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Motivation

• Explore (broken) symmetries of strongly-interacting
matter with strange baryons (hyperons).

• Apply χEFT ideas to general baryon-baryon interaction,
treating π, K ,η as pseudo-Goldstone bosons.

• Few scattering data, determination of LECs challenging.

• But: structure of hypernuclei experimentally accessible
through multiple reaction channels
⇒ Hyperon separation energies.
⇒ Excited levels via decay γ rays.

• Baryon-baryon interaction has impact on appearance of
hyperons in neutron-star matter
⇒ Influence on mass-radius relation and maximum mass.
⇒ Connection to and constraints from astrophysics.

• Use ab initio framework as link between data and
interactions to select and improve models.

• Leading-order χEFT hyperon-nucleon interaction
provides surprisingly good description of observables.
But: need explicit YNN terms for SRG-evolved YN.

• Explore experimentally inaccessible parts of the
hypernuclear landscape
⇒ Go neutron-rich.

Including Induced YNN Forces

• Similarity Renormalization Group (SRG) transformation
of the Hamiltonian induces strong repulsive YNN terms
ṼY NN [1]:

Tint+ VNN + VY N + V3N

↓ SRG
T̃int+ ṼNN + ṼY N + Ṽ3N + ṼY NN .

• Include terms in IT-NCSM calculation explicitly.
⇒ Solve SRG flow equation in three-body space:

∂αHα = (2mN)
2[[Tint, Hα], Hα], Hα=0 = H .

• Use Jacobi HO basis to separate center-of-mass d.o.f. and
keep basis sizes manageable, truncate total energy
E ≤ E3,max.

• Isolate genuine three-body part by subtracting two-body
interaction evolved in two-body space.

• Adapt HO basis parameter ħhΩ from value optimal for
SRG evolution to value providing optimal Nmax
convergence of target observables.

• Convert to single-particle coordinates.

• Decouple to m scheme during many-body calculation.

Hypernuclear Importance-Truncated NCSM [2]

• Starting point: SRG-evolved Hamiltonian with NN+3N
interaction [3, 4], YN interaction [5, ΛY = 700 MeV/c]:

H = Tint+M + V[2]+ V[3].

• Expand Hamiltonian on finite Slater Determinant basis.

• Single-particle basis |n(ls) jm,S tmt〉: harmonic
oscillator (ħhΩ = 20MeV), additional strangeness
quantum number S in isospin part.

• Include all particle species combinations with correct
charge and strangeness, e.g. npΛ, ppΣ−, npΣ0, nnΣ+.

• Limit number of HO excitation quanta to Nmax

• Compute matrix representation of H , diagonalize.

Importance Truncation

• Many basis states contribute very little to low-lying
states.
⇒ Neglecting introduces only small error.

• Estimate contribution for basis state |φi〉 from 1st-order
perturbation theory

κ(|φi〉) =−
〈φi|H |ψref〉
∆εi

.

State |ψref〉: approximation to target state from smaller
model space. Unperturbed energy difference ∆εi
contains Λ-Σ mass difference.

• Build IT model space M (κmin) = {|φi〉 : |κ(|φi〉)| ≥ κmin}.
• Diagonalize for multiple thresholds κmin, extrapolate
κmin→ 0 to recover full-space result.

• Raise Nmax until convergence, use eigenstate |ψ〉 from
Nmax as |ψref〉 for Nmax+ 2.

Ground- and Excited-State Energies
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• Good reproduction of
experimental data [6, 7].

• Strong odd-even
staggering in helium
chain, not present in
lithium.

• Data suggests 6
ΛHe is

particle stable, calculation
predicts it unstable. 4He 5
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Shifting the Neutron Dripline with Hyperons

• Presence of a hyperon can strongly modify properties of
hypernucleus compared to nucleonic parent.

• Additional attraction provided by hyperon-nucleon
interaction can stabilize particle-unstable cores.

• Hyperon separation energy increases by approx. 1 MeV
per additional nucleon; effect more pronounced in
heavier hypernuclei.

• Sample cases:
– 6
ΛHe: not enough to stabilize.

– 6
ΛHe & 11

ΛLi: hyperon provides additional binding to
stabilize nucleonic cores.

– 12
ΛLi: No additional neutron binding. Indication of

proximity to neutron drip line?

• Caveat: YN force overbinds 5
ΛHe ⇒ Sn of 6

ΛHe too small
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The Hyperon Puzzle

• Nuclear matter at high tends to favor conversion of
nucleons to hyperons: less energy needed to add
low-momentum hyperon than for a nucleon at kF .

• Hyperon-nucleon interaction can enhance or suppress
conversion, also modifies compressibility.

• Conventional calculations: conversion causes softening of
matter EoS, very small maximum neutron-star masses
(hyperon puzzle).

• Often solved by adding strongly-repulsive YNN terms.

• But: calculations either use schemes without Σ hyperons
or with Σ hyperons, but with G-matrix renormalized
two-body interactions.
⇒ Conversion between Λ and Σ treated incompletely.
⇒ Three-body terms neglected.

• Use SRG to suppress Σ: ground-state energies drop.

• Adding induced YNN terms recovers original result.
⇒ Interaction with Λ-Σ conversion is unitary equivalent

to Λ-only theory with strongly-repulsive ΛNN terms.
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