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Problem 5: Dimensional analysis

Dimensional analysis is a powerful tool and can be applied to various problems in physics. It is based
on the fact that in any problem involving a number of dimensionful quantities, the relationship between
them can be expressed by forming all possible independent dimensionless quantities Π,Π1,Π2, ...Πn.
The solution for Π can then be expressed in the form

Π = f(Π1, ...,Πn). (1)

1. Assume there is only one dimensionless combination of variables in a given problem. What follows
for Π? Can we say anything about the value of Π?

Solution: In this case we have
Π = const (2)

Here the question is: what sets the scale for the constant? Naturalness conjectures this constant to be
of order one. If this ration would not be of order one there should be a reason for the smallness of one
of the parameters, the parameter would be fine tuned.

2. Derive the characteristic size of the radius and ground state energy for a hydrogen atom using
dimensional analysis. Compare your results with the exact values. Are the dimensionless constants
of natural size?

Solution: For the hydrogen atom the relevant physical quantities are:

•the reduced mass of the proton-electron system: µ = memp/(me +mp) ∼ me

•the charge of the system, the Coulomb potential takes the form: V (r) = −Cce2

r (e.g. Cc =
1

4πε0
)

•quantum mechanical system: constant ~ (from Schroedinger equation).

That means the list of dimensionful quantities is here: me, (Cce
2) = a and ~. The units of these

quantities are (E=energy, L = length, T = time):

•[me] = M = EL−2T 2
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•[a] = E ∗ L = ML2T−2L = ML3T−2

•[~] = L ∗ (MLT−1) = ML2T−1 = E ∗ T (action)

Based on these three buildiung blocks [ET 2L−2, EL,ET ] we can build just one quantity with units of
energy and one quantity with units of radius:

r = Cr
~2

mea
= Cr

~2

me(Cce2)
= Cra0 (3)

E = CEme(a/~)2 = CE
me(Cce

2)2

~2
= CE

e2Cc

a0
(4)

(5)

with the Bohr radius a0 =
~2

mee2Cc
. Comparing with the exact results

rexact = a0, Eexact =
1

2

e2Cc

a0
(6)

we see that the dimensonless constants take the value Cr = 1, CE = 1/2. Pretty close!

3. Prove Pythagoras’ theorem using dimensional analysis. For this task, use only the fact that the
area of a right-angle triangle can be expressed as a function of the hypothenuse and one of the
acute angles of the triangle (don’t use trigonometry!). What happens if you consider non-Euclidian
geometries?
Hint: It is useful to add a well-chosen line to the right-angle triangle.

Solution: We consider a triangle with the hypotenuse a and the sides b and c. The angle between
a and b is α. Then the area of this triangle can be written in the form A = f(a, α). Now we draw a
line from the top of the triangle perpendicular to the hyponetuse, this creates two new right-angled
triangles with the areas B = f(b, α) and C = f(c, α) with

A = B + C, f(a, α) = f(b, α) + f(c, α) (7)

Dimensional analysis tells us that f(x, α) = x2f̃(α). Hence we immediately obtain a2 = b2+ c2. In
non-eucledian geometries the three triangles are not congruent anymore, hence the angles α will
be different and the argument does not work anymore.

Problem 6: Ginzburg-Landau-Wilson effective field theory

The construction of effective field theories is key for understanding the basic ideas that lie at the
heart of Wilson’s Renormalization Group formulation. There exist cases for which this task can be
performed exactly starting from a microscopic theory. Here we will perform this exercise via the
Hubbard-Stratonovich transformation for a general Ising model for N spins on a three-dimensional
lattice with a lattice spacing a:

H = −1

2

N∑
i,j=1

σiJijσj −
N∑
i=1

Biσi. (8)
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Here Jij = Jji is a positive symmetric matrix which denotes the couplings between spins i and j and
Bi is the external magnetic field at site i.

1. Prove the following relation for the interaction term:

exp
(1
2

∑
i,j

σiJijσj
) ∫

D[z] exp
(
−1

2

∑
i,j

ziJ
−1
ij zj

)
=

∫
D[z] exp

(
−1

2

∑
i,j

ziJ
−1
ij zj +

∑
i

ziσi
)

(9)

with ∫
D[z] =

∏
i

∫ ∞

−∞

dzi√
2π

.

Hint: Introduce new integration variables z′i = zi −
∑

j Jijσj .

Solution: Inserting the new variables on the right hands side

− 1

2
ziJ

−1
ij zj + ziσi (10)

= −1

2
(z′i + σkJki)J

−1
ij (z′j + Jjlσl) + (z′i + σkJki)σi (11)

= −1

2
z′iJ

−1
ij z′j +

1

2
σiJijσj (12)

and the relation follows immediately.

2. Show that the partition function can be expressed in the following form:

Z =

[∫
D[z] exp (−S[z])

]∫ D[z] exp
(
− 1

2β

∑
i,j

ziJ
−1
ij zj

)−1

=
1√

detβJ

∫
D[z] exp (−S[z]) ,

(13)
with

S[z] =
1

2β

∑
i,j

ziJ
−1
ij zj −

∑
i

ln[2 cosh(βBi + zi)].

Solution: We use relation (9) to rewrite the partition function:

Z = Tr exp

β

2

∑
i,j

σiJijσj + β
∑
i

Biσi

 (14)

=

∫ D[z] exp
(
− 1

2β

∑
i,j

ziJ
−1
ij zj

)
Tr exp

(∑
i

(
zi + βBi)σi

))∫ D[z] exp
(
− 1

2β

∑
i,j

ziJ
−1
ij zj

)−1

(15)

=
1√

detβJ

∫
D[z] exp

(
− 1

2β

∑
i,j

ziJ
−1
ij zj + ln 2 cosh

(
β
∑
i

(
zi +Bi)

))
(16)
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with Tr =
∑

{σi}. The determinant relation can be shown by diagonalizing the matrix β−1J−1 =

O−1J̄O, z̄i = O−1
ij zj , J̄ z̄ = λz̄:∫

D[z] exp
(
− 1

2β

∑
i,j

ziJ
−1
ij zj

)
=

∫
D[z̄] exp

(
−1

2

∑
i

λiz̄
2
i

)
(17)

=
∏
i

( 1

λi

)1/2
=

√
1

det J̄
=

√
1

det(β−1OJ−1O−1)
=

√
detβJ(18)

Here we used that the matrix O is just a rotation and hence do not affect the integration measure:
dzi = dz̄i.

3. Show that the expectation values of the variables zi are given by the following relation:

〈
β
∑
j

Jijσj
〉
= Z−1Tr

∑
j

(βJijσj)e
−βH = 〈zi〉 ≡

∫
D[z]zi exp

(
−S[z]

)∫
D[z] exp

(
−S[z]

) . (19)

Based on this result, show that the expectation values of the new variables φi defined by

φi ≡ β−1
∑
j

J−1
ij zj , i.e. zi = β

∑
j

Jijφj (20)

corresponds to the magnetization per lattice site. Show that the partition function can be written
in terms of the effective action S[φ] in the following form:

Z =
√
detβJ

∫
D[φ]e−S[φ] with S[φ] =

β

2

∑
i,j

φiJijφj−
∑
i

ln

2 cosh(β(Bi +
∑
j

Jijφj

)) . (21)

Hint: For the derivation of relation (19) you can use the technique of external sources:

zi = lim
a→0

∂

∂ai
exp

(∑
j

ajzj
)
. (22)

Solution:〈
β
∑
j

Jkjσj
〉

= Z−1Tr
∑
j

(βJkjσj)e
−βH (23)

= lim
a→0

∂

∂ak

Tr exp [β/2(σi + ai)Jij(σj + aj) + βBiσi]

Tr exp [β/2σiJijσj + βBiσi]
(24)

= lim
a→0

∂

∂ak

∫
D[z] exp

(
− 1

2β ziJ
−1
ij zj

)
Tr exp

(
βBiσi + zi(σi + ai)

)∫
D[z] exp

(
− 1

2β ziJ
−1
ij zj

)
Tr exp

(
βBiσi + ziσi

) (25)

=

∫
D[z]zi exp

(
−S[z]

)∫
D[z] exp

(
−S[z]

) (26)

= 〈zi〉 (27)

where we used relation (9) and replaced σi → σi + ai. Hence the expectation value of φi is given by:

〈φi〉 = β−1
〈
J−1
ij zj

〉
= 〈σi〉 (28)
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Substituting this variable in (13) we obtain:

Z =

[∫
D[φ] exp (−S[φ])

]∫ D[φ] exp
(
−β

2

∑
i,j

φiJijφj

)−1

=
√

detβJ

∫
D[φ] exp (−S[φ]) , (29)

with
S[φ] =

β

2

∑
i,j

φiJijφj −
∑
i

ln[2 coshβ(Bi +
∑
j

Jijφj)].

The factors from the change in the integration measure cancel in numerator and denominator. This
equation represents the partition function of the Ising model in terms of an N-dimensional integral
over variables φ whose expectation values are the magnetization per lattice site. The variables φ can
therefore be interpreted as the fluctuating magnetization. In the limit N → ∞ the discrete product of
integrals D[φ] becomes an infinite product of integrals, i.e. a functional integral. The resulting effective
action S[φ] defines a classical effective field theory for the order-parameter of the Ising model.

4. The relation (21) is an exact representation of the partition function of the Ising model and hence
is in general very complicated to solve. In order to simplify the expression we consider a system
close to the critical point and assume that the partition function is dominated by small values of
φi. Show that the effective action takes the following form up to order O(φ6

i ):

S[φ] = −N log 2 +
β

2

∑
i,j

φiJijφj −
β2

2

∑
i

(
Bi +

∑
j

Jijφj

)2
+

β4

12

∑
i

(
Bi +

∑
j

Jijφj

)4 (30)

Perform the continuum limit N → ∞ : φi → φ(r), Jij → J(r− r′), and represent the variables in
momentum space, i.e.:

φ(r) =

∫
d3p

(2π)3
φ(p)eip·r, δ(r) =

∫
d3p

(2π)3
eip·r (31)

Show that the effective action takes the following form up to order O(φ6, B2, Bφ3) for a homoge-
neous external field Bi → B(r) = B:

S[φ(p)] = −N log 2− β2 B

(2π)3
J(0)φ(0) +

β

2

∫
d3p

(2π)3
J(p)(1− βJ(p))φ(p)φ(−p) (32)

+
β4

12

1

(2π)9
( 4∏
i=1

∫
d3pi

)
J(p1)J(p2)J(p3)J(p4)φ(p1)φ(p2)φ(p3)φ(p4)δ(p1 + p2 + p3 + p4)

Solution: Equation (30) follows directly from expanding the function ln 2 cosh(x) for small x. Inser-
ting the Fourier transforms we obtain :

φiJijφj →
∫

d3rd3r′
d3p1d

3p2d
3p3

(2π)9
φ(p1)J(p2)φ(p3)e

−ip1·re−ip2·(r−r′)e−ip3·r′ (33)

=

∫
d3p1d

3p2d
3p3

(2π)3
φ(p1)J(p2)φ(p3)δ(p1 + p2)δ(p2 − p3) (34)

=

∫
d3p

(2π)3
J(p)φ(p)φ(−p) (35)

=

∫
d3p

(2π)3
J(−p)φ(p)φ(−p) (36)
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since Jij = Jji and hence J(p) = J(−p)

BiJikφk →
∫

d3rd3r′
d3p1d

3p2d
3p3

(2π)9
Bδ(p1)J(p2)φ(p3)e

−ip1·re−ip2·(r−r′)e−ip3·r′

= B

∫
d3rd3r′

d3p2d
3p3

(2π)9
J(p2)φ(p3)e

−ip2·(r−r′)e−ip3·r′ (37)

= B

∫
d3p2d

3p3

(2π)3
J(p2)φ(p3)δ(p2 − p3)δ(p2) (38)

=
B

(2π)3
J(0)φ(0) (39)

∑
i

(Jijφj)
2 = JijJikφjφk →

∫
d3rd3r′d3r′′

d3p1d
3p2d

3p3d
3p4

(2π)12

×J(p1)J(p2)φ(p3)φ(p4)e
−ip1·(r−r′)e−ip2·(r−r′′)e−ip3·r′e−ip4·r′′

=

∫
d3p1d

3p2d
3p3d

3p4

(2π)3
J(p1)J(p2)φ(p3)φ(p4)δ(p1 + p2)δ(p1 − p3)δ(p2 + p4)

=

∫
d3p

(2π)3
J(p)J(−p)φ(p)φ(−p)

=

∫
d3p

(2π)3
J(p)J(p)φ(p)φ(−p). (40)

∑
i

(Jijφj)
4 = →

∫
d3rd3r1d

3r2d
3r3d

3r4

8∏
i=1

d3pi

(2π)3
J(p1)J(p2)J(p3)J(p4)φ(p5)φ(p6)φ(p7)φ(p8)

e−ip1·(r−r1)e−ip2·(r−r2)e−ip3·(r−r3)e−ip4·(r−r4)e−ip5·r1e−ip6·r2e−ip7·r3e−ip8·r4

=

∫
d3r

∫
d3p1d

3p2d
3p3d

3p4

(2π)12
J(p1)J(p2)J(p3)J(p4)φ(p1)φ(p2)φ(p3)φ(p4)

e−i(p1+p2+p3+p4)·r

=

∫
d3p1d

3p2d
3p3d

3p4

(2π)9
J(p1)J(p2)J(p3)J(p4)φ(p1)φ(p2)φ(p3)φ(p4)δ(p1 + p2 + p3 + p4)

The units of the quantities are:
[βB] = [βJ ] = [βJφ] (41)

Hence [
β−1

]
= [B] = [J ] = E, [φ] = 1 (42)

5. We are particularly interested in the long-wavelength contributions to the partition function. For
this we limit the momentum integrals to wave numbers below a scale Λ and expand the function
J(p) for small momenta in powers of p. Show that the final form of the partition function can be
written in the form Z =

∫
D[φ]e−σΛ[φ] with:

SΛ[φ(p)] = aN + bBφ(0) +
1

2

∫
p
(c0 + c1p

2)φ(p)φ(−p)

+
d

4!

∫
p1

∫
p2

∫
p3

∫
p4

δ(p1 + p2 + p3 + p4)φ(p1)φ(p2)φ(p3)φ(p4) (43)
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Here we used the notation
∫
p =

∫ d3p
(2π)3

Θ(Λ − |p|). Discuss the physical meaning of the scale Λ.
How are the couplings constants a, b, c0, c1 and d related to the constants in Eq. (32). Show that
in coordinate space the effective action takes the following form:

SΛ[φ(r)] =

∫
d3r

[
a+ bBφ(r) +

c0
2
φ2(r) +

c1
2
(∇φ(r))2 +

d

4!
φ4(r)

]
. (44)

Solution: We can immediately identify the constants:

a = − log 2 (45)

b = −β2BJ(0)

(2π)3
(46)

c0 = βJ(0)(1− βJ(0)) (47)
c1 = βJ ′(0)(1− 2βJ(0)) (48)
d = 2β4 (49)

The coordinate space representation is obtained by an inverse fourier transform. Note in particular
that the p2 factor ranslates into the gradient term.
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