# Phase Diagram of Boson-Fermion Mixtures in Optical Lattices 

## R. Roth ${ }^{1}$ and K.Burnett ${ }^{2}$

## Overview \& Summary

- recent experiments on the Mott-insulator transition for bosonic atoms in optical lattices [1] reveal the huge potential of this new class of systems for the study of quantum phase transitions
- atomic boson-fermion mixtures in optical lattices [2] offer unique possibilities to investigate quantum phase transitions in mixed statistics systems, which are hard to access in the solid state context
we utilise the Bose-Fermi-Hubbard model [3-6] to describe boson-fermion mixtures at zero temperature via an exact numerical solution of the eigenvalue problem
- the stiffness of the system under phase variations is used to obtain information on the superfluid density of the bosonic species and the conductivity of the fermionic component [6-8]
- two completely insulating phases are found (besides the bosonic Mott insulator) which exist for all filling fac tors: one exhibits diagonal long-range order through an alternating boson/fermion occupation, the other shows an intrinsic phase separation
- the pronounced correlations within these phases become manifest in the two-body density matrix as well as in the static structure factor


## Bose-Fermi-Hubbard Model

- one-dimensional lattice with $I$ sites, $N_{\mathrm{B}}$ bosons, and $N_{\mathrm{F}}$ fermions
- single-band Bose-Fermi-Hubbard Hamiltonian with nearest neighbour hopping and on-site boson-boson and boson-fermion interactions [3-6]:

$$
\begin{aligned}
\hat{\mathrm{H}}= & -J_{\mathrm{B}} \sum_{i=1}^{I}\left(\hat{\mathrm{a}}_{i+1}^{\dagger} \hat{\mathrm{a}}_{i}+\text { h.a. }\right)-J_{\mathrm{F}} \sum_{i=1}^{I}\left(\hat{\mathrm{c}}_{i+1}^{\dagger} \hat{\mathrm{c}}_{i}+\text { h.a. }\right) & & \text { hopping terms } \\
& +\frac{V_{\mathrm{BB}}}{2} \sum_{i=1}^{I} \hat{\mathrm{n}}_{i}^{\mathrm{B}}\left(\hat{\mathrm{n}}_{i}^{\mathrm{B}}-1\right)+V_{\mathrm{BF}} \sum_{i=1}^{I} \hat{\mathrm{n}}_{i}^{\mathrm{B}} \hat{\mathrm{n}}_{i}^{\mathrm{F}} & & \text { two-body interactions }
\end{aligned}
$$

$\hat{\mathrm{a}}_{i}^{\dagger}, \hat{\mathrm{c}}_{i}^{\dagger} \quad$ creation operators for boson/fermion at site
$\hat{\mathrm{n}}_{i}^{\mathrm{B}}, \hat{\mathrm{n}}_{i}^{\mathrm{F}} \quad$ boson/fermion occupation number operators for site $i$
$J_{\mathrm{B}}, J_{\mathrm{F}} \quad$ tunnelling matrix element between adjacent sites
$V_{\mathrm{BB}}, V_{\mathrm{BF}}$ on-site boson-boson/boson-fermion interaction strength

- states represented in a complete basis of Fock states $\left|n_{1}^{\mathrm{B}}, \ldots, n_{I}^{\mathrm{B}}\right\rangle \otimes\left|n_{1}^{\mathrm{F}}, \ldots, n_{I}^{\mathrm{F}}\right\rangle$ with all allowed sets of occupation numbers with $\sum_{i} n_{i}^{\mathrm{B}}=N_{\mathrm{B}}$ and $\sum_{i} n_{i}^{\mathrm{F}}=N_{\mathrm{F}}$

$$
\left|\Psi_{0}\right\rangle=\sum_{\alpha=1}^{D_{\mathrm{B}}} \sum_{\beta=1}^{D_{\mathrm{F}}} C_{\alpha \beta}\left|\left\{n_{1}^{\mathrm{B}}, \ldots, n_{I}^{\mathrm{B}}\right\}_{\alpha}\right\rangle \otimes\left|\left\{n_{1}^{\mathrm{F}}, \ldots, n_{I}^{\mathrm{F}}\right\}_{\beta}\right\rangle
$$

- exact solution of large-scale eigenvalue problem for a few eigenstates with Lanczos-type algorithm; basis dimensions up to $D=D_{\mathrm{B}} D_{\mathrm{F}} \approx 10^{6}$ feasible [6]
- simple quantities-like mean occupation numbers, number fluctuations, energy gap $E_{\text {gap }}$, or one- and two-body density matrices-can be computed directly


## Phase Diagrams

## Transport Properties

- the stiffness under phase twists is an important indicator for fundamental dynamical properties of the system [6-8]
- we impose a linear phase variation on either the bosonic or the fermionic component through Peierls phase factors in the respective hopping term

$$
\hat{\mathrm{a}}_{i+1}^{\dagger} \hat{\mathrm{a}}_{i} \rightarrow \mathrm{e}^{-\mathrm{i} \Theta_{\mathrm{B}} / I} \hat{\mathrm{a}}_{i+1}^{\dagger} \hat{\mathrm{a}}_{i} \quad \hat{\mathrm{c}}_{i+1}^{\dagger} \hat{\mathrm{c}}_{i} \rightarrow \mathrm{e}^{-\mathrm{i} \Theta_{\mathrm{F}} / I} \hat{\mathrm{c}}_{i+1}^{\dagger} \hat{\mathrm{c}}_{i}
$$

- the phase twist causes an increase of the ground state energy; the energy change is connected to the kinetic energy of the flow generated by the phase gradient
- boson twist: the energy change resulting from a phase twist for the bosons is a measure for the superfluid density of the bosonic component; the stiffness can be identified with the superfluid fraction $f_{\mathrm{s}}^{\mathrm{B}}$ (neglecting the suppression of the superfluid flow by the lattice itself) [6-8]

$$
\begin{equation*}
f_{\mathrm{s}}^{\mathrm{B}}=\frac{I^{2}}{N_{\mathrm{B}}} \frac{E_{\Theta_{\mathrm{B}}}-E_{0}}{J_{\mathrm{B}} \Theta_{\mathrm{B}}^{2}} \tag{B}
\end{equation*}
$$

- fermion twist: the energy change resulting from fermionic phase twist is related to the conductivity of the fermionic component; the corresponding stiffness defines the Drude weight $f_{\mathrm{d}}^{\mathrm{F}}$ which is related to the conductivity [6]

$$
f_{\mathrm{d}}^{\mathrm{F}}=\frac{I^{2}}{N_{\mathrm{F}}} \frac{E_{\Theta_{\mathrm{F}}}-E_{0}}{J_{\mathrm{F}} \Theta_{\mathrm{F}}^{2}} \quad \Theta_{\mathrm{F}} \ll \pi
$$

- an important further step is the distinction between normal- and superconductivity for the fermionic component (work in progress)
$I=8, N_{\mathrm{B}}=4, \quad N_{\mathrm{F}}=4$

- subtle interplay between repulsive boson-boson and boson-fermion interactions and kinetic energy generates rich phase diagram [3-6]
- (S) superfluid/conducting: non-vanishing bosonic superfluidity and fermionic conductivity
- (M) bosonic Mott-insulator: vanishing boson superfluid fraction; fermionic component not affected and still conducting gerates rich phase diagram

$$
I=8, \quad N_{\mathrm{B}}=8, \quad N_{\mathrm{F}}=4
$$



- (A) alternating occupation: dominant basis states exhibit alternating boson-fermion occupation; diagonal long-range order; vanishing stiffness for both species
- (B) block separation: dominant basis states show separated blocks of bosons and fermions; vanishing stiffness for both species; kinetic energy governs the crossover $(A) \leftrightarrow(B)$
[1] M. Greiner et al.; Nature 415, 39 (2002)
[2] G. Modugno et al.; Phys. Rev. A 68, 011601 (R) (2003)
[3] A. Albus et al.; Phys. Rev. A 68, 023606 (2003)
[4] H.P. Büchler, G. Blatter; Phys. Rev. Lett. 91, 130404 (2003) [7] R. Roth, K. Burnett; Phys. Rev. A 68, 023604 (2003)
[8] Roth, K. Burnett; Phys. Rev. A 67, $031602(R)$ (2003)


## Two-Body Correlations

- important information on the intrinsic structure and cor relations within the ground state is provided by the diagonal elements of the two-body density matrix

$$
\begin{aligned}
\text { bosons } & \rho_{i j ; i j}^{(2) \mathrm{B}}=\left\langle\Psi_{0}\right| \hat{\mathrm{a}}_{i}^{\dagger} \hat{\mathrm{a}}_{j}^{\dagger} \hat{\mathrm{a}}_{j} \hat{\mathrm{a}}_{i}\left|\Psi_{0}\right\rangle \\
\text { fermions } & \rho_{i j ; i j}^{(2) \mathrm{F}}=\left\langle\Psi_{0}\right| \hat{\mathrm{c}}_{i}^{\dagger} \hat{\mathrm{c}}_{j}^{\dagger} \hat{\mathrm{c}}_{j} \hat{\mathrm{c}}_{i}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

- $\rho_{i j ; i j}^{(2)}$ describes the probability of finding two atoms at a distance $i-j$ (cyclic boundary conditions)
- (A) alternating occupation: probability of finding a pair of bosons/fermions at even $i-j$ is enhanced com pared to odd $i-j \rightarrow$ diagonal long-range order
- (B) block separation: large probability for pairs at neighbouring sites (small $i-j$ ); probability decreases monotonically with increasing $i-j$
- these correlations can be detected experimentally through the static structure factor $S(q)$


Acknowledgements: This work was partially supported by the DFG, the UK EPSRC, and the EU via the "Cold Quantum Gases" network. K.B. thanks the Royal Society and Wolfson Foundation for support.

