

# Heavy quark production and elliptic flow at RHIC and LHC

### Jan Uphoff

with O. Fochler, Z. Xu and C. Greiner

**Institute for Theoretical Physics** 





Hirschegg January 20, 2010



- Motivation
- Charm processes in BAMPS
- Box calculation: chemical equilibration
- Heavy quark production in heavy-ion collisions
- Elliptic flow of charm
- Summary

# **Motivation**









#### **BAMPS: Boltzmann Approach of MultiParton Scatterings**

Transport algorithm solving the Boltzmann equations for on-shell partons with pQCD interactions

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_1}{E_1}\frac{\partial}{\partial \mathbf{r}}\right) f_1(\mathbf{r}, \mathbf{p}_1, t) = \mathcal{C}_{22} + \mathcal{C}_{23} + \cdots$$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

Implemented processes:

$$\begin{array}{ll} g+g \rightarrow g+g \\ g+g \rightarrow g+g+g \\ g+g+g \rightarrow g+g \\ (no \ light \ quarks \ yet) \end{array} \qquad \begin{array}{ll} g+g \rightarrow c+\bar{c} \\ c+\bar{c} \rightarrow g+g \\ g+c \rightarrow g+c \\ g+\bar{c} \rightarrow g+\bar{c} \end{array}$$







### **BAMPS** $\leftrightarrow$ Hydro



e [GeV/fm<sup>3</sup>]





#### Toy model: consider box of gluons with just two processes

- $g + g \rightarrow c + \overline{c}$  Initial conditions:
  - thermally distributed gluons

#### Rate equation:

 $c + \bar{c} \rightarrow g + g$ 

$$\partial_{\mu} \left( n_c u^{\mu} \right) = R_{gg \to c\bar{c}} - R_{c\bar{c} \to gg}$$

with

$$R_{gg \to c\bar{c}} = \frac{1}{2} < \sigma_{gg \to c\bar{c}} v_{rel} > n_g^2$$
$$R_{c\bar{c} \to gg} = < \sigma_{c\bar{c} \to gg} v_{rel} > n_c n_{\bar{c}}$$

Matsui, Svetitsky, McLerran, Phys. Rev. D (1986) Biro, van Doorn, Müller, Thoma, Wang, Phys. Rev. C (1993)

### Box calculation $T_0 = 400 \text{ MeV}$









#### 1000 1500 2000 2500 3000 3500 4000 500 0 t [fm/c]

 $T_0 = 400 \text{ MeV}$ 





Two approaches:

1. LO pQCD: mini-jets

$$\begin{split} \frac{\mathrm{d}\sigma_{c\bar{c}}^{AB}}{\mathrm{d}p_T^2 \mathrm{d}y_c \mathrm{d}y_{\bar{c}}} &= x_1 x_2 C(x_1, x_2) \\ \text{depend on renormalization} \\ C(x_1, x_2) &= f_g^A(x_1) \, f_g^B(x_2) \, \frac{\mathrm{d}\hat{\sigma}_{gg \to c\bar{c}}}{\mathrm{d}\hat{t}} + \\ & \sum_{q} \left[ f_q^A(x_1) \, f_{\bar{q}}^B(x_2) + f_{\bar{q}}^A(x_1) \, f_q^B(x_2) \right] \frac{\mathrm{d}\hat{\sigma}_{q\bar{q} \to c\bar{c}}}{\mathrm{d}\hat{t}} \end{split}$$

depend on factorization scale  $\mu_{\text{F}}$ 

2. PYTHIA

Monte Carlo Event Generator for nucleon-nucleon collisions





# Initial charm in hard parton scatterings



Total initial charm yield in central Au+Au collisions @ RHIC:

- PYTHIA:
  - 8 14 charm pairs
- LO pQCD:
  - 2 4 charm pairs



#### Initial gluon distribution for parton cascade UNIVERSITÄT FRANKFURT AM MAIN

- PYTHIA scaling to heavy-ion collisions with Glauber model (considering shadowing) and energy conservation

   hard partons ~ N<sub>bin</sub>: number of binary collision
  - soft partons ~ A: number of nucleons in one nuclei
- Minijets (low p<sub>T</sub> cut-off at 1.4 GeV)
- Color glass condensate H.J. Drescher & Y. Nara, Phys. Rev. C75 (2007)



# **Charm production in the QGP**



#### **BAMPS** simulation of QGP phase at RHIC









RHIC 10 **BAMPS Different initial** 9.9 conditions 9.8 charm pairs 9.7 factor 2.5 N N 9.6 difference 9.5 in charm 9.4 production PYTHIA Au+Au 9.3 CGC ----during √s = 200 GeV Minijets ..... 9.2 **QGP** phase 2 3 5 0 1 4 t [fm/c]  $M_{charm} = 1.5 \text{ GeV}$ 



10 Au+Au BAMPS K factor or 9.9 √s = 200 GeV different charm 9.8 ---mass charm pairs 9.7 N S 9.6 factor 2 9.5 difference in charm 9.4 PYTHIA, K=1, M=1.5GeV PYTHIA, K=2, M=1.5GeV PYTHIA, K=1, M=1.3GeV production 9.3 during 9.2 **QGP** phase 2 З 5 0 4 t [fm/c]

#### RHIC



RHIC PYTHIA, K=1, M=1.5GeV 20 CGC, K=1, M=1.5GeV -----Minijets, K=1, M=1.5GeV Maximum PYTHIA, K=2, M=1.5GeV PYTHIA, K=1, M=1.3GeV 15 charm Minijets, K=2, M=1.3GeV charm pairs production of ୍ୟ N 3.4 pairs 10 27 % of 5 Au+Au total charm √s = 200 GeV 0 2 З 5 0 4 6 t [fm/c]

#### Jan Uphoff













# Bottom production in the QGP at LHC





# **Elliptic flow v**<sub>2</sub>





$$\frac{\mathrm{d}^3 N}{p_T \mathrm{d} p_T \mathrm{d} y \mathrm{d} \phi}(p_T, y, \phi) = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_T \mathrm{d} p_T \mathrm{d} y} \left[1 + 2v_2(p_T, y)\cos(2\phi) + \ldots\right]$$



# Elliptic flow v<sub>2</sub> for gluons

















GOETHE

FRANKFURT AM MAIN

UNIVE





### **Conclusion & outlook**



- Chemical equilibration time for charm very large
- Huge uncertainty on initial charm yield due to PDF and scale dependencies
   LO calculations cannot explain data

Full space-time evolution of charm and bottom quarks

- Small charm yield during QGP phase
  - RHIC: 3 27 % of final charm are produced in QGP
  - LHC: 15 45 % of final charm are produced in QGP
- Negligible bottom yield during QGP phase at LHC
- LO gluon charm scattering is not sufficient to build up collective flow

#### Future tasks:

- Light quarks
- Higher order corrections, gluon radiation for charm scattering



# Thank you for your attention.



### Backup





3+1 dimensional Monte Carlo cascade

Divides collision zone into cells

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

• Using stochastic method:

$$P_{2\to2} = v_{\rm rel} \frac{\sigma_{2\to2}}{N_{\rm test}} \frac{\Delta t}{\Delta^3 x} \qquad \qquad v_{\rm rel} = \frac{\sqrt{(P_1^{\mu} P_{2\mu})^2 - m_1^2 m_2^2}}{E_1 E_2}$$

Testparticles to increase statistics

# **Partonic cross sections**







LO pQCD:



# **Partonic cross sections**





# **Solution of rate equation**



#### Number of charm quarks for fixed temperature and fixed number of particles:

$$n_{c+\bar{c}}(t) = \frac{n_{tot}}{1-\zeta^2} \left[ 1 - \frac{e^{2t/\tau} (\zeta+1) - \zeta+1}{e^{2t/\tau} (\frac{1}{\zeta}+1) - \frac{1}{\zeta}+1} \right] \qquad \zeta = \frac{n_{eq}^{eq}}{n_{e+\bar{c}}^{eq}} = \frac{n_{tot} - n_{e+\bar{c}}^{eq}}{n_{e+\bar{c}}^{eq}} \\ \tau = \frac{n_{e+\bar{c}}^{eq}}{\sigma_g n_{tot} n_g^{eq}} = \frac{n_{e+\bar{c}}}{\sigma_g (n_{tot}^2 - n_{tot} n_{e+\bar{c}}^{eq})} \\ n_{e+\bar{c}}^{eq} = \frac{n_{tot}}{\sigma_g (n_{tot}^2 - n_{tot} n_{e+\bar{c}}^{eq})} \\ n_{e+\bar{c}}^{eq} = \frac{n_{tot}}{\frac{1}{\sqrt{2R}} + 1} \\ n_{e+\bar{c}}^{eq} = \frac{n_{e+\bar{c}}}{\frac{1}{\sqrt{2R}} + 1} \\ n_{e+\bar{c}}^{eq} = \frac{n_{e+\bar{c}}^{eq}}{\frac{1}{\sqrt{2R}} + 1} \\ n_{e+\bar{c}}^{eq} = \frac{n_{e+\bar{c}}^$$

# Box calculation $T_0 = 800 \text{ MeV}$





### **Time scale of chemical equilibration**





# **Time scale of chemical equilibration**





### **PYTHIA**



#### **PYTHIA simulates only nucleon-nucleon collisions**









# Initial conditions for parton cascade









# **Initial conditions for cascade at LHC**



(cf. N. Armesto, J.Phys.G35 (2008)





| Total initial charm yield in | Parton distribution functions | charm quark pairs |  |
|------------------------------|-------------------------------|-------------------|--|
| central Au+Au collisions     | CTEQ51 (LO) (Standard)        | 8.9               |  |
|                              | CTEQ61 (LO)                   | 9.2               |  |
|                              | CTEQ6m $(\overline{MS})$      | 13.6              |  |
| • PYTHIA:                    | MRST2001LO                    | 9.6               |  |
| 3 – 14 charm pairs           | MRST2007LOmod                 | 9.2               |  |
| LO pQCD:                     | HERAPDF01                     | 12.3              |  |
| 2 – 4 charm pairs            | GJR08 (FF LO)                 | 3.0               |  |
|                              | GRV98 (LO)                    | 3.0               |  |

Choose CTEQ6I as standard parton distribution function, although its charm yield is farer from data than CTEQ6m

• Reason: Designed for LO event generators

### **Temperature at RHIC and LHC**





Jan Uphoff

### Charm scales with number of bin. coll.







LO pQCD:



Cross section:

$$\begin{aligned} \frac{\left|\overline{\mathcal{M}_{gc \to gc}}\right|^2}{\pi^2 \alpha_s^2} &= \frac{32(s-M^2)(M^2-u)}{t^2} + \frac{64}{9} \frac{(s-M^2)(M^2-u) + 2M^2(s+M^2)}{(s-M^2)^2} \\ &+ \frac{64}{9} \frac{(s-M^2)(M^2-u) + 2M^2(u+M^2)}{(M^2-u)^2} + \frac{16}{9} \frac{M^2(4M^2-t)}{(s-M^2)(M^2-u)} \\ &+ 16 \frac{(s-M^2)(M^2-u) + M^2(s-u)}{t(s-M^2)} - 16 \frac{(s-M^2)(M^2-u) - M^2(s-u)}{t(M^2-u)} \end{aligned}$$



LO pQCD:



Cross section:



divergent for t=0



$$\sigma_{gc \to gc}(s) = \int_{t_{min}}^{t_{max}} \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$$

$$t_{max} = 0$$
$$t_{min} = -\frac{(s - M^2)^2}{s}$$

Solutions:

- 1. Cut-off for t<sub>max</sub>
- 2. Debye screening

$$t \to t - m_D^2$$
  $m_D^2 = 16\pi \alpha_s \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{p} (N_c f_g + N_f f_q)$ 



$$\sigma_{gc \to gc}(s) = \int_{t_{min}}^{t_{max}} \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$$

$$t_{max} = 0$$
$$t_{min} = -\frac{(s - M^2)^2}{s}$$

Solutions:

- 1. Cut-off for t<sub>max</sub>
- 2. Debye screening  $t \rightarrow t - m_D^2$   $m_D^2 = 16\pi \alpha_s \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{p} (N_c f_g + N_f f_q)$

#### **Total cross section:**

$$\begin{split} \sigma_{gc \to gc}(s) &= \pi \alpha_s^2 \left\{ \frac{2}{m_D^2} - \frac{2s}{(s - M^2)^2 + s m_D^2} + 2 \frac{s + M^2}{(s - M^2)^2} \ln \left[ \frac{s m_D^2}{(s - M^2)^2 + s m_D^2} \right] \right. \\ &\left. + \frac{17}{9s} + \frac{2M^2}{s(s - M^2)} + \frac{4M^4}{s(s - M^2)^2} \right\} \end{split}$$







53

# LO pQCD: mini-jets

|          | PDF     | Skala $\mu_F = \mu_R$  | $M_c  [{ m GeV}]$ | $\sigma \left[ \mu \mathrm{b}  ight]$ | $d\sigma/dY _{Y=0} [\mu b]$ |
|----------|---------|------------------------|-------------------|---------------------------------------|-----------------------------|
| p+p      | CTEQ6m  | $2M_c$                 | 1.2               | 160                                   | 38                          |
| Sqrt(s)= |         |                        | 1.5               | 72                                    | 19                          |
| 200 GeV  |         | $\sqrt{p_T^2 + M_c^2}$ | 1.2               | 140                                   | 36                          |
|          |         |                        | 1.5               | 79                                    | 20                          |
|          |         | PYTHI                  | ĨA –              | 540                                   | 130                         |
|          | CTEQ61  | $2M_c$                 | 1.2               | 230                                   | 57                          |
|          |         |                        | 1.5               | 90                                    | 25                          |
|          |         | $\sqrt{p_T^2 + M_c^2}$ | 1.2               | 280                                   | 68                          |
|          |         |                        | 1.5               | 120                                   | 31                          |
|          |         | PYTHI                  | Ā                 | 370                                   | 91                          |
| GI       | GRV98lo | $2M_c$                 | 1.2               | 190                                   | 38                          |
|          |         |                        | 1.5               | 78                                    | 17                          |
|          |         | $\sqrt{p_T^2 + M_c^2}$ | 1.2               | 220                                   | 43                          |
|          |         |                        | 1.5               | 97                                    | 20                          |
|          |         | PYTHI                  | Ā                 | 120                                   | 30                          |
|          |         | PHENIX                 |                   | $544 \pm 381$                         | $123 \pm 47$                |
|          |         | STAR                   |                   | $1400\pm600$                          | $300 \pm 130$               |



### **Comparison with Hydro**



A. El, Z. Xu and C. Greiner, arXiv: 0907.4500 [hep-ph]



### ZX and C.Greiner, PRL 100, 172301, (2008)

$$\eta_{NS} \cong \frac{1}{5} n \frac{\left\langle E\left(\frac{1}{3} - \frac{p_z^2}{E^2}\right) \right\rangle}{\frac{1}{3} - \left\langle \frac{p_z^2}{E^2} \right\rangle} \frac{1}{R^{tr}[f] + \frac{3}{n} \int dw C[f]}$$

transport rate

$$R^{tr} = \frac{\int dw \, \frac{p_z^2}{E^2} \, C[f] - \left\langle \frac{p_z^2}{E^2} \right\rangle \int dw \, C[f]}{n \left( \frac{1}{3} - \left\langle \frac{p_z^2}{E^2} \right\rangle \right)} \sim n\sigma^{tr} = n \int d\theta \frac{d\sigma}{d\theta} \sin^2 \theta$$

$$s = 4n - n \ln \lambda$$



$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}t} &= \frac{\left|\overline{\mathcal{M}}_{gg \to c\bar{c}}\right|^2}{16\pi s^2} \\ \frac{\left|\overline{\mathcal{M}}_{gg \to c\bar{c}}\right|^2}{\pi^2 \alpha_s^2} &= \frac{12}{s^2} (M^2 - t)(M^2 - u) + \frac{8}{3} \left(\frac{M^2 - u}{M^2 - t} + \frac{M^2 - t}{M^2 - u}\right) \\ &\quad - \frac{16M^2}{3} \left[\frac{M^2 + t}{(M^2 - t)^2} + \frac{M^2 + u}{(M^2 - u)^2}\right] - \frac{6}{s}(2M^2 - t - u) \\ &\quad + \frac{6}{s} \frac{M^2(t - u)^2}{(M^2 - t)(M^2 - u)} - \frac{2}{3} \frac{M^2(s - 4M^2)}{(M^2 - t)(M^2 - u)} \end{split}$$



### **Partonic cross sections**



$$\begin{split} q+\bar{q} &\rightarrow c+\bar{c} \\ \sigma_{q\bar{q}\rightarrow c\bar{c}}(s) = \frac{8\pi\alpha_s^2}{27s}\left(s+2M^2\right)\chi \end{split}$$