

The Unitary Correlation Operator Method

for Interacting Fermi Gases

Robert Roth (GSI)

Rauischholzhausen XI @ Rostock, July 1-4, 1999

## Problem & Overview



- Q: How to treat *short-range correlations* induced by the strong repulsive core of the 2body interaction within a many-body system?
- A: Unitary Correlation Operator Method!

#### ...some keywords

- ★ elements: correlation operator/function, correlated states, correlated operators/Hamiltonian, equation of state, correlated density matrix
- ★ approximations: 2body approximation, 3body contributions, effective higher order contributions
- ★ application I: homework problem for neutron matter, equation of state, 2body density & occupation numbers
- ★ application II: phenomenological GCTpotential for nuclear matter, equation of state



| The Concept of the<br>elation Operator Method | correlated states | $ \widetilde{\psi}\rangle \equiv \mathbf{C}  \psi\rangle$ | • correlated relative wave function<br>of a 2body system<br>$\langle r   \tilde{\phi} \rangle = \frac{R_{-}(r)}{r} \sqrt{R_{-}'(r)} \langle R_{-}(r)   \phi \rangle$ | correlated operators                                                                                                                                                   | $\widetilde{\mathbf{O}} \equiv \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$ | <ul> <li>correlated central potential in<br/>2body space</li> </ul>                                    | $\widetilde{v}(\mathbf{r}) = v[R_+(\mathbf{r})]$ |
|-----------------------------------------------|-------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| The Concep<br>Unitary Correlation             |                   | unitary correlation operator                              | $\mathbf{C} \equiv \exp\left\{-\mathrm{i} \sum_{i < j} \mathbf{g}(ij)\right\}$                                                                                       | $\mathbf{g} = \frac{1}{2} [s(\mathbf{r})  \mathbf{n}_r \mathbf{q} + \mathbf{q}  \mathbf{n}_r  s(\mathbf{r})] = \mathbf{g}'$<br>• $\mathbf{C}^{\dagger} \mathbf{C} = 1$ | • correlation function $R_{\pm}(r)$                                        | $\int_{r} \frac{1}{s(x)} \frac{\mathrm{d}x}{s(x)} = \pm 1  \rightarrow  R_{\pm}(r) \approx r \pm s(r)$ |                                                  |



#### many-body trial state

- free fermi gas & unitary correlation operator provides trial state for the interacting fermi gas
- free one-body states are momentum eigenstates with momentum  $\vec{k}_i$  and  $\lambda$ -fold spin-isospin degeneracy

$$\left|i
ight
angle=\left|ec{k}_{i}
ight
angle\otimes\left|m_{i}
ight
angle$$

$$\langle \vec{x} | \vec{k}_i \rangle = \frac{1}{\sqrt{V}} \exp(\mathrm{i} \, \vec{k}_i \, \vec{x})$$

• many-body trial state  $|\widetilde{\Psi}\rangle$  is a correlated Slater determinant of all one-body states with  $|\vec{k}_i| \leq k_F$ 

$$\left|\widetilde{\Psi}\right\rangle = \mathbf{C} \left|\Psi\right\rangle = \mathbf{C} \mathbf{A} \left(\left|i_{1}\right\rangle \otimes \cdots \otimes \left|i_{A}\right\rangle\right)$$

#### next steps...

calculate correlated energy expectation value

$$\widetilde{\varepsilon} = \left\langle \widetilde{\Psi} \right| \mathbf{H} \left| \widetilde{\Psi} \right\rangle / A = \left\langle \Psi \right| \widetilde{\mathbf{H}} \left| \Psi \right\rangle / A$$

- minimize the energy as a function(al) of the correlation function — optimal correlator
- calculate any observable you like, e.g. equation of state, densities...

| Equation of State | or an Interacting Fermi Gas in 2body Approximation |
|-------------------|----------------------------------------------------|
|-------------------|----------------------------------------------------|

corr. Hamiltonianenergy per particle as function of 
$$k_F$$
 $\tilde{\mathbf{H}}^{C2} = \mathbf{t}_0$  $\tilde{\varepsilon}^{C2} = \frac{3}{10m} k_F^2$  $\tilde{\mathbf{T}}^{C2} = \mathbf{t}_0$  $\tilde{\varepsilon}^{C2} = \frac{3}{10m} k_F^2$  $+ \tilde{v}(\mathbf{r}) + \tilde{u}(\mathbf{r})$  $+ \frac{\lambda}{12\pi^2} k_F^3 \int d^3 r \left[ \tilde{v}(r) + \tilde{u}(r) \right] + \operatorname{xch.}^2$  $+ \tilde{\mathbf{T}}_{\nabla} + \tilde{\mathbf{T}}_r$  $+ \frac{\lambda}{80\pi^2} k_F^5 \int d^3 r \left[ \tilde{\mu}_{\nabla}^{-1}(r) + \frac{1}{3} \tilde{\mu}_r^{-1}(r) \right] + \operatorname{xch.}^2$ 

- direct terms of orders  $k_F^2$ ,  $k_F^3$  and  $k_F^5$ , resp.  $\rho^{2/3}$ ,  $\rho$  and  $\rho^{5/3}$  ( $\rho = \frac{\lambda}{6\pi^2} k_F^3$ )
  - exchange terms grow with smaller powers of  $k_F$  than the direct terms
- high density behavior is determined by the effective mass terms ( $\propto k_F^5, \rho^{5/3})$

## Homework Problem Potential & Optimal Correlator

Bethe's homework problem (1973)

• neutron matter ( $\lambda = 2$ ) interacting via the repulsive core of the  ${}^{1}S_{0}$  component of the Reid potential

 $v(r) = 9263.1 \,\mathrm{MeV} \,\mathrm{fm} \,\exp(-4.9 \,\mathrm{fm}^{-1} \,r)/r$ 

parametrization & matter-optimal correlator

• choose a parametrization for the correlation function  $R_+$ and minimize the energy expectation value  $\tilde{\epsilon}^{C2}(\rho)$  at some given density ( $\rho = 1 \text{ fm}^{-3}$ )



Local Potentials & Eff. Mass Corrections Homework Problem



- core of the potential is dramatically reduced
- additional medium range repulsion by the kinetic potential



- mass reduction within the range of the interaction
- enhancement of the kinetic energy by additional radial mass





# Contributions of the **3rd Cluster Order**

#### **3body correlations**

- ✗ no closed analytic expression for 3body correlated operators available
- product approximation: partial summation of the Baker-Hausdorff expansion of the correlated operator
- generalized coordinate transformation: correlations formulated by a norm conserving 3body coordinate transformation

3body approximation of the EoS

$$\widetilde{\varepsilon}^{C3^{\star}} = \widetilde{\varepsilon}^{C2} + \widetilde{v}^{[3]} + \widetilde{u}^{[3]}$$

$$\widetilde{v}^{[3]} = \frac{\lambda^2}{216\pi^4} k_F^6 \iint d^3 r_{12} d^3 r_{13} \ \widetilde{v}^{[3]}(\vec{r}_{12}, \vec{r}_{13}) + \text{xch.} + \text{xxch.}$$

- contains all terms up to order  $k_F^6$ , especially all local 3body contributions
- 3body effective mass contributions of order  $k_F^8$  are neglected
- k high-dimensional numerical integrations over "rough" functions necessary (Monte Carlo methods)



Homework Problem

| rder Contributions | 3body contact interaction     | <ul> <li>local 3body contributions approx-<br/>imated by a single 3body contact<br/>interaction</li> </ul>          | $v_{\delta}^{[3]} = \Gamma  \delta(r_{12}) \delta(r_{13})$<br>$\checkmark$ expectation value gives an addi-                                                                                                            | tional term proportional to $k_F^0$ for<br>the EoS<br>$\widetilde{\varepsilon}^{C^2+\delta} = \widetilde{\varepsilon}^{C^2} + c \Gamma k_F^0$         | <b>X</b> applicable only for the energy expectation value, no prediction for other observables                                     | ed by fitting the energy to higher order<br>tions                                               |
|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Effective Higher O | density-dependent correlators | • correlator parameters with dimension of a length (i.e. $\alpha$ and $\beta$ ) are scaled as a function of density | $egin{array}{c} lpha  ightarrow eta( ho) \ eta  ightarrow eta  ightarrow eta( ho) \ eta  ightarrow eta arrow eta( ho) \end{array} iggree H_+(r, ho) \ eta  ightarrow eta arrow eta( ho) \end{array} iggree H_+(r, ho)$ | $\boldsymbol{\xi}(\boldsymbol{\rho}) = 1 - \gamma \ \rho^{1/3}$<br>$\boldsymbol{\checkmark}$ effective potentials and masses become density-dependent | <ul> <li>consistent simulation of higher or-<br/>der effects for all correlated ob-<br/>servables (energies, densities)</li> </ul> | • the free parameter $\gamma$ or $\Gamma$ has to be fixe results or to some independent calcula |

Formulation of



## Correlated Densities & Occupation Numbers

#15

#### correlated 2body density matrix

$$\rho^{(2)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4) := \left\langle \Psi_{\vec{x}_3}^{\dagger} \Psi_{\vec{x}_4}^{\dagger} \Psi_{\vec{x}_2} \Psi_{\vec{x}_1} \right\rangle$$
$$\tilde{\rho}^{(2)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4) := \left\langle \mathbf{C}^{\dagger} \Psi_{\vec{x}_3}^{\dagger} \Psi_{\vec{x}_4}^{\dagger} \Psi_{\vec{x}_2} \Psi_{\vec{x}_1} \mathbf{C} \right\rangle$$

diagonal elements of the correlated 2body density in 2body approximation

$$\widetilde{\rho}^{(2)C2}(r_{12}) = \frac{R_{-}^{2}(r)}{r^{2}} R_{-}'(r) \left(\rho^{2} - \frac{1}{\lambda} \left[\rho^{(1)}(R_{-}(r_{12}))\right]^{2}\right)$$

correlated occupation numbers

$$\rho^{(1)}(\vec{x}_1; \vec{x}_2) := \left\langle \boldsymbol{\Psi}_{\vec{x}_2}^{\dagger} \boldsymbol{\Psi}_{\vec{x}_1} \right\rangle$$
$$\tilde{\rho}^{(1)}(\vec{x}_1; \vec{x}_2) := \left\langle \mathbf{C}^{\dagger} \boldsymbol{\Psi}_{\vec{x}_2}^{\dagger} \boldsymbol{\Psi}_{\vec{x}_1} \mathbf{C} \right\rangle$$

 off-diagonal elements of the correlated 1body density in 2body approximation

$$\widetilde{\rho}^{(1)C2}(r_{12}) = \rho^{(1)}(r_{12}) + \widetilde{\rho}^{(1)[2]}(r_{12})$$

 correlated momentum space occupation numbers by Fourier transform of correlated 1body density

$$\widetilde{n}^{C2}(k) = \frac{4\pi}{k} \int dr \ r \sin(kr) \ \widetilde{\rho}^{(1)C2}(r)$$

| ework Problem<br>ody Density Matrix | <ul> <li>✓ density is reduced to almost zero within the core region (r ≤ 0.5 fm)</li> <li>✓ enhancement of the density outside the core such that the integral is preserved (unitarity)</li> <li>➤ correlation hole</li> </ul> | <ul> <li>x size of the correlation hole grows compared to the exchange hole with increasing density</li> <li>density-dependent correlator reduces this effect</li> </ul> | $ \begin{array}{c} & \rho^{(2)}(r) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \rho^{(2)C2}(r) + \text{density-dependent corr.} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Homewi<br>Correlated 2boc           | $\begin{bmatrix} \rho_0 \\ 1 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ b = 0.2  \text{fm}^{-3} \\ k_F = 1.81  \text{fm}^{-1} \end{bmatrix}$                                                                                        |                                                                                                                                                                          | $\begin{array}{c} 0.4 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| pation Numbers  | <ul> <li>correlations lead to population of states above the Fermi edge</li> <li>states within the Fermi sphere are depopulated accordingly</li> </ul> | <ul> <li><b>X</b> negativ – unphysical – occupation<br/>numbers for high densities with<br/>density-independent correlator</li> <li><b>X</b> 2body approximation breaks down!</li> <li><b>V</b> effective higher order inclusion via<br/>the density-dependent correlator<br/>cures the problem</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} & n(k)/\lambda \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $ |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Correlated Occu | $0.75 \begin{bmatrix} 1 \\ 0.75 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.2 \ \text{fm}^{-3} \\ k_F = 1.81 \ \text{fm}^{-1} \end{bmatrix}$              | $\begin{array}{c} 0.25 \\ 0 \\ 1 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0$ | $\begin{array}{c} 0 \\ -0.25 \\ 0 \\ 0 \\ k \\ k$     |

Homework Problem

Gammel-Christian-Thaler-Potential

a Semi-Realistic Interaction



- spin-isospin-dependent hard-core potential
- tensor components not included



- parameters fixed by energy minimization for nuclear matter
  - full spin-isospin dependent correlator compared to over-all corr.

| Gammel-Christian-Thaler-Potential<br>Equation of State in 2body Approx. | <ul> <li>energy minimum (saturation) at</li> </ul> | finite density already in 2body approx. due to $k_F^5$ -term | <ul> <li>ST-dependent correlator gives a significant increase of binding energy (~ 6 MeV)</li> </ul> | <ul> <li>good qualitative agreement<br/>with Jastrow (3body) and<br/>Brueckner calculations</li> </ul> | <b>X</b> Jastrow-method can not provide saturation in 2body approximation by construction (no $k_{F}^{5}$ - | term)<br><b>X</b> 3body order is able to generate saturation ( $k_F^6$ -term)                                                                                               |                                                                                                          |
|-------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                         | $k_{F}[{ m fm}^{-1}]$ 1.4 1.6 1.8 2 2.2 2.4        | [MeV] [                                                      | $\varepsilon(\rho)$                                                                                  | -20 +                                                                                                  | $-35 \begin{bmatrix} -35 \\ -36 \end{bmatrix} $                                                             | $\widetilde{\varepsilon}^{C2} \text{ with ST-dependent correlator}$ $\widetilde{\varepsilon}^{C2} \text{ with over-all correlator}$ over-all Jastrow corr. in 2body approx. | <ul> <li> over-all Jastrow corr. in 3body approx.</li> <li>lowest order Brueckner calculation</li> </ul> |

# Summary & Outlook

#### what was shown here ...

- ✓ UCOM is a new and promising approach to tame short-range correlations in the context of quantum many-body problems
- unitary coordinate transformation of states or operators to introduce correlations
- ✓ in 2body approximations the correlated interaction has a *simple* analytic form
- ✓ higher order contributions can be calculated explicitly or included effectively
- convincing results for the homework problem and nuclear matter with the GCT potential



#### coming up next...



- ★ application to the zoo of atomic many-body system: liquid <sup>3</sup>He, liquid <sup>4</sup>He and droplets, trapped Bose-Einstein condensates...
- ★ nuclear many-body systems with realistic interactions: tensor correlations!!!
- ★ use of the correlated realistic interactions as input for simulation of dynamics: nuclear collisions (FMD) and BEC dynamics.