Heavy quark(onium) at LHC: the statistical hadronization case

A.Andronic – GSI Darmstadt

- The statistical hadronization model: assumptions and inputs
- Charmonium: the LHC case in light of the SPS and RHIC data
- Complete charm chemistry and charm at FAIR
- Quarkonium in elementary (e^+e^- , pp, pA) vs. AA collisions
- Summary and outlook

AA, P. Braun-Munzinger, K. Redlich, J. Stachel:

NPA 789 (2007) 334, nucl-th/0511071; PLB 659 (2008) 149, arXiv:0708.1488 PLB 675 (2009) 334, arXiv:0804.4132 ; PLB 678 (2009) 350, arXiv:0904.1368 P.Braun-Munzinger, J.Stachel, PLB 490 (2000) 196

- all charm quarks are produced in primary hard collisions ($t_{c\bar{c}} \sim 1/2m_c \simeq 0.1 \text{ fm/c}$)
- survive and thermalize in QGP (thermal, but not chemical equilibrium)
- charmed hadrons are formed at chemical freeze-out together with all hadrons statistical laws, quantum nr. conservation
 stat. hadronization ≠ coalescence
 - is freeze-out at(/the?) phase boundary? LQCD: T_c=151-192 MeV (hep-lat/0609068-0608013)
- no J/ψ surv. in QGP (full screening)
 can J/ψ survive above T_c? (LQCD)
 Asakawa, Hatsuda, PRL 92 (2004) 012001
 Mocsy, Petreczky, PRL 99 (2007) 211602

Karsch & Petronzio, PLB 193 (1987) 105, Blaizot & Ollitrault, PRD 39 (1989) 232

- QGP formation time, t_{QGP}
 - SPS (FAIR): $t_{QGP} \simeq 1~{
 m fm/c} \sim t_{J/\psi}$
 - $-\,{\rm RHIC},\,{\rm LHC}:\,t_{QGP}\lesssim$ 0.1 fm/c $\sim t_{c\bar{c}}$

survival of initially-produced J/ψ at SPS/FAIR energies? ($T_d \sim T_c$)

- collision time, $t_{coll} = 2R/\gamma_{cm}$
 - SPS (FAIR): $t_{coll} \gtrsim t_{J/\psi}$ - RHIC: $t_{coll} < t_{J/\psi}$, LHC: $t_{coll} << t_{J/\psi}$

cold nuclear suppression (breakup) important at SPS/FAIR energies? shadowing is yet another (cold nuclear) effect - important at LHC (RHIC?) NB: the only way to distinguish: measure $\sigma_{c\bar{c}}$ in pA and AA

Statistical hadronization: method and inputs

• Thermal model calculation (grand canonical) $T, \mu_B : \rightarrow n_X^{th}$

•
$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$$

• $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c \text{ (charm fugacity)}$$

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0$ $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$ Inputs: T, μ_B , $V_{\Delta y=1} (= (dN_{ch}^{exp}/dy)/n_{ch}^{th})$, $N_{c\bar{c}}^{dir}$ (pQCD or exp.) Minimal volume for QGP: V_{QGP}^{min} =400 fm³

Thermal parameters: from fits to data

√s_{NN} (GeV)

R.Vogt, IJMP E12 (2003) 211 [hep-ph/0111271]

NLO (CTEQ5M) extrapolated below 15 GeV (large uncertainty)

pQCD is not parameter-free! (PDF, m_c , μ_R , μ_F) ...×2 err. $\uparrow\downarrow$

 $dN_{c\bar{c}}/dy$ for central collisions (N_{part} =350):

SPS: \simeq 0.05, RHIC: \simeq 1.6, LHC: \simeq 16

$$n_{i,c}^{C} = n_{i,c}^{GC} I_{1}(N_{c}) / I_{0}(N_{c}), \ N_{c} = \sum_{i} n_{i,c}^{GC} \cdot V; \qquad N_{J/\psi} = g_{c}^{2} V n_{J/\psi}^{th}$$

data explained with charm enhancement $(2 \times pQCD)$

see also: NPA 690 (2001) 119c, PLB 571 (2003)36 Grandchamp, Rapp, PLB 523 (2001) 60, NPA 709 (2002) 415 Gorenstein et al., PLB 509 (2001) 277, PLB 524 (2002) 265

NA50 data: 1998 ("unofficial"): J. Gosset et al., EPJ C 13 (2000) 63 2004 $(J/\psi/DY$, normalized): EPJ C 39 (2005) 335

NA50 Data: PbPb: EPJ C49 (2007) 559 pp: PLB 466 (1999) 408 good agreement (good agreement also for J/ψ)

 $N_{\psi'}/N_{\psi} \neq 0 !$ contradicts screening model (LQCD: ψ' melted at T_c)

strong indication of ψ^\prime prod. via statistical hadronization

Model: red: J/ψ pp ref. fit 1-gaussian (dotted: error on σ); pQCD $\sigma_{c\bar{c}}$

evidence for statistical hadronization of charmonium (enhanced at y=0)

PHENIX, PRC 77 (2008) 024912, arXiv:0711.3917

model describes data with PHENIX $\sigma_{c\bar{c}}$ (lower error plotted)

- ...the most "solid" observable ...with similar features as R_{AA}
- similar values at RHIC and SPS
 ...with differences in fine details
 ...determined by canonical suppression of open charm
- enhancement-like at LHC can. suppr. lifted, quadratic term dominant

J/ψ at LHC

solid expectations for LHC

...providing we know well (from measurements) the charm production cross section

Overall charm chemistry

yields per initial charm pair

- Λ_c prod. favored at large μ_b ...it's a must at FAIR (CBM)
- isospin is important
- ψ'/ψ relative yield: 3% in QGP, 13% in pp decreases at low energies $\sqrt{s_{NN}}=7-10$ GeV: T=151-161 MeV
- charmed hadrons can signal the onset of QGP

Overall charm chemistry

yields per initial charm pair

- Λ_c prod. favored at large μ_b ...it's a must at FAIR (CBM)
- isospin is important
- ψ'/ψ relative yield:
 3% in QGP, 13% in pp
 decreases at low energies

$$\sqrt{s_{NN}}$$
=7-10 GeV:
T=151-161 MeV

 charmed hadrons can signal the onset of QGP

yield with in-medium mases (for open charm hadrons) relative to vacuum masses

- open charm: very small increase
- ...with large effect on charmonia

$$\begin{aligned} \sigma_{c\bar{c}} &= \frac{1}{2} (\sigma_D + \sigma_{\Lambda_c} + \sigma_{\Xi_c} + \ldots) + \\ (\sigma_{\eta_c} + \sigma_{J/\psi} + \sigma_{\chi_c} + \ldots) \end{aligned}$$

is not affected by medium

Consequence: the only freedom is in redistribution of the charm quarks

Bottomonium in pp collisions

J/ψ : the big difference LHC makes

- very different centrality dep.
 - "suppression" at RHIC

determined by canonical suppression (of open charm hadrons)

- "enhancement" at LHC

ALICE needs 10^4 central events to measure $100 \ J/\psi \rightarrow e^+e^-$

 Υ in line for scrutinity...

model predicts a "suppression" pattern (RHIC-like)

statistical hadronization of heavy quarks (produced exclusively in hard collisions, survive and thermalize in QGP) ...explains J/ψ data at SPS and RHIC

... further tests (incl. phase space distr.) to come soon, in particular at LHC

Open questions

- main uncertainty from charm cross section: more theoretical (NNLO pQCD some time ahead) and experimental progress needed
- survival of J/ ψ in QGP at SPS and RHIC? (LQCD? AdS/CFT?)

LHC will provide a clear answer ...and further FAIR will trace onset

Have we lost J/ψ as a QGP probe? No, lost only as a "thermometer"

...but we gained it as an ultimate probe of the phase boundary