Chiral and Deconfinement Aspects of (2+1)-flavor QCD

Bernd-Jochen Schaefer

Karl-Franzens-Universität Graz, Austria

17th - 23rd January, 2010

XXXVIII Hirschegg Workshop

Strongly Interacting Matter under Extreme Conditions

Hirschegg, Austria

Chiral and Deconfinement Aspects of (2+1)-flavor QCD

QCD Phase Transitions

QCD: two phase transitions:

restoration of chiral symmetry

 $SU_{L+R}(N_f) \rightarrow SU_L(N_f) \times SU_R(N_f)$

order parameter:

 $\langle \bar{q}q \rangle \ \left\{ \begin{array}{l} > 0 \Leftrightarrow {\rm symmetry \ broken}, \, T < T_c \\ = 0 \Leftrightarrow {\rm symmetric \ phase}, \, T > T_c \end{array} \right.$

associate limit: $m_q \rightarrow 0$

early universe quark-gluon plasma LHC RHIC SPS Temperature $\langle \overline{w}w \rangle \sim 0$ crossover FAIR AGS quark matter SIS $<\overline{w}w>>0$ crossover hadronic fluid superfluid/superconducting phases ? $n_{\rm B} > 0$ $n_{\rm B} = 0$ 2SC CFL. vacuum nuclear matter neutron star core. μ

chiral transition: spontaneous restoration of global $SU_L(N_f) \times SU_R(N_f)$ at high T

QCD Phase Transitions

QCD: two phase transitions:

- restoration of chiral symmetry
- 2 de/confinement (center symmetry)

order parameter:

$$\Phi \ \left\{ \begin{array}{ll} = 0 \Leftrightarrow \text{ confined phase,} \quad T < T_c \\ > 0 \Leftrightarrow \text{ deconfined phase,} \quad T > T_c \end{array} \right.$$

$$\Phi = \frac{1}{N_c} \langle \mathrm{tr}_c \mathcal{P}_e^{i} \int_0^\beta d\tau A_0(\tau, \vec{x}) \rangle$$

associate limit: $m_q \rightarrow \infty$

→ related to free energy of a static quark state: $\Phi = e^{-\beta F_q}$

QCD Phase Transitions

QCD: two phase transitions:

- restoration of chiral symmetry
- 2 de/confinement (center symmetry)

order parameter:

$$\Phi \left\{ \begin{array}{l} = 0 \Leftrightarrow \text{ confined phase,} \quad T < T_c \\ > 0 \Leftrightarrow \text{ deconfined phase,} \quad T > T_c \end{array} \right.$$

alternative:

➔ dressed Polyakov loop (or dual condensate)

it relates chiral and deconfinement transition to spectral properties of Dirac operator

The conjectured QCD Phase Diagram

At densities/temperatures of interest only model calculations available

effective models:

- 1 Quark-meson model (renormalizable)
- Polyakov–quark-meson model

Open issues:

related to chiral & deconfinement transition

- ▷ existence of CEP?
- ▷ its location?
- Additional CEPs? How many?
- \triangleright coincidence of both transitions at $\mu = 0$?
- \triangleright quarkyonic phase at $\mu > 0$?
- chiral CEP/ deconfinement CEP?
- so far only MFA results effect of fluctuations (e.g. size of crit. reg.)?

▷ ...

or other models e.g. NJL or PNJL models

Charts of QCD Critical End Points

model studies vs. lattice simulations

Black points: models

Lines & green points: lattice Red points: Freezeout points for HIC

Phase diagram in (T, μ_B, m_q) -space

Chiral limit: $(m_q = 0)$ $SU(2) \times SU(2) \sim O(4)$ -symmetry \longrightarrow 4 modes critical $\sigma, \vec{\pi}$

Phase diagram in (T, μ_B, m_q) -space

Chiral limit: $(m_q = 0)$ $SU(2) \times SU(2) \sim O(4)$ -symmetry \longrightarrow 4 modes critical $\sigma, \vec{\pi}$

 $m_q \neq 0$: no symmetry remains \longrightarrow only one critical mode σ (lsing) ($\vec{\pi}$ massive)

Outline

• Three-Flavor Quark-Meson Model

o ...with Polyakov loop dynamics

• Finite density extrapolations

$N_f=3$ Quark-Meson (QM) model

 $\blacksquare \text{ Model Lagrangian: } \mathcal{L}_{qm} = \mathcal{L}_{quark} + \mathcal{L}_{meson}$

Quark part with Yukawa coupling g:

$$\mathcal{L}_{\text{quark}} = \bar{q}(i\partial \!\!\!/ - g \frac{\lambda_a}{2}(\sigma_a + i\gamma_5 \pi_a))q$$

Meson part: scalar σ_a and pseudoscalar π_a nonet

fields:
$$\phi = \sum_{a=0}^{8} \frac{\lambda_a}{2} (\sigma_a + i\pi_a)$$

 $\mathcal{L}_{\text{meson}} = \text{tr}[\partial_\mu \phi^\dagger \partial^\mu \phi] - m^2 \text{tr}[\phi^\dagger \phi] - \lambda_1 (\text{tr}[\phi^\dagger \phi])^2 - \lambda_2 \text{tr}[(\phi^\dagger \phi)^2] + c[\text{det}(\phi) + \text{det}(\phi^\dagger)]$
 $+ \text{tr}[H(\phi + \phi^\dagger)]$

- explicit symmetry breaking matrix: $H = \sum_{a} \frac{\lambda_a}{2} h_a$
- $U(1)_A$ symmetry breaking implemented by 't Hooft interaction

Phase diagram for $N_f = 2 + 1$ $(\mu \equiv \mu_q = \mu_s)$

Model parameter fitted to (pseudo)scalar meson spectrum:

■ PDG: $f_0(600)$ mass=(400...1200) MeV \rightarrow broad resonance

→ existence of CEP depends on m_{σ} !

Example: $m_{\sigma} = 600 \text{ MeV}$ (lower lines), 800 and 900 MeV (here mean-field approximation)

In-medium meson masses

Finite temperature axis: $\mu = 0$

- At low temperatures: mesons dominate
- At high temperatures: quarks dominate

In-medium meson masses

Finite temperature axis: $\mu = 0$

- At low temperatures: mesons dominate
- At high temperatures: quarks dominate

In-medium meson masses

- At low temperatures: mesons dominate
- At high temperatures: quarks dominate

Mass sensitivity

Chiral limit: RG arguments \rightarrow for $N_f \ge 3$ first-order

[Pisarski, Wilczek '84]

Columbia plot:

[Brown et al. '90]

Mass sensitivity

Chiral limit: RG arguments \rightarrow for $N_f \ge 3$ first-order

■ variation of m_{π} and m_{K} : $m_{\pi}/m_{\pi}^{*} = 0.49$ (lower line), 0.6, 0.8..., 1.36 (upper line) $m_{\pi}^{*} = 138 \text{ MeV}$, $m_{K}^{*} = 496 \text{ MeV}$, fixed ratio $m_{\pi}/m_{K} = m_{\pi}^{*}/m_{K}^{*}$

with ${
m U}(1)_{
m A}$, ${
m m}_{\sigma}=$ 800 MeV

[Pisarski, Wilczek '84]

Mass sensitivity (lattice, $N_f=3, \mu_B \neq 0$)

[[]de Forcrand, Philipsen: hep-lat/0611027]

Chiral critical surface ($m_\sigma = 800 \text{ MeV}$)

→ standard scenario for $m_{\sigma} = 800 \text{ MeV}$ (as expected)

with $U(1)_A$

[BJS, M. Wagner, '09]

B.-J. Schaefer (KFU Graz)

Chiral critical surface for different m_σ

 \triangleright CEP vanishes for $m_{\sigma} > 800 \text{ MeV} \rightarrow \text{non-standard scenario possible?}$

No \rightarrow three cuts of critical surface along fixed m_{π}/m_{K} ratio through physical point

[BJS, M. Wagner, '09]

Outline

 \circ Three-Flavor Quark-Meson Model

...with Polyakov loop dynamics

• Finite density extrapolations

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi, \bar{\phi})}{T^4} = -\frac{b_2(T, T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with

$$b_2(T, T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$$

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi,\phi)}{T^4} = -\frac{b_2(T,T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with

$$b_2(T, T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$$

Iogarithmic potential:

Rössner et al. 2007

$$\frac{\mathcal{U}_{\log}}{T^4} = -\frac{1}{2}a(T)\bar{\phi}\phi + b(T)\ln\left[1 - 6\bar{\phi}\phi + 4\left(\phi^3 + \bar{\phi}^3\right) - 3\left(\bar{\phi}\phi\right)^2\right]$$

with

$$a(T) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2$$
 and $b(T) = b_3(T_0/T)^3$

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi, \bar{\phi})}{T^4} = -\frac{b_2(T, T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with

$$b_2(T, T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$$

Fukushima

Fukushima 2008

$$\mathcal{U}_{\mathsf{Fuku}} = -bT\left\{54e^{-a/T}\phi\bar{\phi} + \ln\left[1 - 6\bar{\phi}\phi + 4\left(\phi^3 + \bar{\phi}^3\right) - 3\left(\bar{\phi}\phi\right)^2\right]\right\}$$

with

a controls deconfinement b strength of mixing chiral & deconfinement

■ Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$ with $\mathcal{L}_{pol} = -\bar{q}\gamma_0 A_0 q - \mathcal{U}(\phi, \bar{\phi})$

polynomial Polyakov loop potential:

Polyakov 1978, Meisinger 1996, Pisarski 2000

$$\frac{\mathcal{U}(\phi, \phi)}{T^4} = -\frac{b_2(T, T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$

with

$$b_2(T, T_0) = a_0 + a_1(T_0/T) + a_2(T_0/T)^2 + a_3(T_0/T)^3$$

in presence of dynamical quarks: $T_0 = T_0(N_f, \mu)$

BJS, Pawlowski, Wambach, 2007

N_f	0	1	2	2 + 1	3
T_0 [MeV]	270	240	208	187	178

 $\mu \neq 0: \quad \bar{\phi} > \phi$

since $\bar\phi$ is related to free energy gain of antiquarks in medium with more quarks \to antiquarks are more easily screened.

Finite temperature and finite μ (PQM N_f = 2)

without $T_0(\mu)$ -modifications in Polyakov loop potential:

Phase diagrams $N_{f} = 2\,$

[BJS, Pawlowski, Wambach '07]

in mean field approximation chiral transition and 'deconfinement' coincide

for PQM model $N_f = 2$

Phase diagrams $N_{f} = 2\,$

[BJS, Pawlowski, Wambach '07]

in mean field approximation chiral transition and 'deconfinement' coincide

- for PQM model $N_f = 2$
- for QM model $N_f = 2$ (lower lines)

Phase diagrams $N_{f} = 2\,$

[BJS, Pawlowski, Wambach '07]

in mean field approximation chiral transition and 'deconfinement' coincide

for PQM model $N_f = 2$

for PQM model $N_f = 2$

with

 $T_0(\mu)$ -modification in Polyakov loop potential (lower lines)

Phase diagram $N_{\rm f}=2+1$

[BJS, M. Wagner; in preparation '10]

influence of Polyakov loop

Logarithmic Polyakov loop potential

Mean-field approximation

shrinking of possible quarkyonic phase

Critical region

contour plot of size of the critical region around CEP

defined via fixed ratio of susceptibilities: $\textit{R} = \chi_q/\chi_q^{\text{free}}$

[BJS, M. Wagner; in preparation '10]

Critical region

similar conclusion if fluctuations are included

fluctuations via Renormalization Group

[BJS, J. Wambach '06]

Isentropes s/n = const and Focussing

[E. Nakano, BJS, B.Stokic, B.Friman, K.Redlich '10]

Isentropes s/n = const and Focussing

[E. Nakano, BJS, B.Stokic, B.Friman, K.Redlich '10]

Isentropes s/n = const and Focussing

[E. Nakano, BJS, B.Stokic, B.Friman, K.Redlich '10]

here: $N_f = 2$ QM model: kink in MFA are washed out in FRG

 \rightarrow no focussing if fluctuations taken into account

a) influence of Dirac term b) smallnest of crit region

kink structure at boundary in mean field approximation

 \Rightarrow remnant of first-order transition in chiral limit

if Dirac term neglected

QCD Thermodynamics $N_{f}=2+1\,$

[BJS, M. Wagner, J. Wambach; arXiv:0910.5628]

SB limit:
$$\frac{p_{\text{SB}}}{T^4} = 2(N_c^2 - 1)\frac{\pi^2}{90} + N_f N_c \frac{7\pi^2}{180}$$

(P)QM models (three different Polyakov loop potentials) versus QCD lattice simulations

QCD Thermodynamics $N_{f}=2+1\,$

[BJS, M. Wagner, J. Wambach; arXiv:0910.5628]

SB limit:
$$\frac{p_{\text{SB}}}{T^4} = 2(N_c^2 - 1)\frac{\pi^2}{90} + N_f N_c \frac{7\pi^2}{180}$$

(P)QM models (three different Polyakov loop potentials) versus QCD lattice simulations

solid lines: $m_{\pi} \sim 220, m_{K} \sim 503$ MeV (HotQCD) [Bazavov et al. '09]

Outline

 \circ Three-Flavor Quark-Meson Model

...with Polyakov loop dynamics

• Finite density extrapolations

Finite density extrapolations $N_{\rm f}=2+1$

Taylor expansion:

$$\frac{p(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \quad \text{with} \quad c_n(T) = \left.\frac{1}{n!} \frac{\partial^n \left(p(T,\mu)/T^4\right)}{\partial \left(\mu/T\right)^n}\right|_{\mu=0}$$

high temperature limits:

$$c_0(T \to \infty) = \frac{7N_c N_f \pi^2}{180} ,$$

$$c_2(T \to \infty) = \frac{N_c N_f}{6} ,$$

$$c_4(T \to \infty) = \frac{N_c N_f}{12\pi^2} ,$$

$$c_n(T \to \infty) = 0 \text{ for } n > 4.$$

Finite density extrapolations $N_{\rm f}=2+1$

Taylor expansion:

$$\frac{p(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \quad \text{with} \quad c_n(T) = \left.\frac{1}{n!} \frac{\partial^n \left(p(T,\mu)/T^4\right)}{\partial \left(\mu/T\right)^n}\right|_{\mu=0}$$

convergence radii:

limited by first-order line?

$$\rho_{2n} = \left| \frac{c_2}{c_{2n}} \right|^{1/(2n-2)}$$

[C. Schmidt '09]

Finite density extrapolations $N_{\rm f}=2+1$

Taylor expansion:

$$\frac{p(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \quad \text{with} \quad c_n(T) = \left.\frac{1}{n!} \frac{\partial^n \left(p(T,\mu)/T^4\right)}{\partial \left(\mu/T\right)^n}\right|_{\mu=0}$$

first three coefficients:

Finite density extrapolations $N_{f}=2+1\,$

Taylor expansion:

[Miao et al. '08]

Taylor coefficients c_n numerically known to high order, e.g. n = 22

Finite density extrapolations $N_{f}=2+1\,$

[F. Karsch, BJS, M. Wagner, J. Wambach; in preparation '10]

Can we locate the QCD critical endpoint with the Taylor expansion ?

Susceptibility $N_f = 2 + 1$ PQM model

Susceptibility $N_{f} = 2 + 1 \ \mbox{PQM} \ \mbox{model}$

Susceptibility $N_{f} = 2 + 1 \ \mbox{PQM}$ model

Findings:

- simply Taylor expansion: slow convergence high orders needed disadvantage for lattice simulations
- Taylor applicable within convergence radius also for µ/T > 1
- but 1st order transition not resolvable expansion around $\mu = 0$

Summary

■ $N_f = 2$ and $N_f = 2 + 1$ chiral (Polyakov)-quark-meson model study

Mean-field approximation and FRG

with and without axial anomaly

 $\blacksquare\,$ novel AD technique: high order Taylor coefficients, here: n=26

Findings:

- $\triangleright \quad \text{Parameter in Polyakov loop potential:} \\ T_0 \Rightarrow T_0(N_f, \mu)$
- ▷ Chiral & deconfinement transition possibly **coincide** for $N_f = 2$ with $T_0(\mu)$ -corrections but possibly not for $N_f = 2 + 1$
- > Mean-field approximation encouraging

but effects of Dirac term point to interesting physics if fluctuations are considered

→ FRG with PQM truncation

- \triangleright Taylorcoefficient $c_n(T) \rightarrow$ high order
- convergence properties of Taylor expansion

Outlook:

■ include glue dynamics with FRG → full QCD

