Elliptic Flow: lessons from RHIC expectations for the LHC

Raimond Snellings Nikhef, Amsterdam

Strongly Interacting Matter under Extreme Conditions

International Workshop XXXVIII on Gross Properties of Nuclei and Nuclear excitations Waldemar-Petersen-Haus, Hirschegg, Kleinwalsertal, Austria

January 17-23,201(

- Our current understanding of the observables used to estimate anisotropic flow
- Comparing elliptic flow measurements with theory
- Outlook for elliptic flow at the LHC for pp and AA

Elliptic Flow

J.Y. Ollitrault, PRD 46, 229 (1992)

- in non central collisions coordinate space configuration is anisotropic (almond shape). However, initial momentum distribution isotropic (spherically symmetric)
- Interactions among constituents generate a pressure gradient which transforms the initial coordinate space anisotropy into the observed momentum space anisotropy → anisotropic flow
- self-quenching → sensitive to early stage
- a unique hadronic probe of the early stage

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

 $v_2 = \left< \cos 2\phi \right>$

Anisotropic Flow

Azimuthal distributions of particles measured with respect to the reaction plane (spanned by impact parameter vector and beam axis) are not isotropic.

$$E\frac{d^3N}{d^3\vec{p}} = \frac{1}{2\pi}\frac{d^2N}{p_Tdp_Tdy}\left(1 + \sum_{n=1}^{\infty} 2v_n\cos\left(n\left(\phi - \Psi_{\rm RP}\right)\right)\right)$$

 $v_n = \langle \cos n(\phi - \Psi_{\rm RP}) \rangle$

harmonics v_n quantify anisotropic flow

S.Voloshin and Y. Zhang (1996)

Event Plane Method

the event plane is an experimental estimate of the reaction plane

resolution and subevents

• due to the finite number of detected particles there is a limited resolution in the event plane angle

$$v_n^{\text{obs}} = \left\langle \cos n \left(\phi_i - \Psi_n^{EP} \right) \right\rangle$$
$$v_n = \frac{v_n^{\text{obs}}}{\left\langle \cos n \left(\Psi_n^{EP} - \Psi_R \right) \right\rangle}$$

one can correct for that with subevents

$$\langle \cos n \left(\Psi_n^{EP} - \Psi_R \right) \rangle = \mathbf{C} \times \sqrt{\langle \cos n \left(\Psi_n^a - \Psi_n^b \right) \rangle}$$

measure anisotropic flow

 since reaction plane cannot be measured event-by-event, consider quantities which do not depend on it's orientation: multi-particle azimuthal correlations

$$\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle = \left\langle e^{in\phi_1} \right\rangle \left\langle e^{-in\phi_2} \right\rangle + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_{\text{corr}}$$

zero for symmetric detector when averaged over many events

$$\langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle = \langle \langle e^{in(\phi_1 - \Psi_R - (\phi_2 - \Psi_R))} \rangle \rangle$$

= $\langle \langle e^{in(\phi_1 - \Psi_R)} \rangle \langle e^{-in(\phi_2 - \Psi_R)} \rangle \rangle$
= $\langle v_2^2 \rangle$

assuming that <u>only</u> correlations with the reaction plane are present

Elliptic Flow at RHIC

Ideal hydro gets the magnitude for more central collisions Hadron cascade calculations are factors 2-3 off

What about nonflow?

- when dominated by flow the event plane resolution scales with M^{1/2} x v₂ (when not too close to 1)
- gives very characteristic dependence on centrality
- nonflow will scale very different: the red line was first STAR estimate of nonflow

STAR, PRL 86, (2001) 402, Nucl. Phys. A698 (2002) 193

Estimate is not well defined, requires assumptions on the nature of the nonflow. <u>How to estimate nonflow as function of transverse momentum?</u>

Can we do better?

- build cumulants using multi-particle correlations
 Borghini, Dinh and Ollitrault (2001)
- for detectors with uniform acceptance 2nd and 4th cumulant are given by:

$$c_{n}\{2\} \equiv \left\langle \left\langle e^{in(\phi_{1}-\phi_{2})}\right\rangle \right\rangle = v_{n}^{2} + \delta_{2}$$

$$c_{n}\{4\} \equiv \left\langle \left\langle e^{in(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})}\right\rangle \right\rangle - 2\left\langle \left\langle e^{in(\phi_{1}-\phi_{2})}\right\rangle \right\rangle^{2}$$

$$= v_{n}^{4} + 4v_{n}^{2}\delta_{2} + 2\delta_{2}^{2} - 2(v_{n}^{2}+\delta_{2})^{2} + \delta_{4}$$

$$= -v_{n}^{4} + \delta_{4}$$

we got rid of two particle nonflow correlations! we can remove nonflow order by order

Are we doing better?

 $\delta_2 \sim 1/M, \qquad \delta_4 \sim 1/M^3$

• therefore to reliably measure flow: for M=200 $v_n^2 \gg 1/M \implies v_n \gg 1/M^{1/2} >> 0.07$ $v_n^4 \gg 1/M^3 \implies v_n \gg 1/M^{3/4} >> 0.019$

• for Lee Yang Zeroes:

$$v_n \gg 1/M$$
 >> 0.005

First cumulant results $v_2\{2\} \xrightarrow{v_2\{4\}}$

STAR, PRC (nucl-ex/0206001)

observed "nonflow" corrections are significant corrections larger than earlier estimates

First Surprises/Questions ratio of $v_2{4}/v_2{2}$ as function of p_t is rather flat!

Figure 18 presents the p_t -dependence of the correction factor for non-flow. Within errors, the relative non-flow effect is seen to be about the same or increasing very weakly from low p_t through $p_t \sim 4 \text{ GeV}/c$ — a somewhat surprising result, given the presumption that the processes responsible for non-flow are different at low and high p_t .

V. ELLIPTIC FLOW FLUCTUATIONS

High precision results presented in this publication become sensitive to another effect usually neglected in flow analysis, namely, event-by-event flow fluctuations. The latter can have two different origins: "real" flow fluctuations — fluctuations at fixed impact parameter and fixed multiplicity (see, for example [40]) — and impact parameter variations among events from the same centrality bin in a case where flow does not fluctuate at fixed impact parameter. These effects, in principle, are present in any kind of analysis, including the "standard" one based on pair correlations.

corrections for "trivial" fluctuations were applied for integrated flow (both $v_2{2}$ and $v_2{4}$)

v₂ fluctuations

M. Miller and RS, arXiv:nucl-ex/0312008

- measured: $v_2\{2\} = \sqrt{(\langle v_2 \rangle^2 + \sigma_v^2 + \delta)}$
- using: $v_2 \propto arepsilon$
- If the eccentricity fluctuates $\langle \varepsilon^2 \rangle - \langle \varepsilon \rangle^2 \neq 0$ $\langle v_2 \rangle \neq \sqrt{\langle (v_2)^2 \rangle}$
- fluctuations change v₂ estimate significantly!

v₂ fluctuations

Eccentricity fluctuations and its possible effect on elliptic flow measurements

M. Miller and RS, arXiv:nucl-ex/0312008

eccentricity fluctuations explains much of the observed differences in the cumulants!

Fluctuations and Planes

- RP the reaction plane, defined by the impact parameter
- PP the participant plane, defined by the major axis of the created system

PHOBOS QM2005: Nucl. Phys. A774: 523 (2006)

fluctuations in the eccentricity change the angle of the symmetry plane

PHOBOS CuCu results

PHOBOS QM2005: Nucl. Phys.A774: 523 (2006)

correcting the eccentricity for the fluctuations restores the scaling between CuCu and AuAu

Strong experimental evidence for eccentricity fluctuations

v₂, nonflow and fluctuations

- two-particle correlation methods (v₂{EP}, v₂{2}) measure flow in participant plane (+ nonflow)
- multi-particle methods (v₂{4} and higher, v₂{LYZ}) and methods using the directed flow of the spectators (ZDC) measure flow in the reaction plane and in addition remove the nonflow

R.S. Bhalerao , J-Y. Ollitrault Phys.Lett.B641:260-264,2006 S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang Phys.Lett.B659:537-541,2008

Bleicher,];[Stoeker, Phys.Rev.C72:064911(2005

Summary Observables

- To compare to theory apples to apples comparisons need to be made
 - particular if we want to do better than 20% (e.g. to constrain viscous corrections)
- Ideally calculate the observables v₂{2}, v₂{4}, v₂{LYZ} directly in the model

Compare to Theory

STAR Phys. Rev. Lett. 86, 402–407 (2001)

Ideal hydro gets the magnitude for more central collisions Hadron cascade calculations are factors 2-3 off

Beyond Ideal Hydro

for ideal hydrodynamics:

in the Low Density Limit (LDL):

 $\frac{v_2}{\epsilon} \propto \sigma \frac{1}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$

H. Heiselberg and A. M. Levy, Phys. Rev. C 59, 2716 (1999)

S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B 474, 27 (2000)

This figure is <u>not</u> understood in ideal hydrodynamics! viscous corrections needed: parton cascade, viscous hydro, hadron cascade hybrid models do get the dN/dy dependence

21

Beyond Ideal Hydro

PHOBOS, W. Busza

Not only the energy dependence but also rapidity dependence seems to scale with dN/dy In hybrid models tuning of initial conditions required

spectra and v₂

PHENIX, whitepaper

The best simultaneous description of the spectra and v_2 is obtained by the hybrid models

V2 mass dependence What happens when a particle freezes-out early?

Look for the breaking of the mass scaling

v₂ mass dependence

What happens when a particle freezes-out early?

T. Hirano et al, arXiv:0710.5795

Hydro until T_c Hybrid

Hydro $until T_k$

Also in more complete model calculations breaking of the mass scaling

So far not observed in the data

Comparing Theory and Data

T. Hirano et al., Phys. Lett. B 636 299 (2006) T. Hirano et al., J.Phys.G34:S879-882,2007

- hybrid models (ideal hydro + hadron cascade) do after some tuning a fair job but leave some puzzles
- we have learned that some that some contributions are more important than previously thought
 - ε fluctuations and | ε |
 - more realistic EoS
 - η/s

26

- core/corona
- requires a new round of hybrid model calculations

Matthew Luzum, Paul Romatschke arXiv:0804.4015

Viscous Hydro Glauber

Matthew Luzum and Paul Romatschke; arXiv: 0901.4588 [nucl-th]

Matthew Luzum, Paul Romatschke arXiv:0804.4015

Viscous hydro calculations using ~ soft EoS and Glauber ϵ do not describe the measured centrality dependence with a single η/s (η/s varies between 0 and $2/4\pi$)!

Viscous Hydro CGC

Viscous hydro calculations using ~ soft EoS and CGC ϵ describe the centrality dependence and p_t dependence using $\eta/s = 2/4\pi$ (doing to well?)

From LDL to viscous Hydro

R.S. Bhalerao, J-P. Blaizot, N. Borghini and J-Y. Ollitrault; Phys. Lett. B 627:49-54, 2005

 $v_2/\epsilon = h/(1+1.4Kn)$ h: hydro limit Knudsen number: $Kn = \lambda/R$ The number of collisions per particle: $1/Kn = (\sigma/S)(dN/dy)c_s$ $\sigma = partonic cross section$ $c_s = sound velocity$

H-J. Drescher, A. Dumitru, C. Gombeaud and J-Y. Ollitrault; Phys.Rev.C76:024905,2007.

PHOBOS v₂ data, eccentricity ϵ is "corrected" for fluctuations data reaches 70% of ideal hydro limit and can be describes using CGC ϵ with soft EoS (ideal hydro v₂/ $\epsilon \sim 0.22$) or Glauber ϵ with hard EoS (ideal hydro v₂/ $\epsilon \sim 0.3$)

can we get a consistent picture from calculations of different theorists? 😳

very small I/S dN/dy finite lifetime effects are important (freeze-out ~ 100 MeV)!

yes we can!

Viscous Hydro and Data

compare directly to viscous hydro calculations. STAR data well described using a CGC ε with soft EoS and $\eta/s \sim 2/4\pi$ or Glauber ε with hard EoS and $\eta/s \sim 4 \times 1/4\pi$

estimates of η /s are < 4x the conjectured lower bound from AdS/CFT for a significant fraction of the lifetime of the system

Flow at the LHC

most models predict larger flow, largest values based on "scaling"

Flow at the LHC

E. Simili, Thesis Utrecht (2008)

can easily differentiate between LDL and soft EoS + Glauber ε

hydro:

Flow in pp at the LHC

J. Casalderrey-Solana and U. Wiedemann: arXiv:0911.4400

due to fluctuations large eccentricity in pp might allow for v_2 measurement in central pp

Conclusions

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions April 18, 2005

- The observables have been much better understood
 - elliptic flow, nonflow and fluctuations contributions are rather well constrained
- non ideal hydro contributions are important
 - important question is what contribution the hadronic stage gives (Φ, Ξ, Ω)
- initial conditions (e.g. ε, initial flow fields) not sufficiently constrained!
- estimates of $\eta/s < 4x$ the conjectured lower bound from AdS/CFT for a significant part of the system evolution
- v_2 at the LHC immediately will put strong constraints on these uncertainties
- correlations with the reaction plane is a much broader topic and can be fully exploited at the LHC

Thanks!

Iransverse Momentum?

viscous corrections

D.Teaney PRC68 034913 (2003)

- In the data the peak position is also shifting as function of centrality \rightarrow just R?
- caveat: magnitude hard contribution at higher pt

Use shift of peak to determine η/s

Yuting

Bai,

B sensitive to n/s?

$$\frac{v_2}{he} = \frac{1}{1 + B / \left(\frac{1}{S}\frac{dN}{dy}\right)}$$

- parameterization works well!
- found h is the same for all curves (ideal hydro v₂/ε)

 $h= 0.20 \pm 0.02$ $B = 0.70 \pm 0.05$ $B = 0.33 \pm 0.03$ $B = |0^{-7}$

Data from Matthew Luzum and Paul Romatschke,

B scales with η/s

An upper limit for n/s

- Describing the data with ideal hydro + cascade the centrality dependence of v_2/ϵ is due to cutting of the ideal hydro phase at T_C (the flow is not developed completely, just a lifetime effect!)
- not sensitivite to η/s in the hydro phase, estimate is only upper limit

Hirano QM2009

Knudsen Parameterization

 $v_2/\epsilon = h/(1+1.4Kn)$

STAR v_2 {4} data, eccentricity ε needs no correction for fluctuations CGC $\varepsilon \rightarrow$ softer EoS ~ Lattice Glauber $\varepsilon \rightarrow$ harder EoS ~ ideal gas

same conclusions drawn in:

CGC $\varepsilon \rightarrow \text{lower } \eta/\text{s} \sim 2/4\pi$ Glauber $\varepsilon \rightarrow \text{larger } \eta/\text{s} \sim 1/\pi$ data reaches ~60-80% of ideal hydro limit

H-J. Drescher, A. Dumitru, C. Gombeaud and J-Y. Ollitrault; Phys.Rev.C76:024905, 2007

Viscous Corrections

viscous corrections to ideal hydro:

 $\frac{h}{s} / (\overline{R}T)$ proportional to Kn or $\frac{1}{Re}$

- density $\rho(\tau)$ goes like $(dN/dy)/\tau S$
- strength v_2 defined at $T=R/c_s$ (at approximate constant density and mean free path versus centrality!)
- n/s constant → centrality dependence controlled by system size R

$$\frac{\mathbf{v}_2}{\boldsymbol{e}} = \frac{\mathbf{h}}{1 + 1.4 \, Kn}$$

R.S. Bhalerao, J-P. Blaizot, N. Borghini and J-Y. Ollitrault; Phys. Lett. B 627:49-54, 2005

 $\frac{1}{Kn} = \frac{R}{l} = RSr(t) = \frac{RS}{tS} \frac{dN}{dy}$ $t_{\langle v_2 \rangle} = R/c_s$ $\frac{1}{Kn} = c_s \frac{S}{S} \frac{dN}{dy}$

Centrality dependence of v_2/ϵ gives acces to ideal hydro limit v_2/ϵ (h) related to EoS and $\eta/s!$

is the B parameter only sensitive to η/s ?

Unfortunately (fortunately?), EoS does not completely factor out of the B parameter → constrain EoS with additional observables (e.g. pt spectra)

Uncertainties in the EoS

from Pasi Huovinen (arXiv:nucl-th/ 0505036) Nucl. Phys. A761: 296, 2005 we know it matters, particularly at RHIC