Viscosity and HBT

Dariusz Miśkowiec, GSI Darmstadt Hirschegg 2010 Strongly Interacting Matter under Extreme Conditions

- attempt of CERES to extract η /s from $R_{long}(k_t)$
- ø problems with this approach
- other (qualitative) ways

Viscosity in nuclear collisions – what to expect

- η/s reaches minimum near the critical point
- at the critical point it diverges
- In high viscosity at low energies

Viscosity in nuclear collisions - observables

finite viscosity reduces velocity gradients

less in-plane, more out-of-plane expansion

Interpretation of the second secon

less longitudinal, more transverse expansion

- Inarrower dN/dy distributions
- harder p_t spectra
- reduced R_{long}
- reduced R_{out}

Viscosity in nuclear collisions - observables

less longitudinal, more transverse expansion

- on narrower dN/dy distributions
- harder p_t spectra
- reduced R_{long}
- reduced R_{out}

Viscosity via v₂

η/s

3	PRL 99 (2007) 172301	0.03, 0.08
	PRC 78 (2008) 034915	0.10 ± 0.13
F	PRL 98 (2007) 092301	0.1
F	PRC 76 (2007) 024905	0.19, 0.11
3	arXiv:0901.0460	0.15 ± 0.6

result close to the lower limit of $\eta/s = 0.08$

Viscosity via v₂

Luzum and Romatschke, PRC 79, 039903 (2009)

result depends on the assumed initial conditions

Viscosity in nuclear collisions - observables

finite viscosity reduces velocity gradients

less in-plane, more out-of-plane expansion

Interpretation of the second secon

less longitudinal, more transverse expansion

- arrower dN/dy distributions
- harder p_t spectra

reduced R_{long}
 reduced R_{out}

out-side-long aka Bertsch-Pratt coordinates

G.F. Bertsch, Nucl. Phys. A498, 173c (1989) S. Pratt, Phys. Rev. D33, 1314 (1986).

- R_i (px,py,pz) size of the region emitting pions with mom. (px,py,pz)
 - R_{long} ...parallel to beam
 - ...perp. to beam and to pair momentum
 - ...parallel to pair transverse momentum

R_{side}

R_{out}

R_{long} basics

Makhlin-SinyukovHerrmann-Bertsch $R_{long} = \tau_f \sqrt{\frac{T}{m_t}}$ $R_{long} = \tau_f \sqrt{\frac{T}{m_t} \frac{K_2(m_t/T)}{K_1(m_t/T)}}$

 $\tau_{f} \sim \text{inverse of the longitudinal Hubble constant}$

How finite viscosity affects R_{long}

enhanced transverse expansion

reduced lifetime

reduced longitudinal size at freeze-out

How finite viscosity affects R_{long}

enhanced transverse expansion

Effect of viscosity on R_{long} quantitatively

viscous correction, D. Teaney, PRC 68, 034913 (2003)

$$\frac{\delta R_L^2}{(R_L^2)^{(0)}} = -\frac{\Gamma_s}{\tau} \left[\frac{6}{4} \frac{x K_3(x)}{K_2(x)} - x^2 \frac{1}{8} \left(\frac{K_3(x)}{K_2(x)} - 1 \right) \right], \qquad \Gamma_s \equiv \frac{\frac{4}{3} \eta}{s T}$$
$$x \equiv \sqrt{m^2 + K_T^2} / T$$

Λ

the simplest HBT analysis

D. Antonczyk, thesis intro

- loop over events
- make pi-pi- pairs
- fill a p2-p1 histogram

mix events

- make pi-pi- pairs
- fill a p2-p1 histogram

ø divide tru/mix

p2-p1 in the pair c.m.

two-pion correlation function

Pb+Au at 158 AGeV

D. Antonczyk

correct for Coulomb and finite momentum resolution

CERES Collaboration

D. Adamova, G. Agakichiev, D. Antonczyk, A. Andronic, H. Appelshäuser, V. Belaga, J. Bielcikova, P. Braun-Munzinger, O. Busch, A. Cherlin, S. Damjanovic, T. Dietel, L. Dietrich, A. Drees, S. Esumi, K. Filimonov, K. Fomenko, Z. Fraenkel, C. Garabatos, P. Glässel, G. Hering, J. Holeczek, M. Kalisky V. Kushpil, B. Lenkeit, W. Ludolphs, A. Maas, A. Marin, J. Milosevic, A. Milov, D. Miskowiec, R. Ortega, Yu. Panebrattsev, O. Petchenova, V. Petracek, A. Pfeiffer, M. Ploskon, S. Radomski, J. Rak, I. Ravinovich, P. Rehak, W. Schmitz, J. Schukraft, H. Sako, S. Shimansky, S. Sedykh, J. Stachel, M. Sumbera, H. Tilsner, I. Tserruya, G. Tsiledakis, T. Wienold, B. Windelband, J.P. Wessels, J.P. Wurm, W. Xie, S. Yurevich, V. Yurevich

CERES run history

1990	installation	
1991	completed	
1992	200 GeV S+Au	4M central 445 open pairs
1993	450 GeV p+Be 450 GeV p+Au	10M pairs 3M pairs
1995	160 GeV Pb+Au	10M central
1996	160 GeV Pb+Au	50M central 2700 open pairs
1997	upgrade	
1998	upgrade	
1999	40 GeV Pb+Au	10M central
2000	80 GeV Pb+Au 160 GeV Pb+Au	1M central 30M central

setup with TPC: 1999 and 2000

Viscosity via R_{long} – fit to CERES π – π – data

Viscosity via R_{long} – fit to CERES data

η/s is small for both charges and all centralities

Viscosity via R_{long} – fit to NA49, CERES, STAR data

 η /s is small for all energies

Viscosity low at all energies? Why not!

N. Auerbach and S. Shlomo "The n/s ratio in finite nuclei" arXiv:0908.4441v1 [nucl-th], 31-Aug-2009 Phys. Rev. Lett. 103, 172501 (2009)

- Solution
 Solution
- 🧕 fission

 $\rightarrow \eta \approx 0.9$ -1.9 x 10⁻²³ MeV fm⁻³ s

Sermi gas of nucleons in Woods-Saxon well \rightarrow s

 \rightarrow η /s ~ 0.3-1.5 for large nuclei η /s ~ 0.2-1.0 for small nuclei

However, serious problems in our analysis:

- neglected transverse expansion
- Teaney's formula accounts for the modified distribution at freeze-out but not for flow! (M. Lisa, U. Heinz)
- even the freeze-out part is not clear:

 \rightarrow Bożek/Wyskiel see no effect on HBT radii when using the same method with η /s=0.16

 \rightarrow Song/Heinz get opposite modification of p_t spectra

Iast but not least:

my mistake when interpreting STAR data (m_t vs k_t)

mistake when interpreting STAR data (m_t vs k_t)

D. Miskowiec, Hirschegg, 20.01.2010

Viscosity via R_{long} – fit to NA49, CERES, STAR data

This is not the way to get η/s quantitatively.

Can HBT radii provide some info on ŋ/s at least qualitatively?

D. Miskowiec, Hirschegg, 20.01.2010

Viscosity in nuclear collisions - observables

finite viscosity reduces velocity gradients

less in-plane, more out-of-plane expansion

Interpretation of the second secon

less longitudinal, more transverse expansion

- arrower dN/dy distributions
- harder p_t spectra

reduced R_{long}

reduced R_{out}

R_{long} corrected by (A/197)^{1/3} and for centrality

Viscosity via R_{out}/R_{side} and R_{long}/R_{side} ratios

P. Romatschke, Eur. Phys. J C 52 (2007) 203

 R_{out}/R_{side} and R_{long}/R_{side} ratios are sensitive to viscosity

R_{out}/R_{side} systematics

Viscosity via Rout/Rside and Rlong/Rside ratios

P. Romatschke, Eur. Phys. J C 52 (2007) 203

Quantitatively: no statement can be made given the calculation does not reproduce the HBT radii but only their ratios Qualitatively: no indication of RHIC viscosity being lower than at SPS

one cannot extract viscosity from a simple fit to R_{long}(kt)

however, the conclusion seems to hold: no indication of increasing viscosity when going from RHIC down to SPS

two-pion correlations in pp at sqrt(s) = 900 GeV from ALICE

ALICE femtoscopy analysis

ALICE femtoscopy group chaired by Adam Kisiel

two analysis packages:

- STAR → ALICE
 STAR → ALICE
- Solution States in the second states in the se

good agreement

the following correlation functions were obtained using UNICOR

two-pion correlation function measured by ALICE

multiplicity dependence of two-pion correlations

transverse momentum dependence of two-pion orrelations

Yes, flow in pp! Mike Lisa, CERN Theory Phenomenology Seminar, 16-Oct-2009

BACKUP

CERES (points) and hydro T=120 MeV (lines)

D. Miskowiec, Hirschegg, 20.01.2010

CERES acceptance and particle id

Pb+Au at 158 AGeV

R_{long} systematics

R_{side} systematics

R_{long}/R_{out}/R_{side}

Rout *Rside *Rlong

R_{side}*R_{side}*R_{long}

Viscosity via R_{long}

D. Teaney, Phys. Rev. C 68,034913 (2003)

"Viscous corrections to a Bjorken expansion"

Teaney's formulas

$$(R_L^2)^{(0)} = \tau_o^2 \frac{T}{m_T} \frac{K_2(x)}{K_1(x)} \qquad x \equiv \sqrt{m^2 + K_T^2} / T$$

$$\frac{\delta R_L^2}{(R_L^2)^{(0)}} = -\frac{\Gamma_s}{\tau} \left[\frac{6}{4} \frac{xK_3(x)}{K_2(x)} - x^2 \frac{1}{8} \left(\frac{K_3(x)}{K_2(x)} - 1 \right) \right]$$

$$(R_L^2)^{(0)} = \tau_o^2 \frac{T}{m_T} \qquad (R_L^2)^{(0)} + \delta R_L^2 = \tau_o^2 \left(\frac{T}{m_T} - \frac{19}{16} \frac{\Gamma_s}{\tau_o}\right) \qquad \Gamma_s = \frac{\frac{4}{3} \eta}{sT}$$

mistake when interpreting STAR data (m_t vs k_t)

Herrmann-Bertsch vs Makhlin-Sinyukov

Viscosity via R_{long} – fit to CERES data

