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Abstract—A formalism based on the thermo field dynamics and allowing one to treat thermal effects on the
strength distribution of charge-exchange transitions in hot nuclei is developed. The strength distributions
of the allowed and first-forbidden p → n transitions are calculated for the neutron-rich nucleus 80Ge at
different temperatures. Then the electron capture rates on the same nucleus are calculated at temperatures
and densities corresponding to an advanced stage of stellar evolution.
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1. INTRODUCTION

Weak interaction mediated reactions play a deci-
sive role in many astrophysical processes [1]. A reli-
able determination of the reaction rates is necessary
to simulate stellar evolution, nucleosynthesis, etc.
Since the famous paper by H.A. Bethe et al. [2], it is
generally accepted that electron capture on pf-shell
nuclei is one of the most important processes before
and during the collapse of a massive star. Via the
deleptonization and the size of the outer and inner
core, its rate essentially determines the collapse dy-
namics. Moreover, just the electron capture process
is the principal source of neutrinos which carry away
most of the energy released in the collapse.

The problem of electron capture by nuclei at high
temperature and densities has been tackled by many
authors (see, e.g., [3–9]). One of the most interest-
ing and important problems analyzed in these papers
was the influence of thermal effects, i.e., a thermal
population of nuclear excited states, on the capture
rate. It was shown that the thermal population could
noticeably increase the capture as well as β− decay
rates.
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To date, the most reliable calculations of electron
capture rates for hot pf-shell nuclei have been per-
formed in the framework of the shell model with a
realistic nucleon–nucleon interaction (see [9] and ref-
erences therein). However, such calculations require
diagonalization of matrices of rank of an order 109 ×
109, which is at the limit of computational capabilities
of modern computers. Therefore, the shell-model
calculations are restricted to nuclei in the mass
range A = 45 − 65. Moreover, only contributions
from the allowed Fermi and Gamow–Teller (GT)
transitions were taken into account, which, however,
were shown to be quite sufficient for the iron-group
region.

During stellar collapse, a relative abundance of
nuclei (A,Z) in the stellar matter changes, and
the corresponding distribution function depends on
the temperature and density. For T ≈ 0.5 MeV,
the ratio Z/A corresponds roughly to neutron-rich
Ge isotopes with a completely occupied neutron
1f5/2-shell [10]. At T = 0, the allowed transitions
are suppressed in these nuclei and the electron
capture rates are dominated by the first-forbidden
transitions [11]. Nevertheless, it was demonstrated
in [10, 12] that configuration mixing and thermal
excitations unblock the GT transitions in neutron-
rich Ge isotopes and increase the electron capture
rates.

In [13, 14], a novel approach based on the thermo
field dynamics (TFD) [15] was suggested to study
the GT strength distributions in hot nuclei and to
estimate electron capture and β− decay rates under
stellar conditions. Using the 54,56Fe nuclei as an
example, it was shown that the results of the new
approach agree satisfactorily with the shell-model
ones. In the present paper, the approach is applied to

1320



CHARGE-EXCHANGE TRANSITIONS IN HOT NUCLEI 1321

study charge-exchange transitions (allowed and first-
forbidden) in hot neutron-rich nuclei and to analyze
thermal effects on the corresponding electron capture
rate.

2. GENERAL THEORY

2.1. Fundamentals of the Thermo Field Dynamics

In the standard statistical mechanics, a heated
quantum system is described by a density matrix ρ
which is the solution to the Liouville–von Neumann
equation

i
∂ρ

∂t
= [H, ρ]. (1)

Here, H is the Hamiltonian of the system under con-
sideration with eigenstates |n〉 and eigenvalues En

(the chemical potential is included in H). The thermal
average of an arbitrary operator A is given by

〈〈A〉〉 = Tr[ρA]/Tr[ρ] (2)

= Z−1(T )
∑

n

e−En/T 〈n|A|n〉,

where T is the temperature in units of energy and
Z(T ) is the partition function. The main idea behind
TFD is to define a special state which is named a
thermal vacuum |0(T )〉, so that the thermal average
of A equals the expectation value of A with respect to
this state

〈〈A〉〉 = 〈0(T )|A| 0(T )〉. (3)

In this sense, the thermal vacuum describes the sys-
tem in the thermal equilibrium.

The thermal vacuum |0(T )〉 cannot be constructed
in the Hilbert space of the system [15]. To con-
struct |0(T )〉, one should double the Hilbert space
of the system adding the so-called tilde states |ñ〉.
These tilde states are defined as the eigenstates of the
tilde Hamiltonian H̃ with the same eigenvalues En,
i.e., H̃|ñ〉 = En|ñ〉. In the doubled Hilbert space, the
thermal vacuum is constructed as follows:

|0(T )〉 = Z−1/2(T )
∑

n

e−En/2T |n〉 ⊗ |ñ〉. (4)

There are two types of operators acting in the doubled
Hilbert space—physical operators which act in the
initial Hilbert space and their tilde counterparts
acting on tilde states. The one-to-one correspon-
dence between these two operator sets is given by
tilde conjugation operations. The rules of the tilde-
conjugation are listed in [15]. However, unlike the
original TFD formulation [15], the double tilde-
conjugation rule suggested in [16] is used in the
present study. The reasons for this are given in [17].

In the doubled Hilbert space, the time evolu-
tion of a hot system is described by the following
Schrödinger equation

i
∂

∂t
|Ψ(t, T )〉 = H|Ψ(t, T )〉, (5)

where H = H − H̃ is the so-called thermal Hamil-
tonian. Thus, within TFD, the time-evolution opera-
tor is not the initial Hamiltonian H but the thermal
Hamiltonian H whose eigenvalues determine the en-
ergies of excited states at T �= 0. The thermal vac-
uum (4) is the eigenstate of H corresponding to the
zero eigenvalue.

Generally, excited state energies appear to be de-
pendent on temperature. Moreover, any eigenstate
of H with positive energy has its counterpart—a tilde-
conjugated eigenstate with negative energy. Within
TFD, transitions from the thermal vacuum to states
with positive energy correspond to the excitation of
the heated system, whereas transitions to negative
energy states correspond to deexcitation of the heated
system.

Obviously, in most cases, one cannot find the exact
spectrum of the thermal Hamiltonian and construct
the exact thermal vacuum (4). Some approximations
should be applied to diagonalize the thermal Hamilto-
nian. The merit of TFD allows one to resort to approx-
imations valid at zero temperature. As a result, the
thermal vacuum can be constructed in the Hartree–
Fock–Bogoliubov approximation, or in the random
phase approximation [18]. In the case that there ap-
pear several solutions in the given approximation, one
should choose the solution providing a minimum of
the thermodynamic potential.

2.2. Charge-Exchange Excitations in Hot Nuclei

Here, the TFD formalism is applied to study ther-
mal effects on charge-exchange transitions in hot
nuclei.

As a model Hamiltonian we use the Hamil-
tonian of the quasiparticle-phonon nuclear model
(QPM) [19]. The QPM Hamiltonian includes phe-
nomenological mean fields of protons and neutrons

Hsp =
∑

τ

∑

jm

τ
(Ej − λτ )a†jmajm, (6)

pairing interactions of the BCS type with the coupling
constants Gn and Gp

Hpair = −1
4

(7)

×
∑

τ

Gτ

∑

j1m1

j2m2

τ
a†j1m1

a†j1m1
aj2m2

aj2m2
,

(ajm = (−1)j−maj−m),

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 8 2009



1322 DZHIOEV et al.

and a separable residual interaction Hint in particle-
hole channel.

In the present paper, we restrict ourselves to
the random phase approximation. Therefore, it is
sufficient to take into account only that part of the
particle-hole interaction which is responsible for
charge-exchange excitations [19–21]

Hint = −2
∑

λµ

κ
(λ)
1 M †

λµMλµ (8)

− 2
∑

Lλµ

κ
(Lλ)
1 S†

LλµSLλµ.

Here, κ
(λ)
1 and κ

(Lλ)
1 are the constants of isovec-

tor multipole and spin-multipole interactions, respec-

tively, and the operators M †
λµ and S†

Lλµ are defined as

follows:

M †
λµ =

∑

jpmp

jnmn

〈jpmp|iλrλYλµ(θ, φ)t(−)|jnmn〉a†jpmp
ajnmn

,

S†
Lλµ =

∑

jpmp

jnmn

〈jpmp|iLrL[YL(θ, φ)σ]λµ t(−)|jnmn〉a†jpmp
ajnmn

,

[
YL(θ, φ)σ

]λ
µ

=
∑

M,m

〈LM 1m|λµ〉YLM (θ, φ)σm. (9)

The structure of charge-exchange excitations of nor-
mal parity is determined by the multipole λ and spin-
multipole L = λ components of Hint , while the spin-
multipole components with L = λ − 1 and L = λ + 1
are responsible for charge-exchange excitations of
abnormal parity. Hereinafter, the operator a†jm (ajm)
is the creation (annihilation) operator of a nucleon
in the single-particle state with quantum numbers
nljm ≡ jm and energy Ej . An index τ = n, p is
the isotopic one and it refers to proton or neutron
variables. The notation

∑τ implies a summation
over neutron (τ = n) or proton (τ = p) single-particle
states only. The value λτ is the neutron or proton
chemical potential (the Fermi level). The isospin low-
ering operator t(−) transforms neutrons to protons.

The thermal Hamiltonian H corresponding to the
QPM Hamiltonian reads

H = H − H̃ = Hsp + Hpair + Hint. (10)

The diagonalization of H begins with introducing a
thermal quasiparticle basis which diagonalizes the
BCS part Hsp + Hpair of the thermal Hamiltonian
(see also [22, 23]). To this aim, two canonical trans-
formations are performed. The first one is the standard
Bogolyubov transformation to quasiparticle operators
α†

jm, αjm

α†
jm = uja

†
jm − vjajm,

αjm = ujajm − vja
†
jm, (u2

j + v2
j = 1). (11)

The same transformation with the same coefficients is
applied to tilde operators ã†jm, ãjm.

The second transformation, the so-called thermal
rotation or the thermal Bogolyubov transformation,
mixes the ordinary and tilde quasiparticle operators
and calls into play thermal (nontilde and tilde) quasi-
particles

β†
jm = xjα

†
jm − iyjα̃jm,

β̃†
jm = xjα̃

†
jm + iyjαjm, (x2

j + y2
j = 1). (12)

Note that the thermal transformation (12) differs from
the one used before (see, e.g., [15, 18, 22, 23]). The
presence of the imaginary unit i in (12) is due to the
other double tilde-conjugation rule definition than in
the cited papers (as was pointed out above, we follow
[16]; see also [17]).

To find the Bogolyubov transformation coeffi-
cients, one expresses Hsp + Hpair in terms of thermal
quasiparticle operators and then requires that the
one-body part of the thermal BCS Hamiltonian has
to be diagonal. This leads to the following equations
for the uj, vj coefficients:

(
uj

vj

)
=

1√
2

(
1 ± Ej − λτ√

(Ej − λτ )2 + ∆2
τ

)1/2

. (13)

The gap parameter ∆τ and the chemical potential λτ

depend on the coefficients of the thermal transforma-
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tion

∆τ =
Gτ

2

∑

j

τ
(2j + 1)(x2

j − y2
j )ujvj , (14)

Nτ =
∑

j

τ
(2j + 1)(v2

j x2
j + u2

jy
2
j ),

where Nτ is the number of neutrons or protons in a
nucleus.

The coefficients xj , yj are determined from the
demand that the variation of the expectation value
of the thermodynamic potential with respect to the
thermal quasiparticle vacuum |0(T ); qp〉 vanishes

δ〈0(T ); qp|(Hsp + Hpair) − TKq|0(T ); qp〉 = 0,
(15)

where

Kq = −
∑

τ

∑

jm

τ
{α†

jmαjm ln y2
j + αjmα†

jm lnx2
j}

(16)

is the entropy operator for the system of noninteract-
ing Bogolyubov quasiparticles.

As a result, we obtain
(

xj

yj

)
=
[
1 + exp

(
∓εj

T

)]−1/2
, (17)

εj =
√

(Ej − λτ )2 + ∆2
τ .

The vacuum |0(T ); qp〉 of thermal quasiparticles cor-
responding to xj, yj given by (17) is the thermal
vacuum in the BCS approximation.

The quantity y2
j is nothing else but the Fermi–

Dirac thermal occupation number which determines
the number of Bogolyubov quasiparticles with energy
εj in the BCS thermal vacuum

〈0(T ); qp|α†
jmαjm|0(T ); qp〉 (18)

= y2
j ≡

[
1 + exp

(εj

T

)]−1
.

Equations (13), (14), and (17) are the well-
known BCS equations at finite temperatures [24, 25].
It is well known that pair correlations diminish
with increasing temperature and the pairing gap
vanishes at a relatively small critical temperature
(Tcr ≈ ∆τ (T = 0)/2) within the thermal BCS ap-
proximation.

After the diagonalization, the BCS part of the
thermal Hamiltonian takes the form

Hsp + Hpair (19)



∑

τ

∑

jm

τ
εj(β

†
jmβjm − β̃†

jmβ̃jm).

It describes the system of independent thermal quasi-
particles. Since the thermal vacuum |0(T ); qp〉 con-
tains a certain number of Bogolyubov quasiparticles,
the excited states can be built on the top of |0(T ); qp〉
by either adding or eliminating a Bogolyubov quasi-
particle. The relations

α†
jm|0(T ); qp〉 = xjβ

†
jm|0(T ); qp〉, (20)

αjm|0(T ); qp〉 = −iyjβ̃
†
jm|0(T ); qp〉

demonstrate that the first process can be associated
with a creation of a nontilde thermal quasiparticle
with a positive energy, whereas the second process
can be considered as creation of a thermal tilde quasi-
particle with a negative energy.

The next step in the diagonalization of the thermal
Hamiltonian (10) is to take into account the proton–
neutron particle–hole interaction Hint. To this aim
transformations (11) and (12) with the coefficients
(13) and (17) are applied to the p-h part of Eq. (8):
Hint = Hint − H̃int.

Then the operator of a charge-exchange phonon is
introduced

Q†
λµi =

∑

jpjn

(
ψλi

jpjn
[β†

jp
β†

jn
]λµ + ψ̃λi

jpjn
[β̃†

jp
β̃†

jn
]λµ + iηλi

jpjn
[β†

jp
β̃†

jn
]λµ + iη̃λi

jpjn
[β̃†

jp
β†

jn
]λµ
)

(21)

+
(
φλi

jpjn
[βjpβjn ]λµ + φ̃λi

jpjn
[β̃jp β̃jn ]λµ + iξλi

jpjn
[βjp β̃jn ]λµ + iξ̃λi

jpjn
[β̃jpβjn ]λµ

)

and a new thermal vacuum is defined as the vacuum state |0(T ); ph〉 for thermal phonons

Qλµi|0(T ); ph〉 = 0, Q̃λµi|0(T ); ph〉 = 0. (22)

By the analogy with the quasiparticle RPA at zero temperature, it is assumed that thermal phonon creation and
annihilation operators obey a bosonic commutation rules.4) This imposes constraints on the thermal phonon

4It means a small number of thermal quasiparticles in |0(T ); ph〉.
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amplitudes ψλi
jpjn

, φλi
jpjn

, etc. In particular, from the condition [Qλµi, Q
†
λ′µ′i′ ] = δλλ′δµµ′δii′ , it follows that

∑

jpjn

{
ψλi

jpjn
ψλi′

jpjn
+ ψ̃λi

jpjn
ψ̃λi′

jpjn
+ ηλi

jpjn
ηλi′

jpjn
+ η̃λi

jpjn
η̃λi′

jpjn
(23)

−φλi
jpjn

φλi′
jpjn

− φ̃λi
jpjn

φ̃λi′
jpjn

− ξλi
jpjn

ξλi′
jpjn

− ξ̃λi
jpjn

ξ̃λi′
jpjn

}
= δii′ .

To find structures and energies of thermal phonons,
the variational principle can be used; i.e., one should
find the minimum of the expectation value of the
thermal Hamiltonian over the thermal one-phonon
state under constraints (23)

δ
{
〈0(T ); ph|QλµiHQ†

λµi|0(T ); ph〉 (24)

− ωλi

2
[
〈0(T ); ph|[Qλµi, Q

†
λµi]|0(T ); ph〉 − 1

]}
= 0.

The Lagrangian factor ωλi is the energy of a thermal
one-phonon state. The system of linear equations
resulting from the variation has a nontrivial solution
if ωλi obeys the following secular equation:

A(ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X
(+)
aa − 1

κ
(a)
1

X
(+−)
aa X

(+)
ab X

(+−)
ab

X
(−+)
aa X

(−)
aa − 1

κ
(a)
1

X
(−+)
ab X

(−)
ab

X
(+)
ab X

(+−)
ab X

(+)
bb − 1

κ
(b)
1

X
(+−)
bb

X
(+−)
ab X

(−)
ab X

(−+)
ab X

(−)
bb − 1

κ
(b)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (25)

where for charge-exchange excitations of normal par-
ity a ≡ λ, b ≡ λλ, while for charge-exchange excita-
tions of abnormal parity a ≡ (λ − 1)λ and b ≡ (λ +

1)λ. Functions X
(±)
cd , X

(±∓)
cd (c = a, b and d = a, b)

in (25) are defined as

X
(±)
cd (ω) =

2

λ̂2

×
∑

jpjn

f
(c)
jpjn

f
(d)
jpjn

⎧
⎨

⎩
ε
(+)
jpjn

(u(±)
jpjn

)2

(ε(+)
jpjn

)2 − ω2
(1 − y2

jp
− y2

jn
)

−
ε
(−)
jpjn

(v(∓)
jpjn

)2

(ε(−)
jpjn

)2 − ω2
(y2

jp
− y2

jn
)

⎫
⎬

⎭ ,

X
(±∓)
cd (ω) =

2
λ̂2

ω

×
∑

jpjn

f
(c)
jpjn

f
(d)
jpjn

⎧
⎨

⎩
u

(±)
jpjn

u
(∓)
jpjn

(ε(+)
jpjn

)2 − ω2
(1 − y2

jp
− y2

jn
)

−
v
(±)
jpjn

v
(∓)
jpjn

(ε(−)
jpjn

)2 − ω2
(y2

jp
− y2

jn
)

⎫
⎬

⎭ ,

where f
(λ)
jpjn

, f (Lλ)
jpjn

are the reduced single-particle ma-
trix elements of the multipole and spin-multipole op-

erators (9); u(±)
jpjn

= ujpvjn ± vjpujn , v(±)
jpjn

= ujpujn ±
vjpvjn ; ε

(±)
jpjn

= εjp ± εjn ; λ̂ =
√

2λ + 1. One gets the
same secular equations applying the variational prin-
ciple to the tilde thermal one-phonon state
Q̃†

λµi|0(T ); ph〉.

Let us consider the secular equation (25) in

detail. The poles ε
(−)
jpjn

which do not exist in the
pnQRPA equations at zero temperature arise from
crossover terms β†β̃† in the thermal phonon operator
(21). Owing to these poles, new states appear in a
low-energy part of the charge-exchange excitation
spectrum at T �= 0. Moreover, in contrast to the
zero temperature case, the negative solutions of
the secular equation (25) have a physical meaning.
They correspond to the tilde thermal one-phonon
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states Q̃†
λµi|0(T ); ph〉 and arise due to β̃†β̃† terms in

the thermal phonon operator. As was noted above,
creation of a tilde thermal quasiparticle corresponds
to annihilation of a thermally excited Bogolyubov
quasiparticle. Consequently, excitation of low- and
negative-energy thermal phonons corresponds to
charge-exchange transitions from thermally excited
nuclear states.

The phonon amplitudes are the following:
(

ψ

φ

)λi

jpjn

=
Nλi

ε
(+)
jpjn

∓ ωλi

(26)

×
{

κ
(a)
1 f

(a)
jpjn

(
u

(+)
jpjn

A11 ± u
(−)
jpjn

A12

)

+ κ
(b)
1 f

(b)
jpjn

(
u

(+)
jpjn

A13 ± u
(−)
jpjn

A14

)}

×
(
xjpxjnXλi − yjpyjnYλi

)
,

(
ψ̃

φ̃

)λi

jpjn

= − Nλi

ε
(+)
jpjn

± ωλi

×
{

κ
(a)
1 f

(a)
jpjn

(
u

(+)
jpjn

A11 ∓ u
(−)
jpjn

A12

)

+ κ
(b)
1 f

(b)
jpjn

(
u

(+)
jpjn

A13 ∓ u
(−)
jpjn

A14

)}

×
(
yjpyjnXλi − xjpxjnYλi

)
,

(
η

ξ

)λi

jpjn

=
Nλi

ε
(−)
jpjn

∓ ωλi

×
{

κ
(a)
1 f

(a)
jpjn

(
v
(−)
jpjn

A11 ± v
(+)
jpjn

A12

)

+ κ
(b)
1 f

(b)
jpjn

(
v
(−)
jpjn

A13 ± v
(+)
jpjn

A14

)}

×
(
xjpyjnXλi − yjpxjnYλi

)
,

(
η̃

ξ̃

)λi

jpjn

= − Nλi

ε
(−)
jpjn

± ωλi

×
{

κ
(a)
1 f

(a)
jpjn

(
v
(−)
jpjn

A11 ∓ v
(+)
jpjn

A12

)

+ κ
(b)
1 f

(b)
jpjn

(
v
(−)
jpjn

A13 ∓ v
(+)
jpjn

A14

)}

×
(
yjpxjnXλi − xjpyjnYλi

)
,

where Aj k are the algebraic supplements of the deter-
minant A(ωλi); the factor Nλi is defined by the nor-
malization condition (23), while unknown variables
Xλi, Yλi obey the condition X2

λi − Y 2
λi = 1.

Thus, only the energies of thermal phonons can
be found unambiguously by the thermal Hamiltonian
diagonalization, while their structure is determined up
to the unitary transformation

Q†
λµi → XλiQ

†
λµi − YλiQ̃λµi, (27)

Q̃†
λµi → XλiQ̃

†
λµi − YλiQλµi.

This uncertainty arises due to the invariance of the
thermal Hamiltonian with respect to the unitary
transformation (27)

H =
∑

λµi

ωλi(Q
†
λµiQλµi − Q̃†

λµiQ̃λµi). (28)

The uncertainty of the thermal phonon structure
is reflected in the corresponding uncertainty in the
thermal vacuum determination. To remove the uncer-
tainty, additional constraints should be applied. One
should demand that the thermodynamic potential Ωph

for a system of noninteracting phonons reaches the
minimal value in the “true” thermal phonon vacuum.
The thermodynamic potential Ωph is given by

Ωph (29)

=

〈
0(T ); ph

∣∣∣∣∣∣

∑

λµi

ωλi q
†
λµiqλµi − TK̂ph

∣∣∣∣∣∣
0(T ); ph

〉
,

where q†λµi, qλµi is the thermal phonon creation and
annihilation operators with the amplitudes (26) cor-
responding to Xλi = 1, Yλi = 0; Kph is the entropy
operator for a system of noninteracting phonons [15]

Kph = −
∑

λµi

{q†λµiqλµi ln Y 2
λi − qλµiq

†
λµi ln X2

λi}.

(30)

Minimization of Ωph yields

Yλi =
[
exp
(ωλi

T

)
− 1
]−1/2

, X2
λi = 1 + Y 2

λi. (31)

The coefficients Y 2
λi are the thermal occupation fac-

tors of the Bose–Einstein statistics. They determine
the average number of qλµi phonons in the “true”
thermal phonon vacuum

〈0(T ); ph|q†λµiqλµi|0(T ); ph〉 = Y 2
λi. (32)

It should be noted that any thermal one-phonon
state |Qλµi〉 = Q†

λµi|0(T ); ph〉 (or |Q̃λµi〉 =

Q̃†
λµi|0(T ); ph〉) is a superposition of excitations in

daughter nuclei (Z + 1, N − 1) and (Z − 1, N + 1).
This mixing is a result of the BCS approximation
for pairing correlations. Only at temperatures higher
than the critical one Tcr when pairing correlations dis-
appear does each thermal one-phonon state belong to
one definite daughter nucleus. The interesting point is
that, if |Qλµi〉 belongs to the (Z + 1, N − 1) nucleus,
then |Q̃λµi〉 belongs to the (Z − 1, N + 1) nucleus.

Charge-exchange transition probabilities (transi-
tion strengths) from the thermal vacuum to thermal
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one-phonon states are given by the squared reduced
matrix elements of the corresponding transition oper-
ator

Φ(±)
λi =

∣∣∣〈0(T ); ph‖D(±)
λµ ‖Qλµi〉

∣∣∣
2
,

Φ̃(±)
λi =

∣∣∣〈0(T ); ph‖D(±)
λµ ‖Q̃λµi〉

∣∣∣
2
. (33)

Hereinafter (−) labels the n → p transition operators,
and (+) labels the p → n transition operators. The

explicit expressions for Φ(±)
λi and Φ̃(±)

λi are given in the
Appendix. Furthermore, in the Appendix, the fulfill-
ment of the Ikeda sum rule for Fermi and Gamow–
Teller transitions in hot nuclei is proved.

The energies of charge exchange-transitions from
the thermal vacuum to thermal one-phonon states are

E
(±)
λi = ωλi ± (∆λnp + ∆mnp),

Ẽ
(±)
λi = −ωλi ± (∆λnp + ∆mnp), (34)

where ∆λnp = λn − λp is the difference between neu-
tron and proton chemical potentials and ∆mnp =
mn − mp = 1.29 MeV is the neutron–proton mass
difference. In (34), one takes into account that, before
and after charge-exchange transition, the nucleon is
attached to different subsystems.

Expressions (33) and (34) determine charge-
exchange strength distribution in a hot nucleus
within the thermal pnQRPA. At finite temperatures,
some amount of transition strength is always lo-
cated in the region of negative transition energies.
Because of this, β-stable nuclei become unstable at
finite temperatures, decaying by electron or positron
emission from thermally populated excited states. The
inverse reactions, electron or positron captures, make
possible charge-exchange transitions with negative
energies also. These transitions correspond to the
processes of nuclear deexcitation.

2.3. Electron Capture Rates

Given the strength distribution of charge-
exchange p → n transitions, electron capture rates
can be estimated in stellar interior at presupernova
conditions. In the present calculations, the following
main assumptions are made: (1) The temperature
in stellar interior is so high that atoms are totally
ionized, and the surrounding electron gas is described
by a Fermi–Dirac distribution, with temperature T
and chemical potential µe. Neutrino capture is not
taken into account. (2) The parent nucleus is in
a thermal equilibrium state treated as the thermal
(phonon) vacuum. (3) Electron capture leads to

charge-exchange transitions from the thermal vac-
uum to thermal one-phonon states. Under these
assumptions, the electron capture rate is given by

λ =
ln 2

6150 s
(35)

×
∑

J

∑

i

[
Φ(+)

Ji F ec(EJi) + Φ̃(+)
Ji F ec(ẼJi)

]
.

The phase space integral F ec(E) depends on the
transition energy E and the chemical potential µe

(see, e.g., [9]). The chemical potential, µe, is deter-
mined from density ρYe of the electron gas [9].

The operator of allowed transitions is

D = (gV + g∗Aσσσ)t(+). (36)

It consists of Fermi (∆Jπ=0+) and Gamow–Teller
(∆Jπ=1+) components. The quantities gV =1, g∗A =
0.75gfree

A are the vector and axial coupling constants.
(The star in g∗A means that we used the quenched
value of the axial coupling constants, g∗A = −1.25 ×
0.74).

In the nonrelativistic limit, the operators of first-
forbidden transitions read [11, 12]

∆Jπ = 0−, D = g∗A

(σσσ · p
m

+
αZ

2R
iσσσ · r

)
t(+),

(37)

∆Jπ = 1−,

D =
(
gV

p
m

− αZ

2R
(g∗Aσσσ × p − gV r)

)
t(+),

∆Jπ = 2−, D = i
g∗A√

3
[σσσ · r ]2µ

√
p2

e + q2
ν t(+).

Here Z, R are the charge and radius of the nucleus;
α is the fine structure constant; σ, r, and p are the
nucleon-spin, nucleon-coordinate, and nucleon mo-
mentum operators, respectively; and m is a nucleon
mass. In the “unique” first-forbidden case (∆Jπ =
2−), the operator D depends explicitly on the momen-
ta of electron pe and neutrino qν .

3. RESULTS OF CALCULATIONS

Numerical calculations are performed for the
neutron-rich 80Ge nucleus. This is a “soft” nucleus;
i.e., its low-lying quadrupole states are strongly col-
lective. In the present consideration, 80Ge is treated
as a spherically symmetric nucleus. The single-
particle wave functions and energies are obtained
using the Woods–Saxon potential with Chepurnov
parameterization [26]. Only the potential well depth
is adjusted to reproduce the experimental proton and
neutron separation energies.
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Fig. 1. Strength distribution S(E) of allowed (0+ and 1+) p → n transitions from 80Ge for different temperatures T . E is the
transition energy. The contribution of 0+ transitions is shown by the dashed line. S is the total transition strength at given T .
Recall that 1 MeV ≈ 11.6 × 109 K.

The constants Gp and Gn of the pairing interaction
are fitted to reproduce pair energies extracted from the
experimental binding energies [27]. The proton and
neutron energy gaps at T = 0 are ∆p = 1.39 MeV,

∆n = 1.35 MeV. The constants κ
(λ)
1 , κ

(Lλ)
1 of the

isovector multipole and spin-multipole interactions
are determined according to the formulas from [28,
29] for separable forces with radial form factors rλ.

The calculated set of single-particle levels is
close to that used in [12] in calculations of electron
capture rates for 82Ge. In the independent-particle
model (IPM), the 12 protons completely occupy
the 1f7/2 and 2p3/2 subshells, while the 1p1/2, 1f5/2,
and 1g9/2 subshells are empty. For the neutrons, the
IPM predicts a fully occupied pf shell and eight
neutrons in the 1g9/2 subshell. Clearly, within the
IPM, the Pauli principle blocks all allowed p → n
transitions from the 80Ge ground state and electron
capture can proceed only via forbidden transitions
at T = 0. However, pairing correlations smear the
neutron and proton Fermi surfaces, thus weakening
the blocking.

In Fig. 1, the strength distribution of allowed p →
n transitions from 80Ge is shown for different values

of temperature T . For each value of T , the total tran-
sition strength S is displayed as well.

At temperatures below Tcr ≈ 0.9−0.8 MeV, the
strength distribution has a peak in the energy in-
terval 18−19 MeV. The peak is mainly formed by
two single-particle transitions: π(1f7/2) → ν(1f5/2)
and π(1g9/2) → ν(1g7/2). The first transition is of the
hole–hole (h–h) type, while the second one is of the
particle–particle (p–p) type. It means that the peak
is formed due to pair correlations. Because of pair-
ing, the proton subshell 1g9/2 is partially occupied,
while the neutron subshell 1f5/2 is partially empty.
The corresponding thermal one-phonon states can
be approximately treated as superpositions of the two
thermal quasiparticle states of the type β†

jp
β†

jn
|0(T )〉.

Therefore, neglecting the values ∆λnp and ∆mnp, one
can say that the transition energies are determined by

the ε
(+)
jpjn

poles of the secular equation (25).

At T = Tcr, i.e., when the pair correlations van-
ish, the peak completely disappears, and the total
transition strength is noticeably reduced. However,
at higher temperatures, p → n transitions from ther-
mally excited nuclear states come into play. As is
seen in Fig. 1, this leads to an increase of the
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Fig. 2. Strength distributions S(E) for the first-forbidden ∆Jπ = 0−, 1− and 2− p → n transitions from 80Ge at T = 0 (upper
part), T = 0.8 MeV (middle part), and T = 1.6 MeV (lower part). E is the transition energy. S is the total strength at given
∆J and T . Strength distribution for 2− transitions is calculated for the electron energy 25 MeV.

total transition strength and a new well-pronounced
peak appears at the energy 10 MeV. It is worthy to
note that, in the formation of the peak, the same
single-particle transitions π(1f7/2) → ν(1f5/2) and
π(1g9/2) → ν(1g7/2) are involved. However, now
these transitions are connected with annihilation
of a thermally excited Bogolyubov quasiparticle or,
which is the same, with creation of a tilde thermal
quasiparticle with negative energy. Consequently, the

transition energies are determined by the differences
of corresponding thermal quasiparticle energies or,

in other words, by the ε
(−)
jpjn

poles of the secular
equation (25). These transition energies are less than

ε
(+)
jpjn

which play a role at low temperatures. Thus,
an increase in temperature leads to a significant
redistribution of the strength of allowed p → n transi-
tions in 80Ge: the peak shifts downward in energy by
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Fig. 3. Electron capture rate λ for 80Ge as a function
of temperature T for selected values of density ρYe (in
mol/cm3). T is in units of 109 K.

about 8 MeV and the total transition strength reduces
when the temperature reaches the critical one. This,
in turn, affects the electron capture rate, as will be
demonstrated below.

In Fig. 2, the strength distributions for the first-
forbidden 0−, 1−, and 2− p → n transitions from
80Ge are shown for different values of T . As one
can see, the total strengths of forbidden transitions
are scarcely affected by the temperature. The reason
is that first-forbidden p → n transitions in 80Ge
are mainly dominated by high-energy particle–hole
transitions, whose strengths depend only slightly on
temperature and pair correlations. Nevertheless, for
1− and 2− transitions, an increase in temperature
leads to noticeable broadening of the corresponding
strength distributions. The broadening appears be-
cause of the increase in the number of low-energy
single-particle transitions caused by the thermal
smearing of the proton and neutron Fermi surfaces.
Due to a severe selection rule, the contribution of
low-energy transitions to the 0− strength distribution
appears to be negligible.

Since the total strengths of the allowed and first-
forbidden p → n transitions in 80Ge appear to be of
the same value, both types should be taken into ac-
count in the calculation of the electron capture rate.

The calculated electron capture rate for 80Ge is
shown in Fig. 3. The rate increases with increasing
temperature and density ρYe. The lower the density,

the higher is the sensitivity of the rate to temperature
increase. The reason is that, at low densities (i.e.,
when the chemical potential of surrounding electrons
is relatively small), the capture rates depend crucially
on the details of the p → n strength distribution. At
ρYe = 1010 mol/cm3 and in the temperature range
covered, the chemical potential µe is equal to 10–
11 MeV and the electron capture proceeds mainly
through low-energy p → n transitions. A tempera-
ture growth increases the fraction of these transitions
since the peak of allowed transition strength shifts
downward in energy and, moreover, low-energy first-
forbidden transitions become possible. As a result, the
capture rate increases significantly with increasing
temperature. A growth of pressure increases the value
of electron chemical potential from µe ≈ 18−19 МeV
at ρYe = 5 × 1010 mol/cm3 up to µe ≈ 40−41 MeV
at ρYe = 5 × 1011 mol/cm3. As a consequence, the
capture rate becomes less sensitive to temperature
change. At ρYe = 5× 1011 mol/cm3, the rate depends
only on the total transition strength and the position
of the energy centroid of the strength distribution.

4. CONCLUSIONS
We presented the approach to study thermal ef-

fects on weak interaction rates in hot nuclei based on
the ideas and methods of the thermo field dynamics.
The equations allowing one to calculate strength
distributions of charge-exchange transitions in hot
nuclei were derived within the thermal pnQRPA.
Strength distributions of allowed and first-forbidden
transitions from the 80Ge were calculated and ana-
lyzed. For allowed transitions, it was found that the
temperature increase leads to a considerable down-
ward shift of the peak in the strength distribution
and strongly reduces the total transition strength in
the vicinity of the critical temperature. Both effects
are caused by the diminishing of pair correlations
with temperature increase. At the same time, the
total transition strength of the first-forbidden tran-
sitions in 80Ge appears to be scarcely affected by the
temperature changes. The temperature rise increases
the fraction of low-energy 1− and 2− first-forbidden
transitions, which leads to noticeable broadening of
the corresponding strength distributions.

The temperature dependence of the electron cap-
ture rate on 80Ge was calculated. It was shown how
the changes in the p → n strength distributions affect
the capture rates at different densities.

It is of interest to go beyond the thermal pn-
QRPA within the present approach and take into
account coupling with complex thermal (e.g., two-
phonon) configurations. For charge-exchange tran-
sitions in cold nuclei, this problem was resolved with-
in the quasiparticle-phonon nuclear model [20, 21]
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and other approaches [30]. It was found that the cou-
pling with complex configuration strongly affects the
QRPA strength distribution. As discussed above, the
details of the strength distribution are of particular
importance for electron capture rates at low densities.
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APPENDIX

Charge-exchange transition probabilities (transi-
tion strengths) from the thermal vacuum to thermal
one-phonon states are given by the following expres-
sions:

Φ(−)
λi =

⎛

⎝
∑

jpjn

d
(−)
λ (jpjn)Ω1(jpjn;λi)

⎞

⎠
2

, (A.1)

Φ̃(−)
λi =

⎛

⎝
∑

jpjn

d
(−)
λ (jpjn)Ω̃1(jpjn;λi)

⎞

⎠
2

,

Φ(+)
λi =

⎛

⎝
∑

jpjn

(−1)jn−jp+λd
(+)
λ (jnjp)Ω2(jpjn;λi)

⎞

⎠
2

,

Φ̃(+)
λi =

⎛

⎝
∑

jpjn

(−1)jn−jp+λd
(+)
λ (jnjp)Ω̃2(jpjn;λi)

⎞

⎠
2

,

where d
(∓)
λ (jp(n)jn(p)) is a reduced single-particle

matrix element of the transition operator

d
(∓)
λ (jp(n)jn(p)) = 〈jn(p)||D

(∓)
λ ||jp(n)〉, (A.2)

and functions Ω1,2(jpjn;λi) are linear combinations
of the thermal phonon amplitudes (26):

Ω1(jpjn;λi) = ujpvjn

(
xjpxjnψλi

jpjn
(A.3)

+ yjpyjnφ̃λi
jpjn

)
+ vjpujn

(
yjpyjnψ̃λi

jpjn

+ xjpxjnφλi
jpjn

)
+ ujpujn

(
xjpyjnηλi

jpjn

+ yjpxjn ξ̃λi
jpjn

)
− vjpvjn

(
yjpxjn η̃λi

jpjn
+ xjpyjnξλi

jpjn

)
,

Ω2(jpjn;λi) = vjpujn

(
xjpxjnψλi

jpjn

+ yjpyjnφ̃λi
jpjn

)
+ ujpvjn

(
yjpyjnψ̃λi

jpjn

+ xjpxjnφλi
jpjn

)
− vjpvjn

(
xjpyjnηλi

jpjn

+ yjpxjn ξ̃λi
jpjn

)
+ ujpujn

(
yjpxjn η̃λi

jpjn
+ xjpyjnξλi

jpjn

)
.

The function Ω̃1,2(jpjn;λi) results from
Ω1,2(jpjn;λi) by changing nontilde phonon ampli-
tudes by their tilde partners and vice versa.

For D
(−)
λ and D

(+)
λ differing only by the isospin

operator (this is true, in particular, for the Fer-

mi and Gamow–Teller transitions), d
(−)
λ (jpjn) =

(−1)jn−jp+λd
(+)
λ (jnjp) and transition strengths (A.1)

obey the following relation

Φ̃(∓)
λi = exp(−ωλi/T )Φ(±)

λi (ωλi > 0). (A.4)

The similar relation was found in [17] for charge-
neutral transitions of electric type in hot nuclei.

The validity of the Ikeda sum rule (ISR) for the
Fermi and Gamow–Teller transitions in hot nuclei
can be proved within the present approach. Defining
the total n → p and p → n transition strengths

S
(∓)
λ =

∑

i

(Φ(∓)
λi + Φ̃(∓)

λi ) (λ = 0+, 1+) (A.5)

and taking into account the closure relation for
phonon amplitudes, one gets

ISR = S
(−)
λ − S

(+)
λ =

∑

jpjn

[d(−)
λ (jpjn)]2 (A.6)

×
(
[u2

jn
y2

jn
+ v2

jn
x2

jn
] − [u2

jp
y2

jp
+ v2

jp
x2

jp
]
)

.

Making use of the relations
∑

jp(n)

|〈jp||t(−)||jn〉|2 = (2jn(p) + 1), (A.7)

∑

jp(n)

|〈jp||σt(−)||jn〉|2 = 3(2jn(p) + 1),

and taking into account the particle number con-
servation within the thermal BCS (14), one finds
that ISR = N − Z for the Fermi transitions and
ISR = 3(N − Z) for the Gamow–Teller transitions.

REFERENCES
1. K. Langanke and G. Martinez-Pinedo, Rev. Mod.

Phys. 75, 819 (2003).
2. H. A. Bethe et al., Nucl. Phys. A 324, 487 (1979).
3. G. M. Fuller et al., Astrophys. J. 252, 715 (1982).
4. M. B. Aufderheide et al., Astrophys. J. Suppl. Ser. 91,

389 (1994).
5. F. K. Sutaria and A. Ray, Phys. Rev. C 52, 3460

(1995).
6. P. B. Radha et al., Phys. Rev. C 56, 3079 (1997).
7. O. Civitarese and M. Reboiro, Phys. Rev. C 63,

034323 (2001).
8. J.-U. Nabi and H. V. Klapdor-Kleingrothaus, At. Da-

ta Nucl. Data Tables 88, 237 (2004).

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 8 2009



CHARGE-EXCHANGE TRANSITIONS IN HOT NUCLEI 1331

9. E. Caurier et al., Nucl. Phys. A 653, 439 (1999);
K. Langanke and G. Martinez-Pinedo, Nucl. Phys. A
673, 481 (2000).

10. K. Langanke et al., Phys. Rev. C 63, 032801(R)
(2001).

11. A. Zaringhalam, Nucl. Phys. A 404, 599 (1983).
12. J. Cooperstein and J. Wambach, Nucl. Phys. A 420,

591 (1984).
13. A. A. Dzhioev et al., Izv. AN, Ser. Fiz. 72, 294 (2008).
14. A. Vdovin et al., in Proc. of the 26th Intern. Work-

shop on Nuclear Theory, Rila Mountains, Bul-
garia, 2007, p. 23.

15. Y. Takahashi and H. Umezawa, Collect. Phenom.
2, 55 (1975); H. Umezawa, H. Matsumoto, and
M. Tachiki, Thermo Field Dynamics and Con-
densed States (North-Holland, Amsterdam, 1982).

16. I. Ojima, Ann. Phys. (N.Y.) 137, 1 (1981).
17. A. A. Dzhioev and A. I. Vdovin, Int. J. Mod. Phys. E

(in press).
18. T. Hatsuda, Nucl. Phys. A 492, 187 (1989).
19. V. G. Soloviev, Theory of Atomic Nucleus: Quasi-

particles and Phonons (Institute of Physics, Bristol

and Philadelphia, 1992; Énergoatomizdat, Moscow,
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30. S. Drożdż et al., Phys. Lett. B 166, 18 (1986); 189,

271 (1987).

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 8 2009



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


