Medium-Mass

and Heavy Nuclei

from Chiral NN+3N Hamiltonians

Sven Binder INSTITUT FÜR KERNPHYSIK

TECHNISCHE UNIVERSITÄT DARMSTADT

Ab Initio Path to Heavy Nuclei

 $\hat{W}^{(0B)} + \hat{W}^{(1B)}$ QCD $\frac{\mathrm{d}}{\mathrm{d}\alpha}\hat{H}_{\alpha} = \left[\hat{\eta}_{\alpha}, \ \hat{H}_{\alpha}\right]$ +Ŵ^(2B) + Ŵ^(2B) NO2B SRG $|\Psi\rangle = e^{\hat{T}}|\Phi\rangle$ CCSD + CR-CC(2,3) $\Lambda_{3N} =$ 400 MeVcutoff reduction XEFT heavy nuclei Sven Binder - TU Darmstadt - March 2013

Nuclear Interactions from Chiral EFT

- Nuclear interaction is not fundamental
- QCD non-perturbative at low energies

 Low-energy effective field theory for relevant degrees of freedom (π,N) based on symmetries of QCD

Hierarchy of consistent NN, 3N, ...
 interactions (plus currents)

Similarity Renormalization Group

SRG Evolution in Three-Body Space

Coupled-Cluster Method

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean --- arXiv:1312.7872 [nucl-th] (2013)
G. Hagen, T. Papenbrock, D.J. Dean, M. Hjorth-Jensen --- Phys. Rev. C 82, 034330 (2010)
G. Hagen, T. Papenbrock, D.J. Dean et al. --- Phys. Rev. C 76, 034302 (2007)

Coupled-Cluster Approach

• exponential Ansatz for wave operator

$$|\Psi\rangle = \hat{\Omega}|\Phi_0\rangle = e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_A}|\Phi_0\rangle$$

• \hat{T}_n : *npn***h excitation** (cluster) operators

$$\hat{T}_n = \frac{1}{(n!)^2} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{ \hat{a}^{\dagger}_a \hat{a}^{\dagger}_b \hat{a}^{\dagger}_c \dots \hat{a}_k \hat{a}_j \hat{a}_i \}$$

similarity-transformed Schroedinger equation

$$\hat{\mathcal{H}}|\Phi_0\rangle = \Delta E|\Phi_0\rangle , \quad \hat{\mathcal{H}} = e^{-\hat{T}} \hat{H}_N e^{\hat{T}}$$

Singles and Doubles Excitations: CCSD

• **CCSD**: truncate \hat{T} at the **2p2h** level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

- $e^{\hat{T}}$ Ansatz: **higher** excitations from **products** of lower excitation operators
- CCSD equations

$$\Delta E^{(\text{CCSD})} = \langle \Phi_0 | \hat{\mathcal{H}} | \Phi_0 \rangle$$

$$0 = \langle \Phi_i^a | \hat{\mathcal{H}} | \Phi_0 \rangle , \forall a, i$$

$$0 = \langle \Phi_{ij}^{ab} | \hat{\mathcal{H}} | \Phi_0 \rangle , \forall a, b, i, j$$

Coupled system of nonlinear equations

Coupled Cluster – Spherical Scheme

 exploit spherical symmetry for closed-shell nuclei, use spherical tensor operator formulation

$$\hat{T}_{1} = \sum_{ai} t_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{\tilde{a}}_{i} \right\}_{0}^{(0)}$$

$$\hat{T}_{2} = \sum_{abij} \sum_{J} t_{ij}^{ab}(J) \left\{ \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{a}_{b}^{\dagger} \right\}^{(J)} \otimes \left\{ \hat{\tilde{a}}_{j} \otimes \hat{\tilde{a}}_{i} \right\}^{(J)} \right\}_{0}^{(0)}$$

• angular-momentum coupling of external lines

• express CC equations in terms of

Sven Binder - TU Darmstadt - March 2013

Coupled-Cluster Triples Corrections

- \bullet CCSDT, $\hat{T}=\hat{T}_1+\hat{T}_2+\hat{T}_3$, too expensive
- Coupled-Cluster energy functional

Non-iterative triples corrections

$$\delta E^{(\mathrm{T})} = \frac{1}{(3!)^2} \sum_{\substack{abc\\ijk}} \mathcal{L}_{abc}^{ijk} \frac{1}{D_{ijk}^{abc}} \mathcal{R}_{ijk}^{abc}$$

CR-CC(2,3) vs. ACCSD(T) and IT-NCSM

Sven Binder - TU Darmstadt - February 2013

Reduced-Cutoff 3N Interaction

R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil --- PRL 109, 052501 (2012)

R. Roth, A. Calci, J. Langhammer, S. Binder --- arXiv:1311.3563

¹⁶O: Reduced-Cutoff 3N Interaction

¹⁶O: Reduced–Cutoff 3N Interaction

Normal–Ordering Two–Body Approximation

G. Hagen, T. Papenbrock, D.J. Dean et al. --- Phys. Rev. C 76, 034302 (2007)
R. Roth, S. Binder, K. Vobig et al. --- Phys. Rev. Lett. 109, 052501(R) (2012)
S. Binder, J. Langhammer, A. Calci et al. --- Phys. Rev. C 82, 021303 (2013)

Normal-Ordered 3N Interaction

Avoid technical challenge of including explicit 3N interactions in many-body calculation

• Idea: write 3N interaction in normal-ordered form with respect to an A-body reference Slater determinant ($0\hbar\Omega$ state)

$$\hat{V}_{3N} = \sum V_{\circ\circ\circ\circ\circ\circ}^{3N} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ} \hat{a}_{\circ} \hat{a}_{\circ}$$
$$\hat{V}_{3N} = W^{0B} + \sum W_{\circ\circ}^{1B} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ} + \sum W_{\circ\circ\circ\circ}^{2B} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ} \hat{a}_{\circ}$$
$$+ \sum W_{\circ\circ\circ\circ\circ\circ}^{3B} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ}^{\dagger} \hat{a}_{\circ} \hat{a}_{\circ} \hat{a}_{\circ}$$

Heavy Nuclei

S. Binder, J. Langhammer, A. Calci, R. Roth, arXiv:1312.5685

Heavy Nuclei from Chiral Interactions

- NN interaction: **strong** SRG-induced **4N**, ... interactions
- NN+3N interaction: cancellation of SRG-induced 4N, ... interactions

Heavy Nuclei from Chiral Interactions

Hamiltonians fixed in A≤4 systems

- current chiral Hamiltonians capable of describing the experimental trend of binding energies
- systematic overbinding \Rightarrow still **deficiencies**
 - consistent 3N interaction at N³LO, and 4N interaction
 - SRG-induced **4N**, ... interactions

Epilogue

•thanks to my group & collaborators

A. Calci, E. Gebrerufael, J. Langhammer,
 S. Fischer, R. Roth, S. Schulz, H. Krutsch,
 C. Stumpf, A. Tichai, R. Trippel, R. Wirth

- P. Navrátil TRIUMF, Canada
- P. Piecuch Michigan State University, USA
- J. Vary, P. Maris Iowa State University, USA
- H. Hergert The Ohio State University, USA
- K. Hebeler, T. Krüger TU Darmstadt Computing Time

Thanks for your attention!

Deutsche Forschungsgemeinschaft

θfg HIC FΔ

Helmholtz International Center

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung

