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Overview & Summary
• recent experiments on the Mott-insulator transition for

bosonic atoms in optical lattices [1] reveal the huge
potential of this new class of systems for the study of
quantum phase transitions

• atomic boson-fermion mixtures in optical lattices
[2] offer unique possibilities to investigate quantum
phase transitions in mixed statistics systems, which
are hard to access in the solid state context

• we utilise the Bose-Fermi-Hubbard model [3-6] to
describe boson-fermion mixtures at zero tempera-
ture via an exact numerical solution of the eigenvalue
problem

• the stiffness of the system under phase variations is
used to obtain information on the superfluid density
of the bosonic species and the conductivity of the
fermionic component [6-8]

• two completely insulating phases are found (besides
the bosonic Mott insulator) which exist for all filling fac-
tors: one exhibits diagonal long-range order through an
alternating boson/fermion occupation, the other shows
an intrinsic phase separation

• the pronounced correlations within these phases be-
come manifest in the two-body density matrix as well
as in the static structure factor

Bose-Fermi-Hubbard Model
• one-dimensional lattice with I sites, NB bosons, and NF fermions

• single-band Bose-Fermi-Hubbard Hamiltonian with nearest neighbour hopping
and on-site boson-boson and boson-fermion interactions [3-6]:
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• exact solution of large-scale eigenvalue problem for a few eigenstates with
Lanczos-type algorithm; basis dimensions up to D = DBDF ≈ 106 feasible [6]

• simple quantities—like mean occupation numbers, number fluctuations, energy
gap Egap, or one- and two-body density matrices—can be computed directly

hopping terms

two-body interactions

Transport Properties
• the stiffness under phase twists is an important indicator for fundamental dy-

namical properties of the system [6-8]

• we impose a linear phase variation on either the bosonic or the fermionic com-
ponent through Peierls phase factors in the respective hopping term

â†i+1âi → e−iΘB/I â†i+1âi ĉ†i+1ĉi → e−iΘF/I ĉ†i+1ĉi

• the phase twist causes an increase of the ground state energy; the energy
change is connected to the kinetic energy of the flow generated by the phase
gradient

• boson twist: the energy change resulting from a phase twist for the bosons is
a measure for the superfluid density of the bosonic component; the stiffness can
be identified with the superfluid fraction f B

s (neglecting the suppression of the
superfluid flow by the lattice itself) [6-8]
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• fermion twist: the energy change resulting from fermionic phase twist is related
to the conductivity of the fermionic component; the corresponding stiffness de-
fines the Drude weight f F

d which is related to the conductivity [6]
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• an important further step is the distinction between normal- and superconductiv-
ity for the fermionic component (work in progress)

Phase Diagrams
I = 8, NB = 4, NF = 4
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• subtle interplay between repulsive boson-boson
and boson-fermion interactions and kinetic energy
generates rich phase diagram [3-6]

• (S) superfluid/conducting: non-vanishing bosonic
superfluidity and fermionic conductivity

• (M) bosonic Mott-insulator: vanishing boson su-
perfluid fraction; fermionic component not affected
and still conducting

• (A) alternating occupation: dominant basis
states exhibit alternating boson-fermion occupa-
tion; diagonal long-range order; vanishing stiffness
for both species

• (B) block separation: dominant basis states show
separated blocks of bosons and fermions; vanish-
ing stiffness for both species; kinetic energy gov-
erns the crossover (A) ↔ (B)

Two-Body Correlations
• important information on the intrinsic structure and cor-

relations within the ground state is provided by the di-
agonal elements of the two-body density matrix
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• ρ
(2)
i j; i j describes the probability of finding two atoms at a

distance i− j (cyclic boundary conditions).

• (A) alternating occupation: probability of finding a
pair of bosons/fermions at even i− j is enhanced com-
pared to odd i− j Ô diagonal long-range order

• (B) block separation: large probability for pairs at
neighbouring sites (small i− j); probability decreases
monotonically with increasing i− j

• these correlations can be detected experimentally
through the static structure factor S (q)

contributed by M. Hild & F. Schmitt
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