The Proton Charge Radius

Haiyan Gao

Nuclear and Particle Physics, BNL \&
Duke University

ERICE School on Nuclear Physics, September 18², 2023

Nuclear physics - study of structure of matter in all its forms

- Most of the mass and energy in the universe around us comes from nuclei and nuclear reactions.
- The nucleus is a unique form of matter in that all the forces of nature are present : (strong, electromagnetic, weak, gravity).

About 1 second after the Big Bang, protons and neutrons were formed

In today's universe, 99% visible matter are atomic nuclei (protons and neutrons).

Structure of visible matter probed at major DOE facilities in the US

Brookhaven
National Laboratory

QCD: still unsolved in non-perturbative region

Credit: D. Leinweber

- Charge and magnetism (current) distribution
- Spin and mass decomposition

- Quark momentum and flavor distribution
- Polarizabilities
- Strangeness, charm content • QCD: Important for discovering new physics beyond SM
- Three-dimensional structure . Nucleon structure is one of the most active areas
- more

Brookhaven
National Laboratory

Lepton scattering: powerful microscope!

Clean probe of hadron structure; electron point-like particle, electron vertex is well-known from quantum electrodynamics; One-photon exchange dominates, higher-order exchange diagrams are suppressed (two-photon physics)
One can vary the wave-length of the probe to view deeper
inside the hadron

PROTON

Electron energy transfer
Brookhaven
National Laboratory

Resolution $\propto h / Q$
$-\mathrm{Q} \approx 20 \mathrm{MeV} \quad \lambda \approx 10 \mathrm{fm}$ nucleus
$-\mathrm{Q} \approx 200 \mathrm{MeV} \quad \lambda \approx 1 \mathrm{fm}$ nucleon
$-\mathrm{Q} \approx 2 \mathrm{GeV} \quad \lambda \approx 0.1 \mathrm{fm}$ inside nucleon
$-\mathrm{Q} \approx 20 \mathrm{GeV} \quad \lambda \approx 0.01 \mathrm{fm}$ quark
Virtual photon 4-momentum

$$
q=k-k^{\prime}=(\vec{q}, \omega)
$$

What is inside the proton/neutron?

1933: Proton's magnetic moment
1960: Elastic e-p scattering

Nobel Prize In Physics 1943

Otto Stern

Nobel Prize

 In Physics 1961Robert Hofstadter
"for ... and for his thereby achieved
'for ... and for his discovery of the magnetic moment of the proton".

$$
g \neq 2
$$

1969: Deep inelastic e-p sc. discoveries concerning the structure of the nucleons"
Form factors \rightarrow Charge distributions 1974: QCD Asymptotic Freedom

Nobel Prize in Physics 1990 Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons ...".

National Laboratory

Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Proton Charge Radius and the Puzzle

- Proton charge radius:

1. A fundamental quantity for proton
2. Important for understanding how QCD works
3. An important physics input to the bound state QED calculation, affects muonic H Lamb shift $\left(2 \mathrm{~S}_{1 / 2}-2 \mathrm{P}_{1 / 2}\right)$ by as much as 2%, and critical in determining the Rydberg constant

- Methods to measure the proton charge radius:

1. Hydrogen spectroscopy (atomic physics)
$>$ Ordinary hydrogen
$>$ Muonic hydrogen
2. Lepton-proton elastic scattering (nuclear physics)
$>e p$ elastic scattering (like PRad)
$>\boldsymbol{\mu} p$ elastic scattering (like MUSE, COMPASS++/AMBER)

$>$ Important point: the proton radius measured in lepton scattering is defined in the same way as in atomic spectroscopy (G.A. Miller, 2019)

$$
\sqrt{<r^{2}>}=\sqrt{-\left.6 \frac{d G\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}}
$$

Electron-proton elastic scattering

- Unpolarized elastic e-p cross section (Rosenbluth separation)

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left(\frac{G_{E}^{p 2}+\tau G_{M}^{p}{ }^{2}}{1+\tau}+2 \tau G_{M}^{p} \tan ^{2} \frac{\theta}{2}\right) \\
&=\sigma_{M} f_{\text {rec }}^{-1}\left(A+B \tan ^{2} \frac{\theta}{2}\right) \\
& 4=\frac{Q^{2}}{4 M^{2}}
\end{aligned}
$$

- Recoil proton polarization measurement (pol beam only)

$$
\frac{G_{E}^{p}}{G_{M}^{p}}=-\frac{P_{t}}{P_{l}} \frac{E+E^{\prime}}{2 M} \tan \frac{\theta}{2}
$$

- Asymmetry (super-ratio) measurement (pol beam and pol target)

$$
R_{A}=\frac{A_{1}}{A_{2}}=\frac{a_{1}-b_{1} \cdot G_{E}^{p} / G_{M}^{p}}{a_{2}-b_{2} \cdot G_{E}^{p} / G_{M}^{p}}
$$

Hydrogen Spectroscopy

The absolute frequency of H energy levels has been measured with an accuracy of 1.4 part in 10^{14} via comparison with an atomic cesium fountain clock as a primary frequency standard.
Yields Rydberg constant R_{∞} (one of the most precisely known constants)

Comparing measurements to QED calculations that include corrections for the finite size of the proton can provide very precise value of the rms proton charge radius Proton charge radius effect on the muonic hydrogen Lamb shift is $\mathbf{2 \%}$

Muonic hydrogen Lamb shift at PSI $(2010,2013)$

 näture Nature 466, 213-216 (8 July 2010)

B

2010 value is $r_{p}=0.84184(67) \mathrm{fm}$

Brookhaven
National Laboratory

Electron-proton Scattering - Mainz A1 experiment

Three spectrometer facility of the A1 collaboration:

- Large amount of overlapping data sets
- Cross section measurement
- Statistical error $\leq 0.2 \%$
- Luminosity monitoring with spectrometer
- $Q^{2}=0.004-1.0(\mathrm{GeV} / \mathrm{c})^{2}$
result: $r_{p}=0.879(5)_{\text {stat }}(4)_{\text {sys }}(2)_{\text {mod }}(4)_{\text {group }}$

Measurements @ Mainz

JLab Recoil Proton Polarization Experiment

LHRS

- $\Delta \mathrm{p} / \mathrm{p} 0: \pm 4.5 \%$,
- out-of-plane: $\pm 60 \mathrm{mrad}$
- in-plane: $\pm 30 \mathrm{mrad}$
- $\Delta \Omega: 6.7 \mathrm{msr}$
- QQDQ
- Dipole bending angle 45°
- VDC+FPP
- $\mathrm{P}_{\mathrm{p}}: 0.55 \sim 0.93 \mathrm{GeV} / \mathrm{c}$
- $\mathrm{Q}^{2}=0.3-0.7(\mathrm{GeV} / \mathrm{c})^{2}$ - $r_{p}=0.875 \pm 0.010 \mathrm{fm}$ (global analysis not including Mainz A1)

$\mathrm{E}_{\mathrm{e}}: 1.192 \mathrm{GeV}$
 P_{b} : $\sim 83 \%$

Brookhaven
National Laboratory

BigBite

- Non-focusing Dipole - Big acceptance.
- $\Delta \mathrm{p}: 200-900 \mathrm{MeV}$
- $\Delta \Omega: 96 \mathrm{msr}$
- PS + Scint. + SH

X. Zhan et al. Phys. Lett. B 705 (2011) 59464

The situation on the Proton Charge Radius in 2013

This proton charge radius puzzle triggered intensive experimental and theoretical efforts worldwide in the last decade or so

How to resolve the puzzle? - Incomplete list

- Revisit of the state-of-the-art QED calculations: E. Borie (2005), Jentschura (2011), Hagelstein and Pascalutsa (2015),..
- Contributions to the muonic H Lamb shift: Carlson and Vanderhaeghen,; Jentschura, Borie, Carroll et al, Hill and Paz, Birse and McGovern, G.A. Miller, J.M. Alarcon, Ji, Peset and Pineda....
- Higher moments of the charge distribution and Zemach radii, Distler, Bernauer and Walcher (2011), de Rujula (2010, 2011), Cloet and Miller (2011),...
- Extrapolation in electron scattering: Higinbotham et al. (2016), Griffioen, Carlson and Maddox (2016)
- Reanalysis of ep elastic data: Distler, Walcher, and Bernauer (2015), Arrington (2015), Horbatsch and Hessels (2015), T. Hayward, K. Griffioen (2018),
- Discrepancy explained/somewhat explained by some authors, but not all agree: Lorenz et al., Ronson, Donnelly et al.
- Consistency re radius defined in ep and atomic experiments: Miller
- New physics: new particles, Barger et al., Carlson and Rislow; Liu and Miller, Alvarado, Aranda and Bonilla....New PV muonic force, Batell et al.; Carlson and Freid; Extra dimension: Dahia and Lemos; Quantum gravity at the Fermi scale R. Onofrio,
- Exps: Mainz, JLab (PRad), MUSE at PSI, Japan, Amber@CERN;

Brookhaven
National Laboratory H spectroscopy (Germany, France, Canada), ...

Ordinary hydrogen spectroscopy

$\mathrm{R} \infty=10973731.568$ 53(14) $\mathrm{m}^{-1}, \mathrm{r}_{\mathrm{p}}=0.877(13) \mathrm{fm}$
Fleurbaey et al. PRL 120, 183001 (2018)

The Proton Charge Radius Puzzle in 2018

Electron scattering: $\quad 0.879 \pm 0.011 \mathrm{fm}$ (CODATA 2014)
Muon spectroscopy: $\quad 0.8409 \pm 0.0004 \mathrm{fm}$ (CREMA 2010, 2013)
H spectroscopy (2017): $0.8335 \pm 0.0095 \mathrm{fm}(\mathrm{A}$. Beyer et al. Science 358(2017) 6359)
H spectroscopy (2018): $\quad 0.877 \pm 0.013 \mathrm{fm}$ (H. Fleurbaey et al. PRL.120(2018) 183001)

Not shown: ep scattering (ISR, 2017): $0.810 \pm 0.035_{\text {stat. }} \pm 0.074_{\text {syst. }} \pm 0.003$ (delta_a, delta_b) (Mihovilovic PLB 771 (2017); $0.878 \pm 0.011_{\text {stat. }} \pm 0.031_{\text {syst. }} \pm 0.002_{\text {mod. }}$ (Mihovilovic 2021))

The PRad Experiment in Hall B at JLab

HyCal + GEM

- High resolution, large acceptance, hybrid HyCal calorimeter (PbWO_{4} and Pb-Glass)

The PRad Experimental setup

I Larin, Y Y. Zhang, et al., Science 6490, 506

Analysis - Event Selection

Event selection method

1. For all events, require hit matching between GEMs and HyCal
2. For ep and ee events, apply angle-dependent energy cut based on kinematics
3. Cut size depend on local detector resolution
4. For ee, if requiring doublearm events, applv. additional cuts
5. Elasticity
6. Co-planarity
7. Vertex z

Brookhaven
National Laboratory

Cluster energy E^{\prime} vs. scattering angle θ (1.1 GeV)

Extraction of ep Elastic Scattering Cross Section

- To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{e p}=\left[\frac{N_{\exp }\left(e p \rightarrow e p \text { in } \theta_{i} \pm \Delta \theta_{i}\right)}{N_{\exp }(e e \rightarrow e e)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{e e}}{\varepsilon_{\mathrm{geom}}^{e p}} \cdot \frac{\varepsilon_{\mathrm{det}}^{e e}}{\varepsilon_{\mathrm{det}}^{e p}}\right]\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{e e}
$$

- Method 1: bin-by-bin method - taking ep/ee counts from the same angular bin
$>$ Cancellation of energy independent part of the efficiency and acceptance
> Limited coverage due to double-arm Møller acceptance
- Method 2: integrated Møller method - integrate Møller in a fixed angular range and use it as common normalization for all angular bins
> Needs to know the GEM efficiency well
- Luminosity cancelled from both methods
- PRad: Bin-by-bin range: 0.7° to 1.6° for $2.2 \mathrm{GeV}, 0.75^{\circ}$ to 3.0° for 1.1 GeV . Larger angles use integrated Møller method (3.0° to 7.0° for $1.1 \mathrm{GeV} ; 1.6^{\circ}$ to 7.0° for 2.2 GeV)
- PRad-II: two planes of GEM $/ \mu$ Rwell allow for integrated Moller method for the entire experiment
- Event generators for unpolarized elastic ep and Møller scatterings have been developed based on complete calculations of radiative corrections - PRad-II with NNL for RC

1. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014) 115001
2. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (beyond ultra relativistic approximation)

- A Geant4 simulation package is used to study the radiative effects, and an iterative procedure applied

$$
\sigma_{e p}^{B o r n(e x p)}=\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{e x p} /\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{\operatorname{sim}} \cdot\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{\text {Born(model) }} \cdot \sigma_{e e}^{\text {Born(model) }}
$$

Elastic ep Cross Sections

- Differential cross section v.s. Q^{2}, with 2.2 and 1.1 GeV data
- Statistical uncertainties: $\sim 0.15 \%$ for $2.2 \mathrm{GeV}, \sim 0.2 \%$ for 1.1 GeV per point
- Systematic uncertainties: $0.3 \% \sim 1.1 \%$ for $2.2 \mathrm{GeV}, 0.3 \% \sim 0.5 \%$ for 1.1 GeV (shown as shadow area)

Systematic uncertainties shown as bands

Proton Electric Form Factor $\boldsymbol{G}_{E}{ }_{E}$ (Normalized)

- n_{1} and n_{2} obtained by fitting PRad $\mathrm{G}_{\mathrm{E}} 1\left\{\begin{array}{l}n_{1} f\left(Q^{2}\right) \text {, for } 1 \mathrm{GeV} \text { data } \\ n_{2} f\left(Q^{2}\right) \text {, for } 2 \mathrm{GeV} \text { data }\end{array}\right.$
- G_{E}^{\prime} as normalized electric Form factor $\left\{G_{E} / n_{1}\right.$, for 1 GeV data

Using rational $(1,1)$
$f\left(Q^{2}\right)=\frac{1+p_{1} Q^{2}}{1+p_{2} Q^{2}}$

$$
\left\{G_{E} / n_{2}, \text { for } 2 \mathrm{GeV}\right. \text { data Yan et al. PRC98,025204 (2018) }
$$

- PRad fit shown as $f\left(Q^{2}\right) \quad r_{p}=0.831+/-0.007$ (stat.) $+/-0.012$ (syst.) fm

$$
n_{1}=1.0002+/-0.0002 \text { (stat.) }+/-0.0020 \text { (syst.) }, \quad n_{2}=0.9983+/-0.0002 \text { (stat.) }+/-0.0013 \text { (syst.) }
$$

Proton radius at the time of PRad publication

- PRad result $\mathrm{r}_{\mathrm{p}}: 0.831+/-0.0127 \mathrm{fm}$, Xiong et al., Nature 575, 147-150 (2019)
- H Lamb Shift: 0.833 +/- 0.010 fm Bezginov et al., Science 365, 1007-1012 (2019)
- CODATA 2018 value of $\mathrm{r}_{\mathrm{p}}: 0.8414+/-0.0019 \mathrm{fm}$, E. Tiesinga et al., RMP 93, 025010(2021)

CODATA has also shifted the value of the Rydberg constant.
Brookhaven
National Laboratory

More from ordinary hydrogen spectroscopy

Bezginov et al., Science 365, 1007 (2019)

Brookhaven
National Laboratory

$$
\mathrm{r}_{\mathrm{p}}=0.8482(38) \mathrm{fm}
$$

Gao and Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022)

Proton radius from ordinary and muonic H spectroscopy

Experiment	Type	Transition (s)	$\sqrt{\left\langle r_{E p}^{2}\right\rangle}(\mathrm{fm})$	$r_{\infty}\left(\mathrm{m}^{-1}\right)$
Pohl 2010	$\mu \mathrm{H}$	$2 S_{1 / 2}^{F=1}-2 P_{3 / 2}^{F=2}$	$0.84184(67)$	
Antognini 2013	$\mu \mathrm{H}$	$2 S_{1 / 2}^{F=1}-2 P_{3 / 2}^{F=2}$	$0.84087(39)$	
Beyer 2017	H	$2 S_{1 / 2}^{F=0}-2 P_{3 / 2}^{F=1}$	$2 S-4 P$	$0.8335(95)$
		with $(1 S-2 S)$		
Fleurbaey 2018 973	H	$1 S-3 S$	$0.877(13)$	$10973731.568076(96)$
		with $(1 S-2 S)$		
Bezginov 2019	H	$2 S_{1 / 2}-2 P_{1 / 2}$	$0.833(10)$	
Grinin 2020	H	$1 S-3 S$	$0.8482(38)$	$10973731.568226(38)$
		with $(1 S-2 S)$		

Not included
Newest result:
Brandt PRL128, 023001 (2022):
measured $2 \mathrm{~S}_{1 / 2}-8 \mathrm{D}_{5 / 2}$ transition
\& used 1S-2S
$r_{p}=0.8584(51) \mathrm{fm}$
$\mathrm{R}_{\infty}=10973731.568332(52) \mathrm{m}^{-1}$.

(Re)analyses of e-p scattering data

Gao and Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022)
Brookhaven
National Laboratory
More recent work see Cui et al., arxiv:2204.05418

e-p scattering: magnetic spectrometer and calorimetric method

National Laboratory

PRad-II: goals and approaches

- Reduce the uncertainty of the r_{p} measurement by a factor of $\mathbf{3 . 8}$!
- Reach an unprecedented low values of $\mathrm{Q}^{2}: 4 \times 10^{-5}(\mathrm{GeV} / \mathrm{c})^{2}$
- How?
- Improving tracking capability by adding a second plane of tracking detector
- Adding new rectangular cross shaped scintillator detectors to separate Moller from ep electrons in scattering angular range of $0.5^{0}-0.8^{0}$
- Upgrading HyCal and electronics for readout
- Replacing lead glass blocks by PbWO 4 modules (uniformity, resolutions, inelastic channel)
- Converting to FADC based readout
- Suppressing beamline background
- Improving vacuum
- Adding second beam halo blocker upstream of the tagger
- Reducing statistical uncertainties by a factor of 4 compared with PRad
- Three beam energies: $0.7,1.4$ and $2.1 \mathrm{GeV}-0.7 \mathrm{GeV}$ is critical to reach the lowest $Q^{2}\left(4 \times 10^{-5}(\mathrm{GeV} /)^{2}\right)$
- Improve radiative correction calculations by going to NNL order
- Potential target improvement (not used in projection)

Approved with the highest rating by the
JLab Program Advisory Committee in summer 2020

- Upgrade HyCal
- Adding $2^{\text {nd }}$ GEM

PRad-II Experimental Setup (Side View)

Projections for PRad-II

Differential Cross section

- Nuclear deformation effects,

Lin and Zou, arxiv:1910.13916

- New physics?

Most precise ordinary hydrogen result:
$r_{p}=0.8482 \pm 0.0038 \mathrm{fm}$
Grinin et al., Science 370, 1061 (2020)

- PRad-II: total uncertainty 0.0036 fm

Gasparian et al. arXiv:2009.10510

ロIUUKIIdVEII

National Laboratory

The ongoing MUSE Experiment at PSI

Beam momentum values:
$115,153,210 \mathrm{MeV} / \mathrm{c}$
Scattering angle: $20^{\circ}-100^{0}$

Experiment	Beam	Laboratory	$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$\delta r_{p}(\mathrm{fm})$	Status
MUSE	$e^{ \pm}, \mu^{ \pm}$	PSI	$0.0015-0.08$	0.01	Ongoing
AMBER	$\mu^{ \pm}$	CERN	$0.001-0.04$	0.01	Future
PRad-II	e^{-}	Jefferson Lab	$4 \times 10^{-5}-6 \times 10^{-2}$	0.0036	Future
PRES	e^{-}	Mainz	$0.001-0.04$	$0.6 \%($ rel.)	Future
A1@MAMI (jet target)	e^{-}	Mainz	$0.004-0.085$		Ongoing
MAGIX@MESA	e^{-}	Mainz	$\geq 10^{-4}-0.085$		Future
ULQ 2	e^{-}	Tohoku University	$3 \times 10^{-4}-8 \times 10^{-3}$	$\sim 1 \%$ (rel.)	Future

Gao and Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022)

The Amber Experiment at CERN

M2 Beam-line:
100 GeV muons

Experiment	Beam	Laboratory	$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$\delta r_{p}(\mathrm{fm})$	Status
MUSE	$e^{ \pm}, \mu^{ \pm}$	PSI	$0.0015-0.08$	0.01	Ongoing
AMBER	$\mu^{ \pm}$	CERN	$0.001-0.04$	0.01	Future
PRad-II	e^{-}	Jefferson Lab	$4 \times 10^{-5}-6 \times 10^{-2}$	0.0036	Future
PRES	e^{-}	Mainz	$0.001-0.04$	0.6% (rel.)	Future
A1@MAMI (jet target)	e^{-}	Mainz	$0.004-0.085$		Ongoing
MAGIX@MESA	e^{-}	Mainz	$\geq 10^{-4}-0.085$		Future
ULQ 2	e^{-}	Tohoku University	$3 \times 10^{-4}-8 \times 10^{-3}$	$\sim 1 \%$ (rel.)	Future

The $\mathbf{U L Q}{ }^{2}$ Experiment at Tohoku University

Beam momentum values:
$20-60 \mathrm{MeV} / \mathrm{c}$
Scattering angle: $30^{\circ}-150^{\circ}$
Target CH_{2}
Focal plane detector:
Single-sided Silicon
Detectors

Experiment	Beam	Laboratory	$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$\delta r_{p}(\mathrm{fm})$	Status
MUSE	$e^{ \pm}, \mu^{ \pm}$	PSI	$0.0015-0.08$	0.01	Ongoing
AMBER	$\mu^{ \pm}$	CERN	$0.001-0.04$	0.01	Future
PRad-II	e^{-}	Jefferson Lab	$4 \times 10^{-5}-6 \times 10^{-2}$	0.0036	Future
PRES	e^{-}	Mainz	$0.001-0.04$	0.6% (rel.)	Future
A1@MAMI (jet target)	e^{-}	Mainz	$0.004-0.085$		Ongoing
MAGIX@MESA	e^{-}	Mainz	$\geq 10^{-4}-0.085$		Future
ULQ 2	e^{-}	Tohoku University	$3 \times 10^{-4}-8 \times 10^{-3}$	$\sim 1 \%$ (rel.)	Future

National Laboratory

The proton charge radius saga continues

Thank you for your time and attention!

Acknowledgement: PRad Collaboration
Duke work supported by Department of Energy under contract DE-FG02-03ER41231; Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science.

