P- and CP-odd effects in heavy ion collisions

Harmen Warringa, Goethe Universität, Frankfurt

Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran.

Kharzeev, McLerran & HJW, Nucl. Phys. A **803**, 227 (2008) Fukushima, Kharzeev & HJW, Phys. Rev. D **78**, 074033 (2008) Kharzeev & HJW, Phys. Rev. D **80**, 034028 (2009) Fukushima, Kharzeev & HJW, arXiv:0912.961 Fukushima, Kharzeev & HJW, to appear.

Observation I:

Topological charge fluctuations present in QCD and hence in heavy ion collisions

Topological charge of gauge field: Q

$$Q = \frac{g^2}{32\pi^2} \int d^4 x F^a_{\mu\nu} \tilde{F}^{\mu\nu}_a = \Delta N_{\rm CS}$$

Nonzero Q contributes to path-integral, and hence to physical quantities.

Belavin et. al. ('75), Jackiw & Rebbi ('76), Callan et al. ('76), 't Hooft ('76), Klinkhamer & Manton ('84),

Observation I:

Topological charge fluctuations present in QCD and hence in heavy ion collisions

Topological charge of gauge field: $Q = \frac{g^2}{32 \pi^2} \int d^4 x F^a_{\mu\nu} \tilde{F}^{\mu\nu}_a = \Delta N_{\rm CS}$

Nonzero Q contributes to path-integral, and hence to physical quantities.

 $\langle Q^2 \rangle \neq 0 \qquad \text{Mass of eta-prime meson. ('t Hooft, Witten, Veneziano)} \\ \frac{2N_f}{f_\pi^2 V_4} \langle Q^2 \rangle = m_{\eta'}^2 + m_\eta^2 - 2m_K^2 \\ \langle Q \rangle = 0 \qquad \text{Neutron electric dipole moment (Baker et.al. ('o6))} \\ |\theta| < 10^{-10} \qquad \text{No P- and CP-violation in QCD!} \\ \text{But Q can induce P- and CP-odd effects.} \end{cases}$

Observation II:

Ultra high-energy heavy ion collisions = Ultra strong (EM) magnetic fields

Gold – Gold collision: two currents which carry 79 charges each

Observation II:

Ultra high-energy heavy ion collisions = Ultra strong (EM) magnetic fields

Pancake approximation Kharzeev, McLerran & HJW ('08)

URQMD calculation Skokov, Illarionov, Toneev ('09)

$$eB(\tau = 0.2 \text{ fm/c}) \approx 10^3 \sim 10^4 \text{ MeV}^2 \approx 10^{17} \text{ G}$$

See also Minakata and Müller ('96)

Outline To explain you that <u>Topological charge</u> + <u>Magnetic Field</u> =

<u>Charge separation</u>

This can potentially be observed in experiment by charge correlation study [Voloshin ('04)]

Topological charge induces chirality This is the <u>P- and CP-odd effect</u>

<u>Chirality:</u> difference between number of quarks + antiquarks with right- and left-handed helicity

$$N_{5} = \# \left(\mathbf{q}_{\mathsf{R}} + \# \left(\mathbf{\bar{q}}_{\mathsf{R}} - \# \left(\mathbf{q}_{\mathsf{L}} - \# \left(\mathbf{\bar{q}}_{\mathsf{L}} - \# \left(\mathbf{\bar{q}}_{\mathsf{L}} \right) \right) \right) \right) \right)$$
Relativistic fermions

Axial anomaly: topological charge induces chirality Steinberger ('49), Schwinger ('51), Alder ('69), Bell and Jackiw ('69) $\partial_{\mu} \langle \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rangle_{A} = 2 m \langle \bar{\psi} i \gamma^{5} \psi \rangle_{A} - 2 \frac{g^{2}}{32 \pi^{2}} F^{a}_{\mu\nu} \tilde{F}^{\mu\nu a}$ Exact equation

<u>Change in chirality over time for each flavor</u> = - 2 x Topological charge $\Delta N_5 = -2Q$

Q < -1: Positively charged particles move parallel to magnetic field, negatively charged antiparallel

... = Electromagnetic Current

Chiral Magnetic Effect: Kharzeev, McLerran & HJW ('07)

Size of Current:
$$J = \int d^3 x \langle \bar{\psi} \gamma^3 \psi \rangle = -2Q \sum_f |q_f|$$

Valid for full polarization, what about smaller fields?

Chiral Magnetic Effect: Kharzeev, McLerran & HJW ('08)

How chirality reacts to magnetic field

Nonzero Chirality: Nonzero chiral chemical potential μ_5 $H \rightarrow H - \mu_5 \int d^3 x \, \bar{\psi} \, \gamma^0 \, \gamma^5 \, \psi$ Compute induced current in magnetic field

Magnitude of the induced current

Alekseev, Cheianov, Fröhlich ('98), Fukushima, Kharzeev and HJW ('08)

Result follows from EM axial anomaly. Therefore exact and independent of coupling strength. Anomaly induced currents: c.f. Goldstone and Wilczek ('81)

Magnitude of the induced current

Fukushima, Kharzeev and HJW ('08)

$$n_5 = \frac{\partial \Omega}{\partial \mu_5} \qquad N_5 = -2Q$$

Computed at high T (lo. pert. QCD)

Chiral Magnetic Effect in time-dep. field Kharzeev and HJW ('09)

 $\mu_{5}T$

$$\vec{j} = \sigma_E \vec{E}$$
 $\sigma_E =$ electrical conductivity

 $\vec{j} = \sigma_{\chi} \vec{B}$ $\sigma_{\chi} =$ chiral magnetic conductivity

Compute induced current using linear response

$$\langle j^{\mu}(x) \rangle = \int d^{4}x' \Pi_{R}^{\mu\nu}(x-x') A_{\mu}(x') + o(A_{\mu}^{2})$$

Leading order $\tilde{\Pi}_{R}^{jk}$

$$\sigma_{\chi}(\omega) = \lim_{p^{i} \to 0} \frac{1}{2i p^{i}} \epsilon^{ijk} \tilde{\Pi}_{R}^{jk}(\omega, p)$$

Off diagonal, antisymmetric part of photon polarization tensor. Nonzero with μ_5

CM conductivity: weak vs. strong coupling $\sigma_0 = \frac{N_c \sum_f q_f^2}{M_c \sum_f q_f^2}$

Displayed: normalized conductivity as a function of frequency.

Kharzeev and HJW ('09)

Real part: in-phase response, imaginary part: 90 degrees out of phase response

Chiral Magnetic Effect in time-dep. field

Kharzeev and HJW ('09)

Conclusion: also sizable current in fast changing magnetic field

Chiral Magnetic Effect: other methods

Lattice QCD:

Buividovich, Chernodub, Luschevskaya and Polikarpov ('09) Abramczyk, Blum, Petropoulos and Zhou ('09)

AdS/CFT:

<u>H.U. Yee ('09)</u> Rebhan, Schmitt and Stricker ('09)

Instanton:

S. Nam ('09)

Induced current in color-flux tube

Fukushima, Kharzeev and HJW (to appear)

Perpendicular magnetic field to color flux tube

Flux tubes naturally arise in glasma

Krasnitz et al. ('02), Lappi & McLerran, ('06)

P- and CP-odd effects in Heavy Ion Collisions

Topological charge **Q** fluctuates anywhere in the QGP

Measure: variances = nonzero

Medium causes screening

Variance of charge difference between upper and lower side reaction plane:

$$\langle \Delta_{\pm}^2 \rangle = 2 \int_{t_i}^{t_f} \mathrm{d}t \int_V \mathrm{d}^3 x \ \Gamma \ [\xi_{\pm}^2(x_{\perp}) + \xi_{\pm}^2(x_{\perp})] \ (\sum_f \frac{3 q_f^2 e B}{\pi^2 T^2})$$

Time & Volume integralRate of creationOverlap regionTopological

Rate of creation Topological charge

Screening Functions Square of Change Charge difference

Estimate magnitude relative asymmetry for large impact parameter 10⁻⁴ with 1-2 orders of magnitude uncertainty.

Experimental observables

Voloshin ('04)

y R -b/2 b/2 x

STAR detector Full azimuthal coverage Correlations in azimuthal angle of charged particles

$$a_{++} = \left\langle \frac{1}{N_{+}N_{+}} \sum_{i,j=1}^{N_{+},N_{+}} \cos(\phi_{i} + \phi_{j} - 2\Psi_{RP}) \right\rangle$$

$$= \left\langle \frac{1}{N_{+}^{2}} \left[\sum_{i=1}^{N_{+}} \cos(\phi_{i} - \Psi_{RP}) \right]^{2} \right\rangle$$

<u>Charge fluctations in</u> <u>x-direction</u>

$$-\langle \frac{1}{N_{+}^{2}} \left[\sum_{i=1}^{N_{+}} \sin\left(\phi_{i} - \Psi_{RP}\right) \right]^{2} \rangle$$

<u>Minus fluctuations in</u> <u>y direction</u>

Average is over many similar minimum bias events

Take symmetric interval around zero rapidity

Analysis (and problems) similar to elliptic flow. See also talks by Jean-Yves Ollitrault and Raimond Snellings

 \boldsymbol{X} (defines Ψ_{R})

STAR, Phys.Rev.Lett. **103**, 251601 (2009) and arXiv:0909.1717 See also B. Müller, Physics 2, 104 (2009)

Strong charge correlations observed at RHIC is it due to P- and CP-odd effects or something else?

STAR data due to P- and CP-odd effects?

<u>Deconfinement necessary</u> to separate quarks <u>Chiral Symmetry restoration necessary</u> to induce chirality

Hence no Chiral Magnetic Effect at low energies. Test energy scan. Also test at LHC

Magnetic field the correlators proportional to Z²-

Test: compare collisions with same A and different Z, isobars Argon-40 (Z=18), vs. Calcium-40 (Z=20), 23% increase in signal

<u>More quantitative phenomenology</u> really necessary More data also possible: individual charged particle correlations

Think of other explanations

Cluster model of F. Wang ('09), ???

RIKEN-BNL-CATHIE Workshop on

P- and CP-odd Effects in Hot and Dense Matter

Organizing Committee

- Kenji Fukushima (Kyoto Univ)
- Dmitri Kharzeev (BNL)
- Harmen Warringa (Johann Wolfgang Goethe-Univ)
- Abhay Deshpande (Stony Brook Univ. / RBRC)
- Sergei Voloshin (Wayne State Univ.)

International Advisory Committee

- J. Bjorken (SLAC)
- H. En'yo (RIKEN)
- M. Gyulassy (Columbia Univ.)
- F. Karsch (BNL & Bielefeld)
- T.D. Lee (Columbia Univ.)
- A. Nakamura (Hiroshima Univ.)
- M. Polikarpov (ITEP)
- K. Rajagopal (MIT)
- V. Rubakov (INR)
 - J. Sandweiss (Yale Univ.)
 - E. Shuryak (Stony Brook Univ.)
 - A. Tsvelik (BNL)
 - N. XU (LBNL)
 - V. Zakharov (ITEP)

Brookhaven National Laboratory, Long Island, New York, USA April 26-30, 2010

P- and CP-odd effects in: nuclear, particle, condensed matter physics and cosmology

Additional information and registration at http://www.bnl.gov/riken/hdm/

Registration deadline: March 1, 2010

Supported by RIKEN-BNL Center, Brookhaven National Laboratory and Stony Brook University (Office of Vice-President for BNL Affairs)