between the condensate fraction,
which is given by the first term, and the superfluid fraction. For weak interactions and a small
depletion, which fills only the lower quarter of the band where the cos(qa) term has a positive
sign, the superfluid fraction is larger than the condensate fraction. Thus the depletion of the
condensate has initially little effect on superfluidity. When the depleted population spreads
into the central part of the band, where the cos(qa) term has a negative sign, the superfluid
fraction is reduced and might even become smaller than the condensate fraction. Finally,
the population in the upper quarter of the band again produces a positive contribution to the
superflow. In a sense, the interactions are playing a role akin to Fermi exclusion ‘pressure’ in
the case of electron flow in a band. This, however, can lead to perfect filling and cancellation
of the flow. In the case of our Bogoliubov description, we can only see reduction of the flow,
not a perfect switching off of the superfluid. This happens in the Mott insulator state, which
cannot be described by the Bogoliubov approximation.

In the next section we outline the version of the Bogoliubov theory that should be best
suited to treating these problems, i.e self-consistent Bogoliubov theory.

4. Self-consistent HFB–Popov theory

In this section, we explore the limits of validity of the simplest zero-temperature self-
consistent Bogoliubov theory, a simplified version of the Hartree–Fock–Bogoliubov (HFB)
approximation originally introduced by Popov [20]. The HFB–Popov theory is an extension of
the standard Bogoliubov approximation that takes into account the depletion of the condensate
but neglects the anomalous average. As discussed in the previous section, taking into account
the depletion of the condensate is important as the transition is approached,because the depleted
population causes the reduction of the superfluidity. Although the HFB–Popov approach has
the limitation that it does not take into account the full effect of the medium because it neglects
the anomalous average [21], it can be considered a better theory for the elementary excitations
than the full HFB due to the fact that the theory is gapless and does not violate Goldstone’s
theorem.

A derivation of the Bogoliubov equations for the quasiparticle amplitudes in a lattice can
be found, for example, in [5]. These equations only take into account terms up to second
order in the fluctuations. Including third and fourth order terms by treating them in a self-
consistent mean field approximation [22, 23] and neglecting anomalous average terms yields
the following HFB–Popov equations:

h̄ωquq
i + cq zi = (2V (|zi |2 + ñi) − µ + εi)u

q
i − J (uq

i+1 + uq
i−1) − V z2

i v
q
i , (41)

−h̄ωqv
q
i − cq z∗

i = (2V (|zi |2 + ñi) − µ + εi )v
q
i − J (v

q
i+1 + v

q
i−1) − V z∗2

i uq
i , (42)

µzi = −J (zi+1 + zi−1) + (V (|zi |2 + 2ñi ) + εi )zi , (43)

ñi =
∑

q

|vq
i |2, (44)

N =
I∑

i=1

(|zi |2 + ñi), (45)

cq = V
∑

i

|zi |2(z∗
i uq

i − ziv
q
i ) (46)
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where εi is the energy offset at site i due to an external potential,{uq
i , v

q
i } and ωq are respectively

the quasiparticle amplitudes and energies, thus

δ̂i =
∑

q

uq
i α̂q e−iωq t − v

q∗
i α̂†

qeiωq t , (47)

ñi is the depletion at site i and N is the total number of particles. The parameters cq ensure the
{uq

i , v
q
i } solutions to the above equations with ωq 	= 0 to be orthogonal to the condensate [23].

By calculating the quasiparticle amplitudes and the condensate density it is possible to get
information about most of the physical properties of the system. For example, the superfluid
fraction and the on site number fluctuations are given by

fs = f (1)
s − f (2)

s , (48)

f (1)
s =

I∑
i=1

f (1)
si = 1

2N

I∑
i=1

[
(zi+1z∗

i + z∗
i+1zi) +

∑
q

(v
q
i v

q∗
i+1 + v

q∗
i v

q
i+1)

]
,

f (2)
s = J

N

(∑
q,q ′

∣∣∑
i

(
uq

i+1v
q ′
i − uq

i v
q ′
i+1

)∣∣2

h̄ωq + h̄ωq ′
+ δqq ′

∣∣ ∑
i (u

q
i+1v

q
i − uq

i v
q
i+1)

∣∣2

2h̄ωq

)
,

�n2
i = |zi |2

∑
q

|uq
i − v

q∗
i |2. (49)

From the complete expression of the superfluid fraction, it can be seen explicitly how, due to
the translational invariance, the second order term vanishes in the homogeneous system.

4.1. Translationally invariant lattice

For the translationally invariant lattice we use the quasiparticle transformation given by
equations (26) and (27). Under this transformation, the self-consistent equations can be written,
generalizing the previous version, as

µ =
(

|z|2 +
2

I

∑
q

|vq |2
)

V − 2J, (50)

|uq |2 = K (q) + |z|2V + h̄ωq

2h̄ωq
, (51)

|vq |2 = K (q) + |z|2V − h̄ωq

2h̄ωq
, (52)

N = I |z|2 +
∑

q

|vq |2. (53)

Here, the phonon excitation spectrum is given by

h̄ωq =
√

K (q)[2|z|2V + K (q)], (54)

and K (q) is given by equation (35). Again, we omit the subscript in the amplitudes, zi , because
they have the same value at all lattice sites. Notice also that, due to translational invariance,
the cq coefficients vanish.

In the homogeneous system, the form of the HFB–Popov equations for the quasiparticle
amplitudes and energies is very close to the standard Bogoliubov form. We do, however,
have to replace n0 = N/I by the condensate amplitude, |z|2, which must take into account
the depletion of the condensate. We solve for the condensate amplitude as a function of the
external parameters, J, V , N and I , by inserting equation (52) in (53). Once |z|2 is determined,
we use it to calculate the other expressions.
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Figure 1. Comparisons of the exact solution (dotted curve) and HFB–Popov (solid curve) as a
function of Vef f = V/J , for a system with I = 3 and filling factors n0 = 5, 10, 20 and 50.
Top, number fluctuations; middle, condensate fraction; bottom, superfluid fraction, fs . The exact
second order term (dashed curve) of the superfluid fraction, f (2)

s , is also shown in these plots. The
vertical line shown in some plots is an estimation of V crit

e f f .

In figure 1, we compare the number fluctuations on a lattice site, the condensate fraction
and the total and second order superfluid fraction determined from the exact solution of the
Bose–Hubbard Hamiltonian to the self-consistent HFB–Popov predictions as a function of
the ratio Vef f = V/J . The systems used for the comparisons have three wells, I = 3, and
commensurate filling factors n0 = 5, 10, 20 and 50. Similar results for the incommensurate
case with N = 16, 31, 61, 151 are shown in figure 2. We were restricted to considering only
three wells, due to computational limitations. The size of the matrix needed in the exact
solution for N atoms and I wells scales as (N+I−1)!

N !(I−1)! . However, if the HFB–Popov approach
works well for these small systems, we expect it to provide a good description of the larger
systems prepared in the laboratory.

Because the second order term of the superfluid fraction (second term of equation (14))
vanishes in the HFB–Popov approach (see equation (48)), we only expect the self-consistent
HFB–Popov theory to give a good description of the superfluid fraction in the region where the
second order term is extremely small, provided it predicts accurately the first order term. This
is exactly what is observed in the plots. When the second order term starts to grow, typically
above 0.5V crit

ef f , the HFB–Popov theory starts to fail. An estimate of V crit
e f f is shown by a vertical

line in some of the figures. This was obtained by using the second order perturbative approach
presented in [4]. With increasing filling factor the critical value is shifted towards larger values
of the interaction strength, and the region in which the HFB–Popov theory is accurate gets
larger. It is interesting to note that the number fluctuations predicted by the theory are accurate
in a greater range than the other physical quantities shown. Its predictions of squeezing agree
very well with the exact solutions right up to the point where the number fluctuations become
less than unity.

For the cases with non-commensurate fillings depicted in figure 2, the agreement is
significantly better for all quantities. This is not surprising, because when the filling is not
commensurate there is always a superfluid present and the Mott transition does not occur. As
can be seen in the plots for these cases the second order term is always very small.
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Figure 2. Comparisons of the exact solution (dotted curve) and HFB–Popov (solid curve) for a
system with I = 3 and non-commensurate filling factors N = 16, 31, 61, 151 as a function of
Vef f = V/J . Top, number fluctuations; middle, condensate fraction; bottom, superfluid fraction,
fs . In these plots, the exact second order term of the superfluid fraction is also shown, with a
dashed curve.

4.2. Inhomogeneous lattice

In this section we consider the experimentally relevant case when there is an external magnetic
confinement in addition to the lattice potential. In this situation, the self-consistent HFB–Popov
equations take the form

h̄ωquq
i +cq zi = (2V (|zi |2+ñi ) − µ + �i2)uq

i −J (uq
i+1+uq

i−1) − V z2
i v

q
i , (55)

−h̄ωqv
q
i − cqz∗

i = (2V (|zi |2+ñi ) − µ + �i2)v
q
i −J (v

q
i+1+v

q
i−1) − V z∗2

i uq
i , (56)

µzi = −J (zi+1+zi−1)+(V (|zi |2 + 2ñi ) + �i 2)zi , (57)

ñi =
∑

q

|vq
i |2, (58)

N =
∑

i

(|zi |2 + ñi), (59)

cq = V
∑

i

|zi |2(z∗
i uq

i − ziv
q
i ), (60)

where � = 1
2 mω2a2, with m the mass of the atoms, ω the trap frequency and a the lattice

spacing. The site indices i are chosen such that i = 0 corresponds to the centre of the trap.
Again, the cqare introduced to ensure the orthogonality of the excitations to the condensate [23].
We have solved the HFB–Popov equations for this system by an iterative procedure, similar
to the one followed in [24]. Each cycle of the iteration consists of two steps. In the first step,
we solve equation (57), subject to the constraint equation (59), by using the ñi obtained in
the previous cycle. This generates new values for the zi . In the second step, we solve for
{uq

i , v
q
i } in equation (55), using the ñi from the previous cycle and the newly generated zi . The

{uq
i , v

q
i } are used then to update ñi . Because the HFB–Popov is gapless, it is possible to keep

the orthogonality of the excitations to the condensate by solving equation (55) with the cq set
to zero, but removing in each cycle the projection of the calculated {uq

i , v
q
i } amplitudes onto

the condensate. Convergence is reached when the change in
∑

i |ñi |2 from one cycle to the
next is smaller than a specified tolerance.
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The parameters chosen for the numerical calculations were � = 0.0015ER, with ER the
one-photon recoil energy, which for the case of a rubidium condensate corresponds to a trap
frequency of approximately 90 Hz. We used a total number of 1000 atoms, N = 1000, and
set V N = 1.0ER. J was varied to achieve a range of Vef f = V/J between 0.01 and 312.
The range was chosen based on a local mean field approach [4], which for our parameters
estimates the transition region between Vef f ≈ 640 (at the centre, where the local filling factor
is approximately 80) and Vef f ≈ 12 (at the wings).

The results of the numerical calculations are summarized in figures 3–8. In figure 3, we
plot the evolution of the density profile (black boxes), the condensate population (triangles)
and the on-site depletion (empty diamonds) as Vef f is increased. In the plots we also show,
for comparison purposes, the ground-state density profile for J = 0 (empty boxes). This has
the advantage that it can be calculated exactly from the Hamiltonian. In general, we observe
the reduction of the condensate population and thus the increment of the depletion as the
interaction strength is increased. When the system is in the superfluid regime most of the
atoms are in the condensate, but as J is decreased the depletion of the condensate becomes
very important.

For the chosen parameters, the density profile has a parabolic shape, reflecting the confining
potential. By comparing the evolution of the density as J is decreased with the exact solution
at J = 0, we can crudely estimate the validity of the HFB–Popov calculations. The density
evolves from a Gaussian type (see plots for Vef f = 0.01 and 0.09) with smooth edges towards
a Thomas–Fermi profile with sharp edges, adjusting its shape to the J = 0 profile. We can
appreciate that around Vef f = 3 both profiles are almost equal. For lower values of J , the
HFB–Popov density starts to differ from the J = 0 one, even though the system is closer to
the J = 0 limit. We can say that beyond this point higher order correlations, neglected by
the theory, begin to be important. The departure of the HFB–Popov density profile from the
J = 0 one as J is decreased begins at the edges (see the panel corresponding to Vef f = 11
and 100). This is as expected if we look at the on-site depletion. For such values of Vef f ,
the local depletion at the wings corresponds to a considerable percentage of the condensate
populations, and thus the validity of the HFB–Popov assumptions starts to be dubious. The
homogeneous results shown in the previous section corroborate our present statements for
the confined system. For the smallest filling factor (see figure1), the differences between the
homogeneous HFB–Popov calculations and the exact solutions become important for values
of Vef f > 20. For higher values of Vef f , see the plot for Vef f = 312, the HFB–Popov density
predictions differs from the J = 0 solution even at the central wells. At this point, the failure
of the method is clear, and a fully quantal method is required.

The HFB–Popov quasiparticle spectrum is shown in figure 4. It can be observed how the
lower energy eigenvalues evolve from a linear non-degenerate spectrum to an almost degenerate
one as J is decreased. It is worthwhile to mention that the small energy difference between
the ground and first excited states for high values of Vef f makes the numerical solution very
unstable, in the sense that it was very easy to jump to an excited state when solving for the
condensate wavefunction. The decrement in the energy spacing predicted by the HFB–Popov
theory as the system approaches the transition is very useful to keep in mind for the experimental
realization of the Mott transition. As the optical lattice depth is ramped up, the adiabaticity
criterion is harder to fulfil.

In figure 5, we plot the results for the number fluctuations found numerically using the
inhomogeneous HFB–Popov approach. The number fluctuation profile reflects the condensate
profile. We also show the number fluctuations evaluated by using a local density approximation
(empty boxes). The latter was calculated by substituting in the number fluctuation expression
(equation (49)) the {uq, vq } amplitudes found for the homogeneous system (equations (51)
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Figure 3. Condensate density (triangles), total density (filled boxes) and local depletion (empty
diamonds) as a function of the lattice site for different values of Vef f . Although these quantities
are defined only at the discrete lattice sites we join them to help visualization. The empty boxes
represent the exact solution for the case J = 0.

and (52)), but replacing the condensate density in each lattice site by the one found numerically
for the trapped system (see figure 3). The complete agreement between the two approaches
justifies the validity of the local density approximation for the estimations of local quantities in
confined systems. Based on this agreement and the results for the homogeneous system shown
in the previous section, we expect that the inhomogeneous HFB–Popov results for squeezing
also agree with the exact solution right up to the transition.

4.3. Quasi-momentum distribution in the inhomogeneous lattice

The quasi-momentum distribution of the atoms released from the lattice is important because it
is one of the most easily accessible quantities to experiment. The quasi-momentum distribution
function, nq , is defined as [10]

nq =
∑
i, j

eiq(i− j)a〈a†
i a j〉, (61)

where the quasi-momentum, q , can assume discrete values which are integer multiples of
2π
Ia ; a is the lattice spacing. In figure 6, we present the quasi-momentum distribution for
the same parameters as used in the previous section. The distribution for the two lowest
values of Vef f corresponds to the one that characterizes an uncorrelated superfluid phase with
a narrow peak at small quasi-momenta. As the hopping rate is decreased, we observe that
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Figure 4. Quasiparticle spectrum in ascending order predicted by the HFB–Popov theory for
different values of Vef f : empty diamonds Vef f = 0.01, stars Vef f = 0.09, crosses Vef f = 3, filled
diamonds Vef f = 11, empty boxes Vef f = 100 and polygons Vef f = 312.

Figure 5. Number fluctuations in the self-consistent HFB–Popov approach as a function of lattice
site for Vef f = 0.01 (boxes), Vef f = 0.09 (crosses), Vef f = 3 (circles),Ve f f = 11 (triangles),
Vef f = 100 (stars) and Vef f = 312 (diamonds). The maximum value reached by the profile
decreases as Vef f is increased. The empty boxes shown for each of the curves correspond to
the number fluctuations predicted by the homogeneous HFB–Popov model using a local density
approximation.

the sharpness of the central peak decreases and the distribution extends towards large quasi-
momenta. It is interesting to note the appearance of a small peak between q = 0.5 and 1, which
is most noticeable for the Vef f = 3 case. This agrees with the results found in [25], where
they solve numerically the Bose–Hubbard Hamiltonian by using Monte Carlo simulations.
We attribute the origin of the small peak to the depletion of the condensate at the wings.
For the parameters when the small peak is present, the most important contribution to the
quasi-momentum distribution still comes from the condensate atoms. The step-function-like
shape of the condensate profile causes an oscillatory | sin(x)/x | shape of the quasi-momentum
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Figure 6. Quasi-momentum distribution as a function of qa, where a is the lattice spacing and q
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Figure 7. First order on-site superfluid fraction as a function of the lattice site for different values
of Vef f . Filled boxes, Vef f = 0.01; empty boxes, Vef f = 0.09; empty diamonds, Vef f = 3; stars,
Vef f = 11; crosses, Vef f = 100; triangles, Vef f = 312.

distribution. As the lattice depth is increased, the hopping becomes energetically costly, the
long-range order starts to decrease and the Fourier spectrum becomes broader.
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Figure 8. Top panel: first order (boxes) and total (stars) superfluid fraction as a function of Vef f .
Bottom panel: second order superfluid fraction as a function of Vef f . All these quantities are
calculated in the self-consistent HFB–Popov approach.

In figure 7, we plot the first order on site superfluid fraction, f (1)
si , which was defined in

equation (48). The curves corresponding to Vef f = 0.01–11, which are in the regime where
the HFB–Popov is expected to be valid, depict how as Vef f is increased the superfluid profile
decreases faster at the wings and at the centre but no major change is observed in the middle
section. The evolution of the on-site superfluidity as the interaction strength is increased,
exhibiting a domain localized decrement instead of a global one, is in agreement with the
development of uncompressible regions surrounded by superfluid rings predicted for trapped
systems [26] as the transition is approached.

Figure 8 shows the first order and total superfluid fraction and also the second order
superfluid fraction as a function of Vef f . In contrast to the translationally invariant case,
the second order contribution calculated in the HFB–Popov approach does not vanish for
the inhomogeneous system. The rapid decrement of the superfluid fraction observed after
log(Vef f ) ∼ 1.2 is a signature that the system is entering a highly correlated regime. Beyond
this point, higher order correlations neglected in the HFB–Popov approach become crucial,
and a more accurate approach is required.

The Mott transition is a quantum phase transition, and as for all critical phenomena its
behaviour depends strongly on the dimensionality of the system. In the present analysis, due to
computational limitations, we considered one-dimensional systems. Experimentally, the Mott
transition has been achieved [2] in a three-dimensional lattice with filling factors between
one and three. Even though the HFB–Popov approach fails to describe the strong coupling
regime for the one-dimensional systems we considered in the present paper, we showed how
the method is incredibly powerful in describing most of its characteristic features as they are
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driven from the superfluid regime towards the transition. We expect the HFB–Popov method
to give a better description of the transition as the dimensionality of the system is increased
and therefore to be a good model in an experimental situation.

As shown in previous studies [27, 28], the Mott transition in a d-dimensional homogeneous
system has two different critical behaviours: one (d +1) XY -like, for systems with fixed integer
density as the interaction strength is changed, and one mean-field-like, exhibited when the
transition is induced by changing the density. Different from the homogeneous case where the
Mott transition is characterized by the global offset of the superfluidity, for confined systems,
commensuration is only well defined locally. The inhomogeneity introduced by the confined
potential allows the existence of extended Mott domains (above a critical interaction strength)
surrounded by superfluid ones [26], thus the total superfluid fraction does not vanish in the
Mott regime. This issue, together with the fact that the finite length scale introduced by the trap
suppresses the long wave fluctuations which are responsible for destroying the mean field4 [23],
make us believe the critical behaviour in confined systems to be more mean-field-like. Because
the critical dimension for the latter type of transition is two [27, 28], we expect that for trapped
systems in d = 3, the range of validity of the HFB–Popov extends closer to the transition.

5. Summary

We have developed in this paper a Bogoliubov method for describing the approach of a
condensate loaded in an optical lattice towards the Mott transition. We have shown that
this method can be used to predict the relevant physical quantities over a useful range. We
have also shown how it gives a powerful insight into the way quantum depletion reduces the
long range order and the superfluid fraction.
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