The Spacelike Electromagnetic Form Factors of Lambda and Sigma in Quark-Diquark Faddeev Equation

Langtian Liu

University of Giessen

Sep. 21, 2023

Deutscher Akademischer Austauschdienst German Academic Exchange Service

International School of Nuclear Physics 44th Course

— From quarks and gluons to hadrons and nuclei September 18-24, 2023, Erice, Sicily Italy

Table of Contents

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Table of Contents

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

In the development of modern physics, some ways to study composite systems and interactions:

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = の Q @

In the development of modern physics, some ways to study composite systems and interactions:

1 Excite them.

Many interaction details are encoded in the excited states.

ゆう キョ・ キョ・ ヨヨ ろくら

In the development of modern physics, some ways to study composite systems and interactions:

1 Excite them.

Many interaction details are encoded in the excited states.

EL OQO

In the development of modern physics, some ways to study composite systems and interactions:

① Excite them.

Many interaction details are encoded in the excited states. (Gernot, Markus and Ulrike's talk)

Langtian Liu (Langtian.Liu@physik.uni-giessen.de) The Spacelike Electromagnetic Form Factors of Lam

² Scatter them.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Scatter them.

< □ > < □ > < Ξ > < Ξ > < Ξ = ・ < Ξ = ・ ○ < ○

5/19

Introduction

Some Possible Ways to Study Composite Systems

Langtian Liu (Langtian.Liu@physik.uni-giessen.de) The Spacelike Electromagnetic Form Factors of Lam Se

5/19

3 Replace the ingredients of them.

▲ □ ▶ ▲ □ ▶ ▲

∃▶ ∃|= ∽००

3 Replace the ingredients of them.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Introduction

Some Possible Ways to Study Composite Systems

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

1 The role plays by strange quark inside baryons.

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Here we are interested in the electromagnetic form factors of Λ and Σ .

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.
- 3 The different yield rate of Λ and Σ indicates diquark correlations inside them.

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.
- $\ensuremath{\textcircled{3}}$ The different yield rate of Λ and Σ indicates diquark correlations inside them.
- \circledast We don't find explorations of EMFFs of Λ and Σ with quark-diquark Faddeev equation.

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.
- $\ensuremath{\textcircled{3}}$ The different yield rate of Λ and Σ indicates diquark correlations inside them.
- \circledast We don't find explorations of EMFFs of Λ and Σ with quark-diquark Faddeev equation.
- ^⑤ Preparation for the future hyperon electromagnetic transition form factors.

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.
- $\ensuremath{\textcircled{3}}$ The different yield rate of Λ and Σ indicates diquark correlations inside them.
- \circledast We don't find explorations of EMFFs of Λ and Σ with quark-diquark Faddeev equation.
- ^⑤ Preparation for the future hyperon electromagnetic transition form factors.

We did:

Here we are interested in the electromagnetic form factors of Λ and $\Sigma.$

- 1 The role plays by strange quark inside baryons.
- ⁽²⁾ Flavor dependence of strong interactions.
- $\ensuremath{\textcircled{3}}$ The different yield rate of Λ and Σ indicates diquark correlations inside them.
- \circledast We don't find explorations of EMFFs of Λ and Σ with quark-diquark Faddeev equation.
- ^⑤ Preparation for the future hyperon electromagnetic transition form factors.

We did:

① Extend the quark-diquark Faddeev equation approach to the strange quark sector.

Here we are interested in the electromagnetic form factors of Λ and Σ .

- 1 The role plays by strange quark inside baryons.
- Flavor dependence of strong interactions. (2)
- 3 The different yield rate of Λ and Σ indicates diquark correlations inside them.
- We don't find explorations of EMFFs of Λ and Σ with guark-diguark Faddeev **(4**) equation.
- ⑤ Preparation for the future hyperon electromagnetic transition form factors.

We did:

- ① Extend the guark-diquark Faddeev equation approach to the strange guark sector.
- The mass spectrum of some baryon octet and decuplet in quark-diquark (2) Faddeev equation.

Here we are interested in the electromagnetic form factors of Λ and Σ .

- 1 The role plays by strange quark inside baryons.
- Flavor dependence of strong interactions. (2)
- 3 The different yield rate of Λ and Σ indicates diguark correlations inside them.
- \circledast We don't find explorations of EMFFs of Λ and Σ with guark-diguark Faddeev equation.
- ⑤ Preparation for the future hyperon electromagnetic transition form factors.

We did:

- ① Extend the guark-diquark Faddeev equation approach to the strange guark sector.
- The mass spectrum of some baryon octet and decuplet in quark-diquark (2) Faddeev equation.
- **3** The elastic EMFFs of Λ and Σ .

Here we are interested in the electromagnetic form factors of Λ and Σ .

- 1 The role plays by strange quark inside baryons.
- Flavor dependence of strong interactions. (2)
- The different yield rate of Λ and Σ indicates diguark correlations inside them. (3)
- \circledast We don't find explorations of EMFFs of Λ and Σ with guark-diguark Faddeev equation.
- ⑤ Preparation for the future hyperon electromagnetic transition form factors.

We did:

- ① Extend the guark-diquark Faddeev equation approach to the strange guark sector.
- The mass spectrum of some baryon octet and decuplet in quark-diquark Faddeev equation.
- 3 The elastic EMFFs of Λ and Σ .
- The electromagnetic transition form factors for the only baryon octet (4) transition $\Sigma \to \Lambda$.

Table of Contents

◆□▶ ◆□▶ ◆三▶ ▲三▶ ▲□▼ ◇Q@

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^{a}(p, P) = \left[\Gamma^{a}(l, p_d) D^{a}(p_d)\right] \left[\Phi_i^{a}(p, P) u(P)\right], \quad i = 1, 2, 3,$$

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^a(\mathbf{p}, \mathbf{P}) = [\Gamma^a(\mathbf{I}, \mathbf{p}_d) D^a(\mathbf{p}_d)] [\Phi_i^a(\mathbf{p}, \mathbf{P}) u(\mathbf{P})], \quad i = 1, 2, 3,$$

$$\Phi_{i}^{a} = \int \frac{d^{4}k}{(2\pi)^{4}} K_{ij}^{ab}(k, p, P) G_{j}^{b}(k, P) \Phi_{j}^{b}(k, P) ,$$

$$G_{j}^{b}(k, P) = S_{j}(k_{q}) D^{b}(k_{d}) , \quad K_{ij}^{ab}(k, p, P) = \bar{\Gamma}_{i}^{a}(I_{i}, p_{d}) S^{T}(q) \Gamma_{j}^{b}(I_{j}, k_{d}) .$$

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^a(p, P) = [\Gamma^a(l, p_d)D^a(p_d)] [\Phi_i^a(p, P)u(P)], \quad i = 1, 2, 3,$$

$$\Phi_{i}^{a} = \int \frac{d^{4}k}{(2\pi)^{4}} K_{ij}^{ab}(k, p, P) G_{j}^{b}(k, P) \Phi_{j}^{b}(k, P) ,$$

$$G_{j}^{b}(k, P) = S_{j}(k_{q}) D^{b}(k_{d}) , \quad K_{ij}^{ab}(k, p, P) = \bar{\Gamma}_{i}^{a}(I_{i}, p_{d}) S^{T}(q) \Gamma_{j}^{b}(I_{j}, k_{d}) .$$

ingredients

quark propagators, diquark propagators, diquark amplitudes.

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^a(p, P) = [\Gamma^a(l, p_d)D^a(p_d)] [\Phi_i^a(p, P)u(P)], \quad i = 1, 2, 3,$$

$$\Phi_{i}^{a} = \int \frac{d^{4}k}{(2\pi)^{4}} K_{ij}^{ab}(k, p, P) G_{j}^{b}(k, P) \Phi_{j}^{b}(k, P) ,$$

$$G_{j}^{b}(k, P) = S_{j}(k_{q}) D^{b}(k_{d}) , \quad K_{ij}^{ab}(k, p, P) = \bar{\Gamma}_{i}^{a}(l_{i}, p_{d}) S^{T}(q) \Gamma_{j}^{b}(l_{j}, k_{d}) .$$

ingredients

1

quark propagators, diquark propagators, diquark amplitudes.

Simplify the Faddeev equation greatly.

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^a(p, P) = [\Gamma^a(l, p_d)D^a(p_d)] [\Phi_i^a(p, P)u(P)], \quad i = 1, 2, 3,$$

$$\Phi_{i}^{a} = \int \frac{d^{4}k}{(2\pi)^{4}} K_{ij}^{ab}(k, p, P) G_{j}^{b}(k, P) \Phi_{j}^{b}(k, P) ,$$

$$G_{j}^{b}(k, P) = S_{j}(k_{q}) D^{b}(k_{d}) , \quad K_{ij}^{ab}(k, p, P) = \bar{\Gamma}_{i}^{a}(l_{i}, p_{d}) S^{T}(q) \Gamma_{j}^{b}(l_{j}, k_{d}) .$$

ingredients

1

quark propagators, diquark propagators, diquark amplitudes.

- Simplify the Faddeev equation greatly.
- QCD kindred quark and diquark propagators.

Quark-diquark Faddeev equation

The quark-diquark amplitude for baryon

$$\psi_i^a(\mathbf{p}, \mathbf{P}) = [\Gamma^a(\mathbf{I}, \mathbf{p}_d) D^a(\mathbf{p}_d)] [\Phi_i^a(\mathbf{p}, \mathbf{P}) u(\mathbf{P})], \quad i = 1, 2, 3,$$

$$\begin{split} \Phi_{i}^{a} &= \int \frac{d^{4}k}{(2\pi)^{4}} K_{ij}^{ab}(k,p,P) G_{j}^{b}(k,P) \Phi_{j}^{b}(k,P) \,, \\ G_{j}^{b}(k,P) &= S_{j}(k_{q}) D^{b}(k_{d}) \,, \quad K_{ij}^{ab}(k,p,P) = \bar{\Gamma}_{i}^{a}(I_{i},p_{d}) S^{T}(q) \Gamma_{j}^{b}(I_{j},k_{d}) \,. \end{split}$$

ingredients

quark propagators, diquark propagators, diquark amplitudes.

- Simplify the Faddeev equation greatly.
- QCD kindred quark and diquark propagators.
- analytic form, easy to perform analytic continuation.

Langtian Liu (Langtian.Liu@physik.uni-giessen.de) The Spacelike Electromagnetic Form Factors of Lam

Electromagnetic current in quark-diquark Faddeev equation

① quark-photon vertex

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■□ のQで

Langtian Liu (Langtian.Liu@physik.uni-giessen.de	The Spacelike Electromagnetic Form Factors of Lam	Sep. 21, 2023 10 / 19
--	---	-----------------------

Electromagnetic current in quark-diquark Faddeev equation

quark-photon vertex

▲母▶▲国▶▲国▶ 国目 のQ@

② diquark-photon vertex

Electromagnetic current in quark-diquark Faddeev equation

quark-photon vertex

▲母▶▲国▶▲国▶ 国目 のQ@

② diquark-photon vertex

Electromagnetic current in quark-diquark Faddeev equation

Langtian Liu (Langtian.Liu@physik.uni-giessen.	e) The Spacelike Electromagnetic Form Factors of Lam	Sep. 21, 2023 10	0/19
----------------	----------------------------------	--	------------------	------

Electromagnetic current in quark-diquark Faddeev equation

10/19

Electromagnetic current in guark-diguark Faddeev equation

• A great simplification in Faddeev equation.

Sep. 21, 2023

Electromagnetic current in guark-diguark Faddeev equation

- A great simplification in Faddeev equation.
- A great difficulty in electromagnetic current too!

Table of Contents

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Mass spectrum

三日 のへの

< 🗗 ►

E 🕨 🖈 표

Mass spectrum

 The masses are consistent with the experimental values.

Langtian Liu (Langtian.Liu@physik.uni-giessen.de) The Spacelike Electromagnetic Form Factors of Lam

Э

< 17 >

三日 のへの

Mass spectrum

- The masses are consistent with the experimental values.
- In the isospin symmetry assumption, it is the diquark correlations lead to the mass split between Λ and Σ .

315

Mass spectrum

- The masses are consistent with the experimental values.
- In the isospin symmetry assumption, it is the diquark correlations lead to the mass split between Λ and Σ .
- The masses are sensitive to the masses of diquarks.
 But EMFFs is not sensitive to them.

315

Elastic EMFFs of Λ

H.Alepuz, C.Fischer, Eur.Phys.J.,A52,34

• The electric charge radius $\langle r_E^2 \rangle_{q-dq} \sim \langle r_E^2 \rangle_{qqq}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

三日 のへの

Elastic EMFFs of Λ

H.Alepuz, C.Fischer, Eur.Phys.J.,A52,34

- The electric charge radius $\langle r_E^2 \rangle_{q-dq} \sim \langle r_E^2 \rangle_{qqq}$.
- The magnetic charge radius $\langle r_M^2 \rangle_{q-dq} < \langle r_M^2 \rangle_{qdd}$, we have

★ E ► E E • 9 < 0</p>

Elastic EMFFs of Λ

H.Alepuz, C.Fischer, Eur.Phys.J.,A52,34

- The behaviors of elastic EMFFs are similar.
- The electric charge radius $\langle r_E^2 \rangle_{q-dq} \sim \langle r_E^2 \rangle_{qqq}$.
- The magnetic charge radius $\langle r_M^2 \rangle_{q-dq} < \langle r_M^2 \rangle_{qdd}$, i.e.

▶ ★ 분 ▶ 분 분 ● 의 Q @

Elastic EMFFs of Λ

H.Alepuz, C.Fischer, Eur.Phys.J.,A52,34

- The behaviors of elastic EMFFs are similar.
- The electric charge radius $\left\langle r_{E}^{2} \right\rangle_{\text{q-dq}} \sim \left\langle r_{E}^{2} \right\rangle_{\text{add}}.$
- The magnetic charge radius $\left\langle r_{M}^{2} \right\rangle_{\text{q-dq}} < \left\langle r_{M}^{2} \right\rangle_{\text{qqq}}$

13/19

▲ 王 ► 王 = • • • • •

Sep. 21, 2023

Elastic EMFFs of $\Sigma^+, \Sigma^0, \Sigma^-$

◆□ > ◆母 > ◆臣 > ◆臣 > 三日 のへぐ

Elastic EMFFs of $\Sigma^+, \Sigma^0, \Sigma^-$

Elastic EMFFs of $\Sigma^+, \Sigma^0, \Sigma^-$

Elastic EMFFs of $\Sigma^+, \Sigma^0, \Sigma^-$

$$\left\langle r_{E}^{2}\right\rangle = -6\frac{d}{dQ^{2}}\frac{G_{E}(Q^{2})}{G_{E}(0)}\Big|_{Q^{2}=0}, \quad \left\langle r_{M}^{2}\right\rangle = -6\frac{d}{dQ^{2}}\frac{G_{M}(Q^{2})}{G_{M}(0)}\Big|_{Q^{2}=0}$$

	Λ	Σ^+	Σ^0	Σ^{-}
$\langle r_E^2 \rangle$	0.036(14)	0.469(9)	0.068(9)	0.353(26)
$\langle r_E^2 \rangle_{\rm PDG}$	-	-	-	0.61(15)
$\langle r_M^2 \rangle$	0.120(76)	0.374(41)	0.201(169)	0.459(122)
μ	-0.390(3)	2.422(180)	0.630(48)	-1.145(106)
μ_{PDG}	-0.613(4)	2.458(10)	-	-1.160(25)

- Our quark-diquark description of $\boldsymbol{\Sigma}$ is quite well.
- All the theoretical predictions agree qualitatively.(Z.Li,J.Xie,Commu.Theo.Phys.,73,055201;P.Shanahan,et.al,Phys.Rev.,D90,034502 H.Lin,K.Orginos,Phys.Rev.,D79,074507.)
- The ratios of EMFFs for Σ^+ and Σ^- behave differently.
- This difference is as a result of diquark correlations (notice the tendency from $\Sigma^+ \to \Sigma^0 \to \Sigma^-$).

Electromagnetic transition form factors of $\Sigma^0 \to \Lambda$

H.Alepuz, R.Alkofer, C.Fischer, Eur.Phys.J.,A54,41;

- The large numerical error near $Q^2 = 0$.
- The G_E decreases slowly → localized electric transition.

-

315

Electromagnetic transition form factors of $\Sigma^0 \to \Lambda$

H.Alepuz, R.Alkofer, C.Fischer, Eur.Phys.J.,A54,41;

- The large numerical error near $Q^2 = 0$.
- The G_E decreases slowly \rightarrow localized electric transition.
- G_{M,q-dq} < G_{M,qqq} and they meet in medium momentum region.

Electromagnetic transition form factors of $\Sigma^0 \to \Lambda$

H.Alepuz, R.Alkofer, C.Fischer, Eur.Phys.J.,A54,41;

- Similar behaviors.
- The large numerical error near $Q^2 = 0$.
- The G_E decreases slowly \rightarrow localized electric transition.
- G_{M,q-dq} < G_{M,qqq} and they meet in medium momentum region.

Electromagnetic transition form factors of $\Sigma^0 \to \Lambda$

H.Alepuz, R.Alkofer, C.Fischer, Eur.Phys.J.,A54.41:

16/19

Table of Contents

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

- We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.
- We obtain a mass spectrum consistent with experimental values.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = の Q @

- We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.
- We obtain a mass spectrum consistent with experimental values.
- ★ We calculate the elastic EMFFs of Λ and Σ . We get a good agreement with lattice QCD and other theoretical methods.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = の Q @

- We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.
- We obtain a mass spectrum consistent with experimental values.
- ★ We calculate the elastic EMFFs of Λ and Σ . We get a good agreement with lattice QCD and other theoretical methods.
- ★ We calculate the electromagnetic transition form factors of Σ⁰ → Λ. They have the same behavior as that from 3-body Faddeev equation.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

- We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.
- We obtain a mass spectrum consistent with experimental values.
- We calculate the elastic EMFFs of Λ and Σ . We get a good agreement with lattice QCD and other theoretical methods.
- ★ We calculate the electromagnetic transition form factors of $\Sigma^0 \rightarrow \Lambda$. They have the same behavior as that from 3-body Faddeev equation.
- ☆ In the following, we will calculate the electromagnetic transition form factors of $\Sigma^0 \rightarrow \Lambda$ in the timelike region.

- We extended the Poincaré-covariant quark-diquark Faddeev equation approach to strange quark sector.
- We obtain a mass spectrum consistent with experimental values.
- We calculate the elastic EMFFs of Λ and Σ . We get a good agreement with lattice QCD and other theoretical methods.
- ★ We calculate the electromagnetic transition form factors of $\Sigma^0 \rightarrow \Lambda$. They have the same behavior as that from 3-body Faddeev equation.
- ☆ In the following, we will calculate the electromagnetic transition form factors of $\Sigma^0 \rightarrow \Lambda$ in the timelike region.
- ☆ We will compare the electromagnetic form factors of $\Delta \to N$ and $\Sigma^*(1385) \to \Lambda$

THANK YOU!

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Quark and diquark propagators

$$S(p) = -ip\sigma_v(p^2) + \sigma_s(p^2), \quad \sigma_v = \frac{\sigma_v}{\lambda^2}, \quad \sigma_s = \frac{\sigma_s}{\lambda},$$

where

$$\begin{split} \bar{\sigma_v}(x) &= \frac{1}{x + \bar{m}^2} \left[1 - \mathcal{F} \left(2(x + \bar{m}^2) \right) \right] \,, \quad \mathcal{F}(x) = \frac{1 - \exp[-x]}{x} \,, \\ \bar{\sigma_s}(x) &= 2 \bar{m} \mathcal{F} \left(2(x + \bar{m}^2) \right) + \mathcal{F}(b_1 x) \mathcal{F}(b_3 x) \left[b_0 + b_2 \mathcal{F}(\epsilon x) \right] \,, \quad x = \frac{p^2}{\lambda^2} \,, \end{split}$$

$\lambda_{u,d}$	$\bar{m}_{u,d}$	$b_0^{u,d}$	$b_1^{u,d}$	$b_2^{u,d}$	$b_3^{u,d}$	ε
0.566	0.00897	0.131	2.90	0.603	0.185	0.0001
λ_s	\bar{m}_s	b_0^s	b_1^s	b_2^s	b_3^s	
0.817556	0.223	0.198323	1.19203	0.202049	1.19204	

Quark and diquark propagators

▲ 伊 ▶ ▲ 三 ▶

2/3

31= 990

Diquarks

Diquark propagators:

$$\begin{split} D_{0^+}(k) &= \frac{1}{M_{0^+}^2} \mathcal{F}(k^2/\omega_{0^+}^2) \,, \\ D_{1^+}^{\mu\nu}(k) &= \left(g^{\mu\nu} + \frac{k^{\mu}k^{\nu}}{M_{1^+}^2}\right) \frac{1}{M_{1^+}^2} \mathcal{F}(k^2/\omega_{1^+}^2) \,, \\ &\qquad \omega_{J^P}^2 = \frac{1}{2}m_{J^P}^2 \,. \\ &\qquad \Gamma_{0^+}^a(l,p_d) = ig_{0^+}\gamma_5 * C * \mathcal{F}(l^2)\lambda^a \,, \\ &\qquad \Gamma_{1^+}^{a,\mu}(l,p_d) = ig_{1^+}\gamma^{\mu} * C * \mathcal{F}(l^2)\lambda^a \,, \end{split}$$