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Abstract—Thermal effects for inelastic neutrino–nucleus scattering off even–even nuclei in the iron
region are studied. Allowed and first-forbidden contributions to the cross sections are calculated within
the quasiparticle random-phase approximation, extended to finite temperatures within the Thermo-Field-
Dynamics formalism. The GT0 strength distribution at finite temperatures is calculated for the sample
nucleus 54Fe. The neutral-current neutrino–nucleus inelastic cross section is calculated for relevant
temperatures during the supernova core collapse. The thermal population of the excited states significantly
enhances the cross section at low neutrino energies. In agreement with studies using a large scale shell-
model approach the enhancement is mainly due to neutrino up-scattering at finite temperatures.
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1. INTRODUCTION

Neutrinos play a decisive role in core-collapse
supernova explosions since they carry most of the
gravitational binding energy released. The transport
of neutrinos through the hot and dense stellar envi-
ronment is believed to ultimately be responsible for a
successful explosion, although the details are not fully
understood yet. The present paper addresses the role
of thermal effects in the inelastic neutrino–nucleus
scattering in the iron core during infall and shortly
after bounce.

At the end of the 1980th it was pointed out by
Haxton that inelastic neutrino–nucleus scattering
(INNS) mediated by the neutral current can be of
importance comparable with the other processes of
neutrino down-scattering [1]. The INNS contributes
to the neutrino opacities and thermalization during
the collapse phase, the revival of the stalled shock
wave in the delayed explosion mechanism, and to
explosive nucleosynthesis. The estimates by Haxton
were based on nuclei in their respective ground states,
i.e. for a “cold” nuclei. Subsequently, it was real-
ized that the INNS occurs in hot stellar environment
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(T ≥ 0.8 MeV) and, due to the thermal population of
nuclear excited states, sizeable changes of the INNS
cross section are to be expected. The effect was firstly
analyzed in [2] and then in [3] on the basis of large-
scale shell-model (LSSM) calculations. In [3, 4],
it was found that the INNS cross section notice-
ably increases at T �= 0 and for neutrino energies
Eν � 10 MeV, especially for neutrino scattering off
even–even nuclides.

However, in the subsequent core-collapse super-
nova simulations [5] including several dozens of nu-
clides, it was demonstrated that the inclusion of the
INNS process does not have a large effect on the
collapse dynamics and the shock wave propagation.
But it significantly modifies the spectrum of neutrinos
generated in the νe burst.

Here, we apply an alternative approach for treating
the thermal effects for INNS cross sections. In
essence, our approach is based on the thermal quasi-
particle random-phase approximation (TQRPA). We
apply it in the context of thermo-field-dynamics (TFD),
which enables a transparent treatment of thermal
excitation and de-excitation processes and offers
the possibility for systematic improvements. This
approach has recently been used in studies of the
electron capture on hot iron and germanium nuclei
under stellar conditions [6].

2. FORMALISM

2.1. Fundamentals of the Thermo-Field-Dynamics

Thermo-field-dynamics [7–9] is a real-time for-
malism for treating thermal effects in quantum field
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theory and nonrelativistic many-body theories. The
standard TFD formalism treats a many-body system
in thermal equilibrium with a heat bath and a parti-
cle reservoir in the grand canonical ensemble. The
thermal average of a given operator A is calculated
as the expectation value in a specially constructed,
temperature-dependent state |0(T )〉 which is termed
the thermal vacuum. This expectation value is equal
to the usual grand canonical average of A. In this
sense, the thermal vacuum describes the hot system
in the thermal equilibrium.

To construct the state |0(T )〉, a formal doubling
of the system degrees of freedom is introduced. In
TFD, a tilde conjugate operator ˜A—acting in the
independent Hilbert space—is associated with A, in
accordance with properly formulated tilde conjuga-
tion rules [7–9]. For a system governed by the Hamil-
tonian H at T = 0, the whole Hilbert space at T �= 0
is spanned by the direct product of the eigenstates
of H (H|n〉 = En|n〉) and those of the tilde Hamilto-
nian ˜H having the same eigenvalues ( ˜H|ñ〉 = En|ñ〉).
The important point is that, in the doubled Hilbert
space, the time-translation operator is not the initial
Hamiltonian H , but instead the thermal Hamiltonian
H = H − ˜H . This implies that the excitations of the
thermal system are obtained by the diagonalization
of H.

The thermal vacuum is the zero-energy eigenstate
of the thermal Hamiltonian H and satisfies the ther-
mal state condition [7–9]

A|0(T )〉 = σeH/2T
˜A†|0(T )〉, (1)

where σ = 1 for bosonic A and σ = i for fermionic A.
As it follows from the definition of H, each of its

eigenstates with positive energy has the counterpart—
the tilde-conjugate eigenstate—with negative but
the same absolute energy value. This allows to
treat excitation and de-excitation processes at finite
temperatures.

Obviously, in most practical cases one cannot di-
agonalize H exactly. Usually, one resorts to certain
approximations such as Hartree–Fock–Bogoliubov
(HFB) mean-field theory and the random-phase ap-
proximation (RPA) (see, e.g., [10]). In what follows
the TFD studies for neutrino-induced charge-neutral
excitations in hot nuclei are based in part on the
results of [11, 12] (see also [6]).

2.2. Charge-Neutral Excitations in Hot Nuclei

In what follows we employ the Hamiltonian of
the quasiparticle–phonon model (QPM) HQPM [13]
which consists of proton and neutron mean fields Hsp,
the BCS pairing interactions Hpair and isoscalar

and isovector separable particle–hole interactions.
Since the INNS involves nuclear Jπ excitations
of both natural (π = (−1)J ) and unnatural (π =
(−1)J+1) parities both the separable multipole H

ph
M

and spin-multipole H
ph
SM interactions are included in

the particle–hole channel

HQPM = Hsp + Hpair + H
ph
M + H

ph
SM. (2)

The four terms of HQPM read

Hsp =
∑

τ=p,n

∑

jm

τ
(Ej − λτ )a

†
jmajm,

Hpair = −1
4

∑

τ=p,n

Gτ

∑

jm
j′m′

τ
a†jma†jma

j′m′aj′m′ ,

H
ph
M = −1

2

∑

λμ

∑

τρ=±1

(κ(λ)
0

+ ρκ
(λ)
1 )M+

λμ(τ)Mλμ(ρτ),

H
ph
SM = −1

2

∑

Lλμ

∑

τρ=±1

(κ(Lλ)
0

+ ρκ
(Lλ)
1 )S†

Lλμ(τ)SLλμ(ρτ).

Here, we use standard notation of the QPM. Namely,
a†jm and ajm are the creation and annihilation opera-
tors of particle with quantum numbers jm ≡ n, l, j,m
and energy Ej ; jm stands for the time-reversed
single-particle states; the index τ is isotopic one and
changing the sign of τ means changing n ↔ p; the
parameter Gτ is the constant of pairing interaction;

λτ is the chemical potential; the parameters κ
(a)
0

(κ(a)
1 ) denote the strength parameters of the isoscalar

(isovector) multipole (a ≡ λ is a multipole index) and
spin-multipole (a ≡ Lλ is a spin-multipole index)
forces. The multipole M+

λμ(τ) and spin-multipole

S+
Lλμ(τ) single-particle operators read as

M+
λμ(τ) =

∑

j1m1

j2m2

τ
〈j1m1|iλRλ(r)Yλμ| (3)

× j2m2〉a†j1m1
aj2m2

,

S†
Lλμ(τ) =

∑

j1m1
j2m2

τ
〈j1m1|iLRL(r)[YLσ]λμ|

× j2m2〉a†j1m1
aj2m2

,

where
[

YLσ
]λ

μ
=

∑

M,m

〈LM1m|λμ〉YLM (θ, φ)σm,
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and the notation
∑τ implies a summation over neu-

tron (τ = n) or proton (τ = p) single-particle states
only. The excitations of natural parity are generated
by the multipole and spin-multipole L = λ interac-
tions, while the spin-multipole interactions with L =
λ± 1 are responsible for the states of unnatural parity.

To determine the thermal behavior of a nucleus
governed by the Hamiltonian (2) we should diag-
onalize the thermal Hamiltonian HQPM = HQPM −
˜HQPM and find the corresponding thermal vacuum

state. This will be done in two steps.

In a first step, the sum of single-particle and
pairing terms HBCS = Hsp + Hpair is diagonalized.
To this end, two subsequent unitary transformations
are made. The first is the usual Bogoliubov u, v
transformation from the original particle operators
a†jm, ajm to the quasiparticle ones α†

jm, αjm. The
same transformation is applied to the tilde opera-
tors ã†jm, ãjm, thus producing the tilde quasiparticle

operators α̃†
jm, α̃jm. The second, unitary thermal

Bogoliubov transformation mixes the original and
tilde degrees of freedom

β†
jm = xjα

†
jm − iyjα̃jm, (4)

˜β†
jm = xjα̃

†
jm + iyjαjm (x2

j + y2 = 1).

The operators β†
jm, βjm, ˜β†

jm, and ˜βjm are called ther-
mal quasiparticle operators.

The coefficients uj , vj , xj , yj are found by diag-
onalizing HBCS and demanding that the vacuum of
thermal quasiparticles is the thermal vacuum in the
BCS approximation, i.e., it obeys the thermal state
condition (1). As a result, one obtains the following
equations for uj , vj and xj , yj :

vj =
1√
2

(

1 − Ej − λτ

εj

)1/2

, (5)

uj = (1 − v2
j )

1/2,

yj =
[

1 + exp
(εj

T

)]−1/2
, xj =

(

1 − y2
j

)1/2
, (6)

where εj =
√

(Ej − λτ )2 + Δ2
τ . The coefficients y2

j

determine the average number of thermally excited
Bogoliubov quasiparticles in the BCS thermal vac-
uum

〈0(T ); qp|α†
jmαjm|0(T ); qp〉 = y2

j (7)

and, thus, coincide with the thermal occupation fac-
tors of the Fermi–Dirac statistics.

The pairing gap Δτ and the chemical potential
λτ are the solutions to the finite-temperature BCS
equations

Δτ (T ) =
Gτ

2

∑

j

τ
(2j + 1)(1 − 2y2

j )ujvj , (8)

Nτ =
∑

j

τ
(2j + 1)(v2

j x2
j + u2

jy
2
j ),

where Nτ is the number of neutrons or protons in a
nucleus.

At this stage, the thermal BCS HamiltonianHBCS
is diagonal

HBCS 	
∑

τ

∑

jm

τ
εj(T )(β†

jmβjm − ˜β†
jm

˜βjm)

and corresponds to a system of noninteracting ther-
mal quasiparticles. The vacuum for thermal quasi-
particles |0(T ); qp〉 is the thermal vacuum in the BCS
approximation. The states β†

jm|0(T ); qp〉 have pos-
itive excitation energies, whereas the correspond-
ing tilde-states ˜β†

jm|0(T ); qp〉 have negative energies.
Since the thermal vacuum contains a certain number
of Bogoliubov quasiparticles, excited states can be
built on |0(T ); qp〉 by either adding or removing a Bo-
goliubov quasiparticle. The first process corresponds
to the creation of a non-tilde thermal quasiparticle
with positive energy, whereas the second process cre-
ates a tilde quasiparticle with negative energy.

At the second step of the approximate diago-
nalization of HQPM, long-range correlations due to
the particle–hole interaction are taken into account
within the TQRPA. Within the TFD formalism the
terms Hph

M and Hph
SM are written in terms of the

thermal quasiparticle operators determined above.
Then, HQPM is approximately diagonalized within a
basis of thermal phonon operators

Q†
λμi =

1
2

∑

τ

∑

j1j2

τ{

ψλi
j1j2[β

†
j1

β†
j2

]λμ (9)

+ ˜ψλi
j1j2[˜β

†
j1

˜β†
j2

]λμ + 2iηλi
j1j2[β

†
j1

˜β†
j2

]λμ

+ φλi
j1j2[βj1βj2 ]

λ
μ + ˜φλi

j1j2[˜βj1
˜βj2 ]

λ
μ

+ 2iξλi
j1j2[βj1

˜βj2 ]
λ
μ

}

,

where [ ]λμ denotes the coupling of single-particle an-
gular momenta j1, j2 to a total angular momentum λ.
Now the thermal equilibrium state is treated as the
vacuum |0(T ); ph〉 for the thermal phonon annihila-
tion operators.

The thermal phonon operators are considered as
bosonic ones which imposes certain constraint on
the phonon amplitudes. To find the amplitudes and
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energies of the thermal phonons, the variational prin-
ciple is used, i.e., we find the minimum of the aver-
age value of thermal Hamiltonian with respect to the
one-phonon states Q†

λμi|0(T ); ph〉 or ˜Q†
λμi

|0(T ); ph〉
under the aforementioned constraint.

After variation one obtains a system of linear equa-
tions for the amplitudes ψλi

j1j2
, ˜ψλi

j1j2
, ηλi

j1j2
, etc. as

well as for the energies (details can be found in [11]).
These constitute the equations for the TQRPA. In
contrast to the zero temperature case, the nega-
tive solutions of the secular equation have a physi-
cal meaning. They correspond to the tilde thermal
one-phonon states and arise from ˜β†

˜β† terms in the
thermal phonon operator. As it was noted above,
creation of a tilde thermal quasiparticle corresponds
to the annihilation of a thermally excited Bogoliubov
quasiparticle. Consequently, excitations of negative-
energy thermal phonons correspond to transitions
from thermally excited nuclear states.

After diagonalization in terms of thermal phonon
operators the TQRPA part of the HQPM takes the
form

HTRPA =
∑

λμi

ωλi(Q
†
λμiQλμi − ˜Q†

λμi
˜Qλμi). (10)

To fix properly the thermal vacuum state |0(T ); ph〉
corresponding to TRPA we once again turn to the
thermal state condition (1) and derive the final ex-
pressions for the amplitudes of the thermal phonon
operator (9).

Once the structure of thermal phonons is deter-
mined, one can determine the transition probabili-
ties from the thermal vacuum to thermal one-phonon
states. They are given by the squared reduced matrix
elements of the corresponding transition operator Tλμ

Φλi =
∣

∣〈Qλi||Tλ||0(T ); ph〉
∣

∣

2
, (11)

˜Φλi =
∣

∣〈 ˜Qλi||Tλ||0(T ); ph〉
∣

∣

2
.

Thus, the probability to excite the hot nucleus is given
by Φλi, while ˜Φλi is the probability to de-excite it.

2.3. Cross Section of Inelastic Neutrino–Nucleus
Scattering

Considering INNS in stellar environments we as-
sume that a nucleus is in thermal equilibrium with
a heat bath and particle reservoir or, in TFD terms,
in the thermal (phonon) vacuum state. An inelastic
collision of a hot nucleus with neutrinos leads to
transitions from the thermal vacuum to thermal one-
phonon states.

In the derivation of the relevant cross section
at finite temperature we follow the formalism by

Walecka–Donnelly [14, 15], which describes in a
unified way electromagnetic and weak semilep-
tonic processes by taking advantage of the multi-
pole decomposition of the relevant hadronic current
density operator. In the case of neutral-current
neutrino–nucleus scattering, the differential cross
section for a transition from an initial nuclear state (i)
to a final state (f ) can be written as a sum over all
allowed multipolarities Jπ

dσi→f

dΩ
=

2G2

π

(Eν − ωif )2 cos2(θ/2)
2Ji + 1

(12)

×
{ ∞

∑

J=0

σJ
CL +

∞
∑

J=1

σJ
T

}

,

where

σJ
CL =

∣

∣

∣

∣

〈

Jf

∣

∣

∣

∣

∣

∣

∣

∣

M̂J +
ωif

q
L̂J

∣

∣

∣

∣

∣

∣

∣

∣

Ji

〉∣

∣

∣

∣

2

(13)

and

σJ
T =

(

−
q2
μ

2q2
+ tan2 θ

2

)

(14)

×
[

∣

∣

∣

〈

Jf

∣

∣

∣

∣

∣

∣Ĵ
mag
J

∣

∣

∣

∣

∣

∣Ji

〉∣

∣

∣

2
+

∣

∣

∣

〈

Jf

∣

∣

∣

∣

∣

∣Ĵel
J

∣

∣

∣

∣

∣

∣Ji

〉∣

∣

∣

2
]

− tan
θ

2

√

−
q2
μ

2q2
+ tan2 θ

2

×
[

2Re
〈

Jf

∣

∣

∣

∣

∣

∣Ĵ
mag
J

∣

∣

∣

∣

∣

∣Ji

〉〈

Jf

∣

∣

∣

∣

∣

∣Ĵel
J

∣

∣

∣

∣

∣

∣Ji

〉∗]
.

Here, G is the electroweak coupling constant, θ is the
scattering angle, Eν is the incoming neutrino energy,
ωif is the transition energy from the initial nuclear
state (i) to the final state (f ), and qμ = (ωif ,q)

(

q = |q| =

√

ω2
if + 4Eν(Eν − ωif ) sin2 θ

2

)

is the four-momentum transfer. The operators M̂J ,
L̂J , Ĵel

J , and Ĵ
mag
J are the multipole operators for

the charge, longitudinal, and transverse electric and
magnetic parts of the four-current, respectively. Fol-
lowing [14] they can be written in terms of one-body
operators in the nuclear many-body Hilbert space.

The cross section involves the reduced matrix ele-
ments of these operators between the initial and final
nuclear states. Within the present approach, the
initial nuclear state is the thermal phonon vacuum
(TV) and the final states are the thermal one-phonon
states. Therefore, at T �= 0 all the reduced matrix el-
ements in Eqs. (13), (14) are calculated in accordance
with Eqs. (11). The total cross section is obtained
from the differential cross sections by summing over
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all possible one-phonon states of different multipo-
larity and by numerical integration over scattering
angles

σ(Eν) = 2π
∑

f∈{λi}

−1
∫

1

dσTV→f

dΩ
d cos θ. (15)

Up to moderate energies (Eν ∼ 15–20 MeV),
the INNS is dominated by the neutral-channel
Gamow–Teller transitions Jπ = 1+. Moreover, in
the q → 0 limit, the full operator exciting 1+ states
is reduced to the following Gamow–Teller operator:

GT0 =
(

gA

gV

)

σt0, (16)

where (gA/gV ) = −1.2599 [16] is the ratio of the axial
and vector weak coupling constants, σ is the spin
operator and t0 is the zero component of the isospin
operator in spherical coordinates.

To circumvent computational limitations in the
LSSM calculations [3–5] the total INNS cross
section σ(Eν) was split into two parts—a down-
scattering part σd(Eν) and the up-scattering part
σu(Eν). The term σd(Eν) includes transitions where
the scattered neutrino loses energy, whereas the term
σu(Eν) includes those transitions where the neutrino
gains energy from a hot nucleus. Assuming the va-
lidity of the Brink hypothesis for the GT0 resonance,
the down-scattering term was transformed to a sum
over only those final excited nuclear states which are
coupled by a direct GT0 transition with the nuclear
ground state. As a result, σd(Eν) appeared to be
independent of T .

In our case, the part σd(Eν) corresponds to tran-
sitions from |0(T ); ph〉 to |Qλi〉 states with positive
energies, whereas the σu(Eν) term is the sum of
transitions |0(T ); ph〉 → |˜Qλi〉 where the tilde-states
have negative energies. In the latter transitions a
neutrino gains energy due to nuclear de-excitation.

Thus within the present approach the GT0 (Jπ =
1+) contribution to the cross section reads

σ(Eν) = σd(Eν) + σu(Eν) (17)

=
G2

π

∑

i

(Eν − ωJi)2ΦJi +
G2

π

∑

i

(Eν + ωJi)2˜ΦJi.

The probabilities ΦJi and ˜ΦJi are given in (11) with
T = GT0. Since ωJi, ΦJi, and ˜ΦJi are functions of
T , both terms σd and σu depend on temperature.

Whereas the GT0 component determines the
neutrino–nucleus cross section at low Eν , higher
multipole contributions become increasingly impor-
tant at higher neutrino energies. Moreover, at higher

neutrino energies Eq. (16) for GT0 is not valid and
the 1+-transition operator will depend on transfer
momentum q. According to [17, 18] the q dependence
reduces the cross section.

3. CALCULATIONS
FOR THE HOT NUCLEUS 54Fe

Numerical calculations have been performed for
54Fe. The single-particle wave functions and en-
ergies were calculated in a spherically symmetric
Woods–Saxon potential. The constants of the
pairing interaction were determined to reproduce
experimental pairing energies in the BCS approxima-
tion. All parameters are the same as in our previous
calculations [6, 19] for electron capture rates on the
same nucleus at T �= 0.

The radial dependence of the residual multipole
and spin-multipole forces is chosen in the form
Rλ(r) = ∂U(r)/∂r, where U(r) is the central part
of the single-particle Woods–Saxon potential. Thus,

Rλ(r) as well as the parameters κ
(λ)
0,1 and κ

(Lλ)
0,1 do not

depend on λ. The isovector parameters κ
(λ)
1 and κ

(Lλ)
1

are fitted to the experimental position of the E1 [20]
and M1 [21] resonances in 54Fe. According to the
estimates in [22, 23], the isoscalar spin-multipole
interaction is very weak in comparison with the

isovector one. Following [23], we take κ
(Lλ)
0 /κ

(Lλ)
1 =

0.1.
First, we have performed TQRPA calculations of

the GT0 strength distribution in 54Fe. As in the
LSSM calculations [4], the GT0 operator (16) have
been scaled by a quenching factor 0.74. In Fig. 1, we
display the GT0 strength distributions for the ground
state (T = 0) of 54Fe and at three stellar temperature
values, occurring at different collapse stages: T =
0.86 MeV corresponds to the condition in the core
of a presupernova model for a 15M� star; T = 1.29
and 1.72 MeV relate approximately to the neutrino
trapping and neutrino thermalization stages, respec-
tively. All results are plotted as a function of the
energy transfer to 54Fe. For charge-neutral reactions
this energy is equal to a thermal phonon energy ωJi.

At T = 0, the transition strength is concentrated
mostly in one-phonon 1+ state forming the GT0 res-
onance near ω ≈ 10 MeV. The main contribution to
the phonon structure comes from the proton and neu-
tron single-particle transitions 1f7/2 → 1f5/2. With
temperature increase the fraction of low-energy tran-
sitions in the GT0 strength distribution increases.
The physical reason is the weakening and subsequent
collapse of pairing correlations (at T ≈ 0.8 MeV) and
appearance of low-energy particle–particle and hole–
hole transitions due to thermal smearing of neutron
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Fig. 1. GT0 strength distributions in the 54Fe nucleus at different temperatures T as a function of the energy of transition ω.
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Fig. 2. (a) Contribution of 1+ transitions to the cross section of neutrino inelastic scattering off 54Fe calculated with the
q-dependent 1+ excitation operator as a function of neutrino energy Eν at different stellar temperatures T ; (b) A comparison of
the cross sections of neutrino inelastic scattering off 54Fe calculated with the q-dependent 1+ excitation operator (solid curve)
and the GT0 excitation operator (16) (dashed curve) at T = 0.86 MeV.

and proton Fermi surfaces. Moreover, at finite tem-
perature the “negative energy” transitions to tilde
one-phonon states appear. As a result, the GT0

energy centroid is shifted down by 1.1 MeV at T =
1.72 MeV. This indicates a violation of the Brink
hypothesis within the present approach.

The contribution of 1+ transitions to the INNS
cross section is shown in Fig. 2a for different tem-
peratures. The calculations have been performed
with the exact q-dependent 1+ multipole transition
operator [14]. As in the LSSM calculations [3],
the cross section σ(Eν) at T = 0 is equal to zero
when Eν is less than the energy of the lowest 1+

state in 54Fe. Within the QRPA, the lowest 1+

state in 54Fe has an excitation energy of ω(1+) ≈
7.5 MeV (see Fig. 1). The GT0 transitions at T �= 0
do not show such a gap due to thermally unblocked
low- and negative-energy transitions. As a conse-
quence, there is no threshold energy for neutrinos

at finite temperatures and the INNS cross section
appears to be quite sensitive to T at neutrino energies
Eν < 10 MeV. As it follows from the present calcu-
lations as well as from the LSSM study [3], thermal
effects can increase the low-energy cross section by
up to two orders of magnitude when the temperature
rises from 0.86 to 1.72 MeV. Finite temperature ef-
fects are unimportant for Eν > 15 MeV where exci-
tation of the GT0 resonance becomes possible and
dominates the cross section. These features were
pointed in [3] as well.

To check the influence of finite momentum transfer
on the INNS cross section we also have performed
calculations with the GT0 transition operator (16). A
comparison of 1+ and GT0 cross sections is shown in
Fig. 2b for T = 0.86 MeV. The q dependence becomes
important at Eν > 30 MeV. At Eν = 35 MeV the
INNS cross section calculated with the q-dependent
1+ operator is by 20% less than that calculated with
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the GT0 operator (16). At Eν = 50 MeV the differ-
ence is about factor of 2. The effect does not change
with temperature.

The contribution of first-forbidden transitions
0−, 1−, and 2− to the INNS cross section was also
calculated within the TQRPA, taking into account
the q dependence as given in [14]. The results are
presented in Fig. 3. As it can be seen, a temperature
increase enhances the cross sections at low and mod-
erate Eν . The main reason is thermally unblocked

low-energy first-forbidden transitions. According to
our calculations 2− transitions dominate the total
contribution of first-forbidden transitions to the cross
section at low neutrino energies, while at higher
energies the total contribution is mainly determined
by the 1− transitions.

In Fig. 4, the INNS cross sections at different
temperatures are shown as a sum of 1+, 0−, 1−, and
2− contributions (we omit the contribution of the 0+

multipole because it is negligible). At low Eν the
cross sections are almost completely dominated by
the GT0 transitions. The part of the cross sections
arising from the first-forbidden transitions becomes
increasingly important at larger Eν . We find that
for Eν = 30 MeV up to 20% of the cross section is
due to first-forbidden transitions. For Eν = 40 MeV
allowed and forbidden transitions contribute about
equally, while at Eν = 50 MeV the contribution of
first-forbidden transitions is nearly twice as large as
that of 1+ transitions.

In the LSSM calculations, the temperature-
related enhancement of σ(Eν) was only due to the
neutrino up-scattering. In our approach both the
up-scattering and down-scattering parts of σ(Eν)
are temperature dependent. To analyze the relative
importance of these two types of scattering processes
we display them separately as the functions of Eν for
different values of T in Fig. 5.
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A weak T dependence of σd is seen at low neutrino
energies Eν < 12 MeV. At higher energies σd prac-
tically does not depend on T . As the function of Eν

the down-scattering cross section sharply increases
at low neutrino energies and then grows more slowly.
Instead, σu is quite sensitive to temperature but its
dependence on Eν is obviously smoother than that of
σd (at least at Eν < 15 MeV). The absolute values of
σd and σu are of the same order of magnitude only at
quite low neutrino energies Eν � 4–10 MeV.

Thus the conclusion is that the T dependence of
the INNS cross section at low neutrino energies is
mainly due to up-scattering process, whereas at neu-
trino energies Eν > 15 MeV, when the thermal effects
are much less important, the INNS cross section is
determined by the neutrino down-scattering.

The above conclusions agree well with the results
of the LSSM studies for even–even nuclei [3, 4].
Furthermore, our results for σd confirm the applica-
bility of approximations based on the Brink hypothe-
sis, which has been used in calculations of σd in the
LSSM.

4. CONCLUSIONS

We have performed studies of the temperature
dependence of the cross section for inelastic neu-
trino–nucleus scattering off the hot nucleus 54Fe.
Thermal effects were treated within the thermal
quasiparticle random-phase approximation in the
context of the TFD formalism. These studies are
relevant for supernova simulations.

In contrast to the large-scale shell-model stud-
ies [3, 4] we do not assume the Brink hypothesis
when treating the down-scattering component of the
cross section σ(Eν). Moreover, we take into account
thermal effects not only for the allowed 1+ transitions
but also for the first-forbidden transitions 0−, 1−, and
2−. For all multipole contributions we have performed

the calculations with momentum dependent multi-
pole operators.

Despite these differences between the two ap-
proaches, our calculations have revealed the same
thermal effects as were found in [3, 4]: A temperature
increase leads to a considerable enhance of the INNS
cross section for neutrino energies lower than the
energy of the GT0 resonance. This enhancement is
mainly due to neutrino up-scattering at finite tem-
perature. The calculated cross sections for 54Fe are
very close to those given in [4]. Thus, the results of
our study show that the present approach provides a
valuable tool for the evaluation of the inelastic neu-
trino–nucleus cross sections under stellar conditions.
The approach can be easily adopted to calculate the
INNS cross sections as a function of scattering angle.
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