Fluctuations of $\langle p_T \rangle$ from initial size fluctuations ¹

Mikołaj Chojnacki

Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland

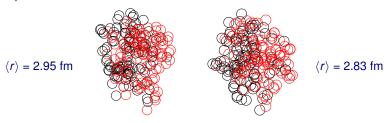
Hirschegg 2010: Strongly Interacting Matter under Extreme Conditions 17-23 January 2010

¹based on: Wojciech Broniowski, MCh, Łukasz Obara; Phys. Rev. C80 (2009) 051902

Motivation

Size fluctuations of the initial conditions

■ Events with the same number of wounded nucleons N_w may have different shape and size.



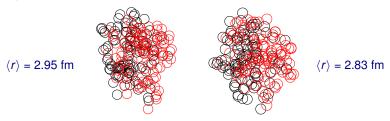
Two examples² of non-central ¹⁹⁷Au + ¹⁹⁷Au collision with $N_w = 198$.

²GLISSANDO WB, M. Rybczyński, P. Bożek, Comput. Phys. Commun. **180** (2009) 69 ≥

Motivation

Size fluctuations of the initial conditions

■ Events with the same number of wounded nucleons N_w may have different shape and size.



Two examples² of non-central ¹⁹⁷Au + ¹⁹⁷Au collision with $N_w = 198$.

2/18

smaller size \to larger gradients \to larger hydrodynamic flow \to larger p_T (and vice versa)

²GLISSANDO WB, M. Rybczyński, P. Bożek, Comput. Phys. Commun. 180 (2009) 69 ≥

Event-by-event fluctuations

average size fluctuations

average of the transverse size in a given event

$$\langle r \rangle = \sum_{i=1}^{N_w} \sqrt{x_i^2 + y_i^2}$$

e-by-e average of transverse size

$$\langle \langle r \rangle \rangle = \frac{1}{N_{events}} \sum_{k=1}^{N_{events}} \langle r \rangle_k$$

Event-by-event fluctuations

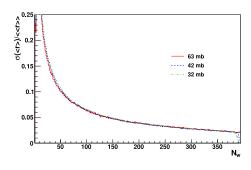
average size fluctuations

average of the transverse size in a given event

$$\langle r \rangle = \sum_{i=1}^{N_{\rm w}} \sqrt{x_i^2 + y_i^2}$$

e-by-e average of transverse size

$$\langle\langle r \rangle\rangle = \frac{1}{N_{\text{events}}} \sum_{k=1}^{N_{\text{events}}} \langle r \rangle_k$$



■ convenient measure — scaled standard deviation for set N_w

$$\sigma_{ extit{scaled}} = rac{\sigma\left(\langle r
angle
ight)}{\left\langle\langle r
angle
ight
angle}$$

In the wounded nucleon model the σ_{scaled} is insensitive to σ_{NN} .

Event-by-event fluctuations

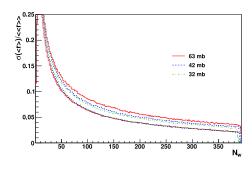
average size fluctuations

average of the transverse size in a given event

$$\langle r \rangle = \sum_{i=1}^{N_w} \sqrt{x_i^2 + y_i^2}$$

e-by-e average of transverse size

$$\langle\langle r\rangle\rangle = \frac{1}{N_{events}} \sum_{k=1}^{N_{events}} \langle r\rangle_k$$



convenient measure — scaled standard deviation for set N_w

$$\sigma_{ extit{scaled}} = rac{\sigma\left(\langle r
angle
ight)}{\left\langle\langle r
angle
ight
angle}$$

In the mixed model $(\frac{\alpha}{2}N_w + (1-\alpha)N_{bin})$ a moderate change with σ_{NN} is caused by the different admixture of the binary collisions profile which is much more sensitive to fluctuations.

e-by-e hydrodynamics

fluctuating initial conditions

■ Instead of 100 000 events, two are enough!

e-by-e hydrodynamics

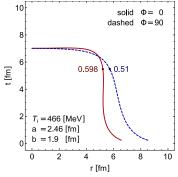
fluctuating initial conditions

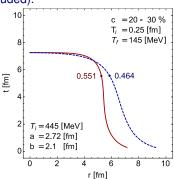
- Instead of 100 000 events, two are enough!
- Size of the initial condition for hydrodynamics (energy density profile) is scaled up and down according to the scaled variance.
- No e-by-e energy fluctuations (could be included).

e-by-e hydrodynamics

fluctuating initial conditions

- Instead of 100 000 events, two are enough!
- Size of the initial condition for hydrodynamics (energy density profile) is scaled up and down according to the scaled variance.
- No e-by-e energy fluctuations (could be included).





initial central temperature is changed from 455 MeV to 466 MeV (squeezed) or 445 MeV (stretched) profile → total energy is the same.

distributions of $\langle r \rangle$ and $\langle p_T \rangle$

■ The distribution of the $\langle r \rangle$ is approximately Gaussian

$$f(\langle r \rangle) \sim \exp\left(-\frac{(\langle r \rangle - \langle \langle r \rangle \rangle)^2}{2\sigma^2(\langle r \rangle)}\right)$$

Imagine we ran simulations with fixed $\langle r \rangle$ (no size fluctuations). Then particles would have some average momentum \bar{p}_T

- Since hydrodynamic evolution is deterministic, p̄_T is a (very complicated) function of ⟨r⟩.
- Now let us include fluctuations of $\langle r \rangle$. We can use Taylor expansion

$$ar{p}_T - \langle \langle p_T \rangle \rangle = \left. rac{dar{p}_T}{d\langle r
angle} \right|_{\langle r \rangle = \langle \langle r
angle
angle} (\langle r
angle - \langle \langle r
angle
angle) + \dots$$

■ The statistical distribution of $\langle \bar{p}_T \rangle$ is

$$f(ar{p}_T) \sim \exp\left(-rac{(ar{p}_T - \langle\langle p_T
angle
angle)^2}{2\sigma^2(\langle r
angle)\left(rac{dar{p}_T}{d\langle r
angle}
ight)^2}
ight)$$

scaled variance of $\langle p_T \rangle$

■ The full statistical distribution $f(\langle p_T \rangle)$ in a given centrality class is a folding of the statistical distribution of $\langle p_T \rangle$ at a fixed initial size, centered around a certain \bar{p}_T , with the distribution of \bar{p}_T centered around $\langle \langle p_T \rangle \rangle$.

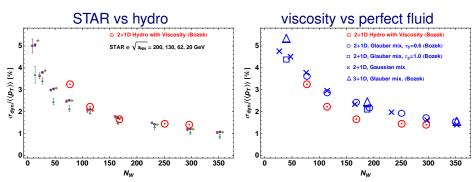
$$\begin{split} f(\langle p_T \rangle) &\sim & \int d^2 \bar{p}_T \exp\left(-\frac{(\langle p_T \rangle - \bar{p}_T)^2}{2\sigma_{stat}^2}\right) \exp\left(-\frac{(\bar{p}_T - \langle \langle p_T \rangle)^2}{2\sigma_{dyn}^2}\right) \\ &\sim & \exp\left(-\frac{(\langle p_T \rangle - \langle \langle p_T \rangle)^2}{2\left(\sigma_{stat}^2 + \sigma_{dyn}^2\right)}\right) \end{split}$$

where $\sigma_{\textit{dyn}}\left(\langle p_T \rangle\right) = \sigma(\langle r \rangle) \left. \frac{d\bar{p}_T}{d\langle r \rangle} \right|_{\langle r \rangle = \langle \langle r \rangle \rangle}$ is extracted by the experimentalists.

Scaled dynamical variance

$$\frac{\sigma_{\textit{dyn}}}{\langle\langle \rho_T\rangle\rangle} = \frac{\sigma(\langle r\rangle)}{\langle\langle r\rangle\rangle} \frac{\langle\langle r\rangle\rangle}{\langle\langle \rho_T\rangle\rangle} \left. \frac{\textit{d}\bar{\rho}_T}{\textit{d}\langle r\rangle} \right|_{\langle r\rangle = \langle\langle r\rangle\rangle}$$

comparison with STAR data



- scaled variation for 2+1 boost invariant hydro with bulk&shear viscosity, Glauber mixed IC (red doted circles) by Piotr Bozek
- perfect hydro 2+1 B-I and 3+1, Glauber mixed IC (blue symbols)
- overal amazing agreement when viscosity is introduced!
- perfect hydro mixed model overshoots data by 20%
- lacksquare approximate scaling $\sigma_{dyn}/\langle\langle p_T
 angle
 angle\sim 1/\sqrt{N_W}$ holds

connection to the EoS3

s scaled variance of $\langle p_T \rangle$ is connected to thermodynamics

$$rac{\sigma_{ extit{dyn}}}{\langle\langle oldsymbol{
ho}_{ au}
angle
angle} = rac{oldsymbol{P}}{arepsilon}rac{\sigma(\langle oldsymbol{s}
angle}{\langle\langle oldsymbol{s}
angle
angle} = 2rac{oldsymbol{P}}{arepsilon}rac{\sigma(\langle oldsymbol{r}
angle}{\langle\langle oldsymbol{r}
angle}
angle$$

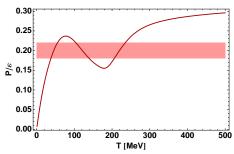
where s is the entropy density, ε energy density, and P the pressure

connection to the EoS3

s scaled variance of $\langle p_T \rangle$ is connected to thermodynamics

$$rac{\sigma_{ extit{dyn}}}{\langle\langle
ho_{ au}
angle
angle}=rac{ extit{P}}{arepsilon}rac{\sigma(\langleoldsymbol{s}
angle}{\langle\langleoldsymbol{s}
angle
angle}=2rac{ extit{P}}{arepsilon}rac{\sigma(\langleoldsymbol{r}
angle
angle}{\langle\langleoldsymbol{r}
angle
angle}$$

where s is the entropy density, ε energy density, and P the pressure



We can study this way the average properties of the equation-of-state i.e. its stiffness

³Jean-Yves Ollitrault, Phys. Lett. **B 273** (1991)

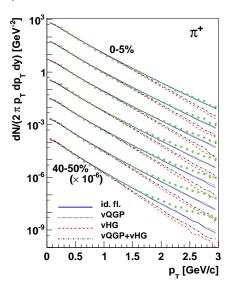
Conclusions

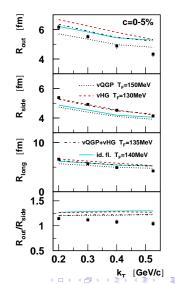
- **a** few percent fluctuations at the initial size of the collision explains the bulk of the experimental $\langle p_T \rangle$ fluctuations
- viscosity lowers the fluctuations by about 20%, which helps to go exactly through the data (perfect hydro gives a bit too much)
- proper scaling with the number of wounded nucleons $\sigma_{dyn}/\langle\langle p_T \rangle\rangle \sim 1/\sqrt{N_W}$ proper dependence on centrality
- a weak dependence on energy
- our $\langle p_T \rangle$ fluctuations should be considered as the main geometric background for studying further effects like: (mini) jets, clusters, temperature fluctuations, etc.
- lacktriangle average information on P/arepsilon according to Ollitrault's formula

backup slides

Viscous 2+1 B-I hydrodynamics

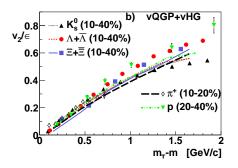
by Piotr Bożek





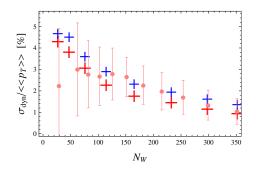
Viscous 2+1 B-I hydrodynamics

by Piotr Bożek



- shear viscosity in QGP & HG $\eta/s = 0.1$
- bulk viscosity only in HG with $\zeta/s = 0.04 0.03$

comparison with PHENIX data



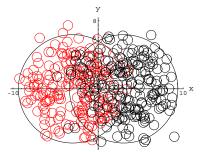
■ 2+1D B-I perfect fluid hydrodynamics with wounded nucleon IC (blue crosses) and with the mixed model IC (red crosses.)

GLISSANDO

GLauber Initial-State Simulation AND mOre

The algorithm:

- nucleon positions generated according to the Woods-Saxon distribution,
- a short-range repulsion is simulated by keeping the distance ($d \ge 0.4$ fm) between the nucleons,



Overlapping nucleons in the transverse plane

GLISSANDO

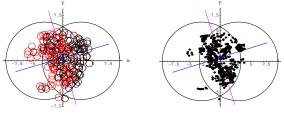
Nuclear density profiles

Nucleons interact if the distance $d = \sqrt{\sigma_{\rm NN}/\pi}$.

Three models for constructing the nuclear density profile are consider:

- Wounded Nucleons [Bialas, Bleszynski, Czyz, 1976],
- Binary Collisions,
- lacktriangle mixture of the two above, where α is the fraction of the binary collisions taken.

The inelastic cross-section $\sigma_{\rm NN}$ varies from 32 mb (SPS), 42 mb (RHIC) to 63 mb at the LHC.



Wounded Nucleons

Binary Collisions

Hydrodynamics with statistical hadronization

Initial condition

initial transverse energy density profile — Gaussian fit to GLISSANDO

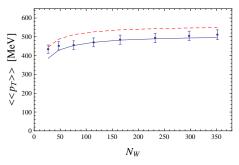
$$\varepsilon(x,y) = \varepsilon_0(T_i) \exp\left(-\frac{x^2}{2a^2} - \frac{y^2}{2b^2}\right)$$

- parameters a, b and T_i depend on centrality,
- eccentricity fluctuations are included,
- a and b are fitted to reproduce the GLISSANDO's $\langle x \rangle$ and $\langle y \rangle$,
- T_i is fitted to reproduce the correct particle multiplicity

C	[%]	0-5	5-10	10-20	20-30	30-40	40-50	50-60	60-70
а	[fm]	2.70	2.54	2.38	2.00	1.77	1.58	1.40	1.22
b	[fm]	2.93	2.85	2.74	2.59	2.45	2.31	2.16	2.02
	[MeV]								

average transverse momentum

lacktriangle event-averaged transversed momentum $\langle\langle p_T \rangle\rangle$



- solid line: averaged over whole p_T range, dashed line: STAR cuts 0.2 GeV < p_T < 2 GeV
- experimental points from STAR Collaboration Phys. Rev. C 79, 034909 (2009)
 extrapolated to full p_T range