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Abstract. Damping width of the double giant dipole reso-
nance of136Xe excited in relativistic heavy ion collisions
is calculated by diagonalizing a microscopic Hamiltonian in
a basis containing one-, two- and three-phonon states. The
coupling between these states is determined making use of
the fermion structure of the phonons. The resulting width of
the double giant dipole resonance is close to

√
2 times the

width of the single giant dipole resonance.

PACS: 21.60.-n; 24.30.Cz

Two-phonon giant dipole resonances have been observed
in relativistic heavy ion collision. Their centroid energy is
found close to the twice the energy of the single resonance,
while their damping width displays a value lying between√

2 and 2 times the width of the one-phonon state (cf. e.g.
[1]). From rather general arguments [2], the most important
couplings leading to real transitions of the double giant res-
onances and thus to a damping width of these modes are to
configurations built out by promoting three nucleon across
the Fermi surface. That is, configurations containing three
holes in the Fermi sea and three particles above the Fermi
surface (3p-3h configurations). In this paper we present, for
the first time, results of calculations taking into account such
couplings [3], not included in the microscopic studies car-
ried out previously [4–7]. The nucleus considered is136Xe.
It will be concluded that the resulting width of the double gi-
ant resonance is approximately equal to

√
2 times the width

of the single resonance state.
The Hamiltonian describing the system under discus-

sion includes mean field terms for protons and neutrons, a
monopole pairing interaction and multipole-multipole forces.
For details we refer to [8]. Diagonalizing the Hamiltonian in
the random phase approximation one obtains a phonon ba-
sis of multipolarityλ and parityπ = (−1)λ. The associated
creation operators shall be denotedQ+

α, whereα = (λπ, n)
and where the indexn labels whether the phonon with these
quantum numbers has lowest, next to lowest, etc. energy (n
= 1,2,3. . .). The set of basis statesQ+

α |〉ph, where|〉ph is the
phonon vacuum, includes both collective and non-collective

states. The wave function describing the double giant dipole
resonance (DGDR) and their coupling to 1p-1h and to 3p-3h
doorway states is written as

Ψν(J) =

{∑
α1

Sνα1
(J)Q+

α1
+
∑
α2β2

Dν
α2β2

(J)Q+
α2
Q+
β2√

1 + δα2,β2
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α3β3γ3

T ν
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 |〉ph, (1)

whereJπ = 0+, 2+ denote the total angular and parity of the
excitation. The indexν (= 1,2,3 . . .) labels whether a state
J is the first, second, etc., state in the total energy spectrum
of the system. It is assumed that any combinationα, β, γ of
phonons appears only once. The second and the third terms
in (1) can include phonons of different multipolarities and
parities.

The orthogonality relation associated with the above
wave functions reads
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(J) . (2)

The coefficientsK̃J (β2α2|α′2β′2) arise from the fermion
structure of phonons, and have their origin in the Pauli prin-
ciple [9]. While they are small, they produce shifts in the
energy centroid of the double giant resonance. This is the
reason why we have kept them. Similar coefficients appear
also in connection with the term arising from the “doorway
states” containing three phonons in (1). We have neglected
them because they again are small and furthermore act only
in higher order as compared to the previous term, in defin-
ing the properties of the double giant dipole resonance. Fi-
nally, the correspondingK̃-coefficient associated with the
first term in (2) is proportional to the number of quasipar-
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ticles present in the ground state of the system, a quantity
which is assumed to be zero within linear response theory.

The diagonalization of the model Hamiltonian within the
basis of states defined in (1) leads to secular equation. The
one associated with two-phonon type states reads

det || (ωα2 + ωβ2 − Ex)[δα2β2,α′2β
′
2

+ K̃J (β2α2|α′2β′2)]

+∆J (α2β2, α
′
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′
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∣∣∣∣∣∣
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whereωα is the RPA energy for theithα state of multipo-
larity λ. The quantitiesUα1

α2β2
(J) andUα2β2

α3β3γ3
(J) are matrix

elements of the interaction connecting two-phonon configu-
rations{α2β2} with one-{α1} and three-phonon{α3β3γ3}
configurations, respectively, while∆J (α2β2, α

′
2β

′
2) is the en-

ergy shift of the configuration{α2β2} due to its interaction
with the configuration{α′2β′2}, both belonging to the two-
phonon response (cf. [8]). These quantities are calculated
making use of the model Hamiltonian and the microscopic
fermion structure of phonons.

The solution of (3) provides the eigenvaluesEν
x asso-

ciated with the states introduced in (1) and the coefficients
Dν
α2β2

(J), minors of the matrices introduced in (3). The other
coefficients appearing in (1) are related to theD-coefficients
according to
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.

In keeping with the fact that the Q-value dependence
of the Coulomb excitation amplitude is rather weak at rel-
ativistic energies [10], the cross section associated with the
two-step excitation of the double giant dipole resonance is
proportional to

|
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, (4)

whereMα = 〈Qα||M (E1)||0+
g.s.〉 is the reduced matrix el-

ement of theE1-operator which acting on the ground state
|〉ph excites the one-phonon state with quantum numbers
α = (1−, n).

Making use of the elements discussed above we calcu-
lated the distribution of the quantity (4) over the states (1)
in 136Xe. We considered onlyJπ = 0+ and 2+ components

of the two-phonon giant dipole resonance. It was shown re-
cently [11] that itsJπ = 1+ component cannot be excited
in the second order perturbation theory and is sufficiently
quenched in coupled-channels calculation. The fifteen con-
figurations{1−n, 1−n′} = {α2, β2} displaying the largest
B(E1)×B(E1) values were used in the calculation. They are
built up out of the five most collective RPA roots asso-
ciated with the one-phonon giant dipole resonance carry-
ing the largest B(E1) values and exhausting 77% of energy
weighted sum rule (EWSR). Two-phonon states of collec-
tive character and with quantum numbers different from 1−
lie, as a rule, at energies few MeV away from the double
giant dipole states and were not included in the calculations.
The three-phonon states{α3β3γ3} were built out of phonons
with angular momentum and parity 1−, 2+, 3− and 4+. Only
those configurations where eitherα3, β3 or γ3 were equal
to α2 or β2 were chosen. This is because other configura-
tions lead to matrix elementsUα2β2

α3β3γ3
(J) of the interaction,

which are orders of magnitude smaller than those associated
with the above mentioned three-phonon configurations, and
which contain in the present calculation 5742 states up to
an excitation energy 38 MeV. The single particle contin-
uum has been approximated in the present calculation by
quasibound states. As demonstrated by our previous stud-
ies [6], this approximation provides rather good description
of the single GDR properties in136Xe. This means that our
(2p-2h)[1−×1−] spectrum is also rather complete for the de-
scription of the DGDR properties although it is located at
higher energies.

If one assumes a pure boson picture to describe the
phonons, without taking into account their fermion struc-
ture, the three-phonon configurations omitted in the present
calculation do not couple to two-phonon states under con-
sideration. Furthermore, although the density of 3p-3h con-
figurations is quite high in the energy region corresponding
to the DGDR, a selection of the important doorway configu-
rations in terms of the efficiency with which configurations
couple to the DGDR, can be done rather easily. The above
considerations testify to the advantage of employing a mi-
croscopic phonon picture in describing the nuclear excitation
spectrum, instead of a particle-hole representation. One can
more readily identify the regularities typical of the collec-
tive picture of the vibrational spectrum, and still deal with
the fermion structure of these excitations. As far as the one-
phonon term appearing in (1) is concerned, essentially all
phonons with angular momentum and parity 0+ and 2+ were
taken into account within the energy interval 20–40 MeV.

A rather general feature displayed by the results of the
present calculation is that all two-phonon configurations of
the type{1−n, 1−n′} building the DGDR in the “harmonic”
picture are fragmented over a few MeV due to the coupling
to 3p-3h “doorway states”. The maximum amplitude with
which each two-phonon configuration enters in the wave
function (1) does not exceed a few percent. Two-phonon con-
figurations made out of two different 1− phonons are frag-
mented stronger then two-phonon configurations made out
of two identical 1− phonons. This in keeping with the fact
that, as a rule, states of the type{1−n, 1−n′} with n /= n′ are
less harmonic than states withn = n′ and consequently are
coupled to a larger number of three-phonon configurations.
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Fig. 1. aB(E1) values for the GDR andb,c B(E1)×B(E1) values (4) for the
DGDR associated with Coulomb excitation in136Xe in relativistic heavy
ion collision. b and c correspond toJ = 0+ and J = 2+ components of
the DGDR, respectively. A smooth curve is a result of averaging over all
states with a smearing parameterΓ = 0.5 MeV. See text for details

In Fig. 1b-c, the B(E1)×B(E1) quantity (4) associated
with Coulomb excitation of the almost degenerateJπ = 0+

andJπ = 2+ components of double giant dipole resonance
are shown. For comparison, the B(E1) quantity associated
with the Coulomb excitation of the one-phonon giant dipole
resonance is also shown in Fig. 1a. The reason why the two
angular momentum components of the DGDR are almost
degenerate can be traced back to the fact that the density of
one-phonon configurations to which the DGDR couple and
which is different forJπ = 0+ and Jπ = 2+ type states is
much lower than the density of states associated with 3p-3h
“doorway states”, density of states which is the same in the
present calculation for the two different angular momentum
and parity. Effects associated with theJ-dependence of the
K̃J and∆J coefficients are not able to remove the men-
tioned degeneracy, because of the small size of these coeffi-
cients. These coefficients can also affect the excitation prob-
ability with which theJπ = 0+ andJπ = 2+ states are excited
(cf. (4)). The effect however is rather small, leading to a de-
crease of the order of 2-3% in both cases. TheJ-degeneracy
would be probably somehow broken if one goes beyond a
one-boson exchange picture in the present approach of in-
teraction between different nuclear modes. The next order
term of interaction would couple the DGDR states to many
other 3p-3h configurations, not included in the present stud-
ies, some of these 3p-3h configurations would be different
for different Jπ values. Unfortunately, such calculation is
not possible the present moment.

Table 1. Position, width and the ratio valuesR (5) for of J = 0+ and
J = 2+ components of the DGDR in respect to the ones of the single GDR
in 136Xe. The third row corresponds to pure harmonic picture.

J 〈EDGDR〉 − 2 · 〈EGDR〉, keV ΓDGDR/ΓGDR R

0+ –120 1.44 1.94
2+ –90 1.45 1.96

0
√

2 2

The calculated excitation functions displayed in Fig. 1b-
c yield the following values for the centroid and width
of the DGDR in 136Xe: < E0+ > = 30.68 MeV and
Γ0+ = 6.82 MeV for the 0+ component of the DGDR
and < E2+ > = 30.71 MeV andΓ2+ = 6.84 MeV for
the 2+ component. These values have to be compared to
< E1− > = 15.40 MeV andΓ1− = 4.72 MeV for the sin-
gle GDR in this nucleus from our calculation. The corre-
spondence between these values is presented in Table 1 in
comparison with the prediction of the harmonic model. Also
shown is the ratio

R =

∑
ν

∑
ν1
〈Ψν

0+(2+)|M (E1)|Ψν1
1−〉·〈Ψν1

1− |M (E1)|Ψg.s.〉|2
|∑ν1

〈Ψν1
1− |M (E1)|Ψg.s.〉|4 , (5)

between the two-step excitation probability of the DGDR
normalized to the summed excitation probability of the one-
phonon GDR. The numerical results lie quite close to the
predictions of the harmonical model (see also a discussion
of this problems in [12]). While the on-the-energy-shell tran-
sitions are easier to identify and calculate properly, off-the-
energy shell corrections are considerably more elusive. In
fact, it may be argued that the calculated shift of the en-
ergy centroid of the DGDR with respect to that expected in
the harmonic picture is somewhat underestimated, because
of the limitations used in selecting two-phonon basis states
used in the calculation. On the other hand, including the
two-phonon states made up of 2+ and 3− phonons as done
in the case of40Ca [4], even if only within the pure boson
picture, leads to the value of∆E = 2〈EGDR〉 − 〈EDGDR〉
of the order of 200 keV. In keeping with expectedA−2/3

scaling of∆E (cf. [13]), this result is consistent with that
shown in Table 1.

We conclude that the magnitude as well as the first and
second moments of the Coulomb excitation cross section
associated with the double giant dipole resonance calculated
taking into account couplings between one-, two- and three-
phonon states, are well accounted for within the harmonic
picture.
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