INFLUENCE OF PHONON INTERACTION ON THE GROUND
STATE OF EVEN-EVEN SPHERICAL NUCLEI

Nguyen Din Dang and V.Yu. Ponomarev

Equations are obtained that make it possible to calculate the energy and structure of
excited states described by a wave function containing single~ and two~phonon
components, Allowance is made for the phonon correlations in the nuclear ground
state due to the interaction of the phonon excitation modes. The influence of the
phonon correlations on the energies of the lowest excited states is estimated.

In the last few years the quasiparticle—~phonon model of the nucleus [1] has been used in a series of
studies (see, for example, [2]) in which allowance has been made for the interaction of simple single-phonon
states with more complicated states in spherical nuclei. The excited states with angular momentum J and
projection M were described by the wave function
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which contains single- and two-phonon components. The phonon creation operator Q;\’T“. is a superposition of

two-quasiparticle (2" is the quasiparticle creation operator) configurations:
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and \I'O is the ground-state wave function of the even—even nucleus. In the quoted papers [2] the phonon
vacuum was taken as the ground state, i.e., it was described by the same wave function as in the approxima~
tion of noninteracting phonons, However, the phonon vacuum is not an eigenfunction of the Hamiltonian,
which countains terms describing phonon—phonon interaction. The interaction between the phonons leads to
correlations in the ground state. This effect was taken into account in [3], in which the basic equations of the
quasiparticle—phonon model were obtained using the formalism of two-time Green’s functions, additional
terms arising in the equations as a consequence, In the present paper, we shall show that under the
condition of correct determination of the ground state the traditional methods on the quasiparticle—phonon
model give the same additional terms. Equations will be obtained for spherical nuclei. We also give some
numerical estimates of some effects that arise because the additional correlations in the ground state are
taken into account. *

We determine the wave function of an excited state in the form of a linear combination of the

operators Q3,, and Q.
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and as the ground state \Il(') of the nucleus we take the vacuum with respect to the operators Oyu« Oru. V=
‘y"’@j‘MIEO'

If the wave functions of the ground state and the excited states are to be orthonormal, the operators
073, and @, must satisfy the commutation relations

* In what follows, we shall give the name "approximation IT" to the case when the new correlations in the
ground state are taken into account, in contrast to "approximation T," when only the correlations between the
quasiparticles are taken into account,
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Substituting in (2) the explicit expressions for the operators ©3,. and 8,x., we obtain an equation relating
the coefficients R, P, ¢, and ¢:
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To determine the energy n,, of the excited states described by the wave function ¥ _(JM), we use
the method of linearization of the equations of motion:

[H, 0,0 ]=05O e, [H, 01261 =11:0 5100, (4)

The part of the Hamiltonian of the quasiparticle~phonon model describing the interaction of the phonons has
the form
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its first term corresponds to the approximation of noninteracting phonons, when the excited states are
treated as purely single-, two-, ... phonon states, and the second term describes the interaction of the
configurations with different numbers of phonons. In principle, the Hamiltonian of the model has a more
complicated form; the expression (5) is exact in the sense that the omitted terms will not contribute to any
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of the expressions obtained with the chosen wave function, The coefficients U, (Ai) and I/:m (M) have the
form
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where <j|lfy(r) Y,llj»> are the reduced matrix elements of the single-particle operator generating the phonon
excitations*; v(2) =uu;,—v;v; 18 2 combination of coefficients of a Bogolyubov transformation; %, are

iz

normalization coefficients, The above expressions for the coefficients U:f;' (A) and V,; (M) correspond to the
case when only natural-parity phonons are taken into account in the wave function (1), The generalization to
the case with both natural and anomalous parity of the phonons leads merely to a change in the signs in front
of certain terms (see, for example, [4]). For the overwhelming majority of the two-quasiparticle amplitudes

1p,-?,§>>(p£z, and therefore the main term in the expression for U;ﬁ: (M) is the term ~§, The coefficients V%’;‘f‘

(M) contain only weak terms ~ye.

Under the assumption that the number of phonons in the ground state of the nucleus is small,
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the equations of motion (4) lead to a system of equations for the coefficients &7, £, Ry and Puii(v):
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*Tn the quasiparticle—phonon model, the phonon excitations are generated by separable multipole (phonons
of natural parity) Va(r, r)~fi(r) i(r) Yau{Q0) Yo' (Q) and spin-multipole (phonons of anomalous parity) Va(r, rz)~
A () [0076(R0) T {027 (@) 1aw” fOTCES,
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where n, and n, are, respectively, the total numbers of single- and two-phonon components in the wave
function (1), The system (7) can also be obtained by using the variational procedure
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the variables R, P, ¢, and ¢ being varied independently.

By means of the second and fourth equations of the system (7) we eliminate P}% (Jv) from the other
two equations and go over to the new variables

pii= YR R A=Y LRNO),

Then the system (7) goes over into a system of linear homogeneous equations in the new variables:
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The rank of the matrix M is 2., and its elements (depending on the values of the indices k and k') can be
calculated in accordance with the following formulas.
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The condition of existence of a nontrivial solution of the system (8) leads to the equation det || M (n) =0, and
solving this we obtain the energy spectrum ns. of the excited states described by the wave function W.(JM).
Substituting then in the system (7) the value n=n,. and using the normalization condition (3), we find the
coefficients g,’%, t,”*, R*(J), and Pyt (Jv), i.e., we determine the wave function itself. Note that in the

(7)

(8)

limiting case &,*—8,. £.'"=>0 Egs.(3), (7), and (8) go over into the equations corresponding to approximation I



TABLE 1
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v | 0099 | 0.255 | 0165 | 0304 |1 ;ié 222 ;gg 2’59
(ol 1,23 0,72 1,66 1,13 o , ) s ,26
"(1) 1,22 0,52 1,53 0,82 Uk 2,47 1,64 3,45 2,57

Pl 2,46 1,53 3,43 | 2,47

(in this case, the rank of the matrix M(n) is halved, and the matrix itself has the form of I if we set
Ve (Ak)=0). Allowance for the phonon correlations in the ground state leads to the pole terms

~ (0t 0mp—N) " in the equations being augmented by non-pole terms ~ (0w +0un,+n) % Similar non-pole
terms are also present in the equations obtained in the framework of the theory of finite Fermi systems when
allowance is made for the correlations in the ground state due to the interaction of the 1plh and 2p2h con-
figurations [5].

We estimate the number of phonons in the ground state of the nucleus, which was assumed to be
small in the derivation of Egs. (7) and (8). For this, we first express the wave function ¥ of the new
ground state in terms of the wave function ¥ of the phonon vacuum, Applying the procedure described in
detail in the monograph [6] (pp.382-384), we obtain
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where the matrix (§-'),”* is the inverse of &7 (i.e., 2 (g-*)ﬁgﬁ":au.), and N is a normalization

coefficient, determined by the condition (¥,'|W,">=1. Substituting (9) in the definition of NJ, we readily
obtain an expression for the total number of phonons with angular momentum J in the ground state ‘IIOI:
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i,e., the assumption (6) is well satisfied in the case when the coefficients ¢,’* are small.

The solution of the obtained equations is a complicated computational problem, since it is necessary
to diagonalize a matrix of high rank M(7) that depends nonlinearly on the variable 5. In the present paper,
we do not attempt such a task. However, to obtain a certain quantitative picture of the part played by the
phonon correlations in the ground state, we consider the simplest case. From the complete set of phonons
in the definition of the operator Q. we take into account only the lowest 2% phonon: Q. =0, .=0uh.=0:=0*
(with energy @®=w.+). In this special case, all the equations can be solved analytically. In the approximation
of noninteracting phonons, the system has two excited states with energies o (¥=0Q*¥,) and 20 (¥=0Q*Q*
¥,). Allowance for the interaction of the phonons in the wave function of the excited states (approximation 1),

Wy=Q, Vo={R"Q*+P (v) [Q"Q*]} ¥y, v=1,2,

leads to the well-known effect for the two-level problem — repulsion of the roots:
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The first solution n{! is the lowest 2t state, the single-phonon component being predominant in its wave
function; for the second solution n{, the two-phonon component is predominant.

Allowance for the phonon—phonon interaction in the ground state (approximation II} gives the
solutions

—— r —
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We calculated 4,5 and n'3’ for some nuclei, using the program GIRES [4] and taking the parameters
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of the model such as to satisfy approximately the condition nf”=m§~Xp. The obtained results are given in

Table 1 (all values are given in MeV), The strength of the interaction of the single- and two-phonon com-
ponents can be judged from the value of the coefficient U, In nuclei in which U is small (as a rule, these
are magic and near-magic nuclei) we have the solution nP~e and R =1 (and, respectively, n{’>20 and
P(2) ~ 1) - the isotope ''®Sn can serve as an example. In other nuclei, the interaction of the single-

and two-phonon components leads to appreciable mixing of them and a significant decrease in the energy of
the lowest excitation (see, for example, "65m). The energy of the second state is increased at the same
time, though not so much. Allowance for the phonon correlations in the ground state results in an even
larger sinking of the lowest excited state, The energy of the second state is also decreased compared

with (P (at the same time, for all nuclei we obtain 20<n; '<n,”). The influence of the phonon correlations
on the position of the lowest levels is most important in nuclei with large values of the coefficienis U and V.
The values of these coefficients are determined by the extent to which the phonons are collectivized.
Therefore, in spherical nuclei far in N and Z from the magic numbers, whose 27 and 31“ states have a
low energy and are accordingly strongly collectivized, the phonon correlations in the ground state play

a significant part. On the other hand, in magic and near-magic nuclei their influence can be ignored.

We thank A, I. Vdovin for valuable advice and assistance in this work, and V. V, Voronov,
G. Kyrchev, and Ch, Stoyanov for valuable discussion.
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