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Abstract

A new class of giant resonances in nuclei, namely double-giant resonances, is discussed. They are giant
resonances built on top of other giant resonances. Investigation on their properties, together with similar
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studies on low-lying two-phonon states, should give an answer on how far the harmonic picture of
boson-type excitations holds in the "nite fermion systems like atomic nuclei. The main attention in this
review is paid to double-giant dipole resonances (DGDR) which are observed in relativistic heavy ion
collisions with very large cross sections. A great experimental and theoretical e!ort is underway to
understand the reaction mechanism which leads to the excitation of these states in nuclei, as well as the better
microscopic understanding of their properties. The Coulomb mechanism of the excitation of single- and
double-giant resonances in heavy ion collision at di!erent projectile energies is discussed in detail. A contri-
bution of the nuclear excitation to the total cross section of the reaction is also considered. The Coulomb
excitation of double resonances is described within both, the second-order perturbation theory approach and
in coupled-channels calculation. The properties of single and double resonances are considered within the
phenomenologic harmonic vibrator model and microscopic quasiparticle-RPA approach. For the last we use
the quasiparticle-phonon model (QPM) the basic ideas and formalism of which are presented. The QPM
predictions of the DGDR properties (energy centroids, widths, strength distributions, anharmonicities and
excitation cross sections) are compared to predictions of harmonic vibrator model, results of other micro-
scopic calculations and experimental data available. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 24.30.Cz; 25.70.De; 21.60.!n
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1. Introduction

The phenomenon of a Giant Resonance (GR) in a nucleus is now known for more than 60 years.
The "rst article on this subject was published in 1937 by Bothe and Gentner [1] who observed an
unexpectedly large absorption of 17.6MeV photons (from the 7Li(p, c) reaction) in some targets.
They noticed that the cross section for 63Cu was surprisingly high and they suggested that this
might be due to a resonance phenomenon. These observations were later con"rmed by Baldwin
and Klaiber (1947) with photons from a betatron. In 1948 Goldhaber and Teller [2] interpreted
these resonances (named by isovector giant dipole resonances) with a hydrodynamical model in
which rigid proton and neutron #uids vibrate against each other, the restoring force resulting from
the surface energy. Steinwendel and Jensen [3] later developed the model, considering compress-
ible neutron and proton #uids vibrating in opposite phase in a common "xed sphere, the restoring
force resulting from the volume symmetry energy. The standard microscopic basis for the descrip-
tion of giant resonances is the random phase approximation (RPA) in which giant resonances
appear as coherent superpositions of one-particle one-hole (1p1h) excitations in closed shell nuclei
or two quasi-particle excitations in open shell nuclei (for a review of these techniques, see, e.g.,
Ref. [4]).

The isoscalar quadrupole resonances were discovered in inelastic electron scattering by Pitthan
and Walcher (1971) and in proton scattering by Lewis and Bertrand [5]. Giant monopole
resonances were found later and their properties are closely related to the compression modulus of
nuclear matter. Following these, other resonances of higher multipolarities and giant magnetic
resonances were investigated. Typical probes for giant resonance studies are (a) c's and electrons for
the excitation of GDR (isovector giant dipole resonance), (b) a-particles and electrons for the
excitation of isoscalar GMR (giant monopole resonance) and GQR (giant quadrupole resonance),
and (c) (p,n), or (3He, t), for Gamow}Teller resonances, respectively.

Relativistic coulomb excitation (RCE) is a well-established tool to unravel interesting aspects of
nuclear structure [6]. Examples are the studies of multiphonon resonances in the SIS accelerator at
the GSI facility, in Darmstadt, Germany [7}9]. Important properties of nuclei far from stability
[10,11] have also been studied with this method.

Inelastic scattering studies with heavy ion beams have opened new possibilities in the "eld (for
a review the experimental developments, see Refs. [7,9]). A striking feature was observed when
either the beam energy was increased, or heavier projectiles were used, or both [12]. This is
displayed in Fig. 1, where the excitation of the GDR in 208Pb was observed in the inelastic
scattering of 17O at 22A and 84AMeV, respectively, and 36Ar at 95AMeV [13,14]. What one
clearly sees is that the `bumpa corresponding to the GDR at 13.5MeV is appreciably enhanced.
This feature is solely due to one agent: the electromagnetic interaction between the nuclei. This
interaction is more e!ective at higher energies, and for increasing charge of the projectile.

Baur and Bertulani showed in Ref. [15] that the excitation probabilities of the GDR in heavy ion
collisions approach unity at grazing impact parameters. They also showed that, if double GDR
resonance (i.e. a GDR excited on a GDR state) exists then the cross sections for their excitation in
heavy ion collisions at relativistic energies are of order of a few hundred of milibarns. These
calculations motivated experimentalists at the GSI [7,9] and elsewhere [13,14] to look for the
signatures of the DGDR in the laboratory. This has by now become a very active "eld in nuclear
physics with a great theoretical and experimental interest [7}9].
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Fig. 1. Experimental cross sections in arbitrary units for the excitation of 208Pb targets by 17O (22A and 84AMeV) and
by 36Ar (95AMeV), as a function of the excitation energy.

In the "rst part of this review, we study the reaction mechanism in RCE of giant resonances in
several collisions between heavy ions. In Section 2 we start with the description of the semiclassical
theory for relativistic Coulomb excitation, then we consider the e!ects of recoil and later we
describe the fully quantum mechanical approach. The role of nuclear excitation in relativistic heavy
ion collisions is also discussed here. We demonstrate that the experimental data on the excitation
and decay of single-giant resonances are well described by these formalisms. In Section 3 the
process of the excitation of multi-phonon resonances in relativistic heavy ion collisions is con-
sidered within the second-order perturbation theory and in coupled-channels calculations. Giant
resonances are treated in this section within the phenomenologic harmonic vibrator model. Some
general arguments for the width of multi-phonon resonances are discussed here as well as an
in#uence of giant resonances width on the total cross section of their excitation. A good part of this
report (Sections 4 and 5) is dedicated to a review of the microscopic properties on the giant
resonances in the quasiparticle-phonon model. In Section 4 we present the main ideas and
formalism of this model. The particle}hole modes of nuclear excitation are projected into the space
of quasi-bosons, phonons, and matrix elements of interaction between one- and multi-phonon
con"gurations are calculated on microscopic footing within this approach. In Section 5, we use this
model as a basis for a detailed investigation of the interplay between excitation mechanisms and
the nuclear structure in the excitation of the DGDR. Di!erent aspects related to the physical
properties of the DGDR in heavy nuclei (energy centroids, widths, strength distributions, anhar-
monicities and excitation cross sections) as predicted by microscopic studies are discussed in this
section and compared to experimental data.

2. Heavy ion excitation of giant resonances

2.1. Coulomb excitation at relativistic energies

In relativistic heavy ion collisions, the wavelength associated to the projectile-target separation is
much smaller than the characteristic lengths of system. It is, therefore, a reasonable approximation
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to treat r as a classical variable r(t), given at each instant by the trajectory followed by the relative
motion. At high energies, is also a good approximation to replace this trajectory by a straight line.
The intrinsic dynamics can then be handled as a quantum mechanics problem with a time-
dependent Hamiltonian. This treatment is discussed in full details by Alder and Winther in Refs.
[16}18]. We will describe next the formalism developed by Bertulani et al. [19], which explicitly
gives the time dependence of the multipole "elds, useful for a coupled-channels calculation.

The intrinsic state Dt(t)T satis"es the SchroK dinger equation

[h#<(r(t))]Dt(t)T"i+ RDt(t)T/Rt . (1)

where h is the intrinsic Hamiltonian and < is the channel-coupling interaction.
Expanding the wave function in the set MDmT; m"0,NN of eigenstates of h, where N is the

number of excited states included in the coupled-channels problem, we obtain

Dt(t)T"
N
+

m/0

a
m
(t)DmT exp(!iE

m
t/+) , (2)

where E
m

is the energy of the state DmT. Taking scalar product with each of the states SnD, we get the
set of coupled equations

i+ a5
n
(t)"

N
+

m/0

SnD<DmTe*(En~Em)t@+a
m
(t), n"0}N . (3)

It should be remarked that the amplitudes depend also on the impact parameter b specifying the
classical trajectory followed by the system. For the sake of keeping the notation simple, we do not
indicate this dependence explicitly. We write, therefore, a

n
(t) instead of a

n
(b, t). Since the interaction

< vanishes as tP$R, the amplitudes have as initial condition a
n
(tP!R)"d(n, 0) and they

tend to constant values as tPR. Therefore, the excitation probability of an intrinsic state DnT in
a collision with impact parameter b is given as

P
n
(b)"Da

n
(R)D2 . (4)

The total cross section for excitation of the state DnT can be approximated by the classical
expression

p
n
"2pPPn

(b)b db . (5)

Since we are interested in the excitation of speci"c nuclear states, with good angular momentum
and parity quantum numbers, it is appropriate to develop the time-dependent coupling interaction
<(t) into multipoles. In Ref. [18], a multipole expansion of the electromagnetic excitation ampli-
tudes in relativistic heavy ion collisions was carried out. This work used "rst-order perturbation
theory and the semiclassical approximation. The time dependence of the multipole interactions was
not explicitly given. This was accomplished in Ref. [19], which we describe next.

We consider a nucleus 2 which is at rest and a relativistic nucleus 1 which moves along the z-axis
and is excited from the initial state DI

i
M

i
T to the state DI

f
M

f
T by the electromagnetic "eld of nuc-

leus 1. The nuclear states are speci"ed by the spin quantum numbers I
i
, I

f
and by the correspond-

ing magnetic quantum numbers M
i
, M

f
, respectively. We assume that the relativistic nucleus 1
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moves along a straight-line trajectory with impact parameter b, which is therefore also the distance
of the closest approach between the center of mass of the two nuclei at the time t"0. We shall
consider the situation where b is larger than the sum of the two nuclear radii, such that the charge
distributions of the two nuclei do not strongly overlap at any time. The electromagnetic "eld of the
nucleus 1 in the reference frame of nucleus 2 is given by the usual Lorentz transformation [20] of
the scalar potential /(r)"Z

1
e/DrD, i.e.,

/(r@, t)"c/[b@!b, c(z@!vt)] , A(r@, t)"(*/c)c/[b@!b, c(z@!vt)] . (6)

Here b (impact parameter) and b@ are the components of the radius-vectors r and r@ transverse to *.
The time-dependent matrix element for electromagnetic excitation is of the form

<
fi
(t)"SI

f
M

f
D[o(r@)!(*/c2) ) J(r@)]/(r@, t)DI

i
M

i
T , (7)

where o (J) is the nuclear transition density (current).
A Taylor-series expansion of the LieH nard}Wiechert potential around r@"0 yields

/(r@, t)"c/[r(t)]#c+/[r(t)] ) r@#2 , (8)

where r"(b, cvt), and the following simplifying notation is used:

+/[r],+@/(r@, t)Dr{/0
"!+b/(r)!(R/R(vt))/(r)z("!+b/(r)!(*/v2)(R/Rt)/(r) . (9)

Thus,

<
fi
(t)"SI

f
M

f
D[o(r@)!(*/c2) ) J(r@)] [c/(r)#cr@ )+/(r)]DI

i
M

i
T . (10)

Using the continuity equation

+ ) J"!iuo , (11)

where u"(E
f
!E

i
)/+, and integrating by parts,

<
fi
(t)"TI

f
M

f
DCJ(r) )C

+@
iu

!

*
c2DD[c/(r)#cr@ )+/(r)]DI

i
M

iU . (12)

In spherical coordinates

r@ )+/"

J4p
3

1
+

k/~1

akr@>H1k , (13)

where

ak"e( k )+/ , (14)

and e( k are the spherical unit vectors

e(
B
"G(1/J2)(e(

X
$e(

Y
), e(

0
"e(

Z
.

We will use the relations

*/c2"(v/c2)e(
0
"(v/c2)J(4p/3)+(r>H

10
) (15)

and

+]L(rk>
lm

)"i(k#1)+(rk>
lm

) (16)

where L"!ir]+.
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Then, one can write

J )A
+
iu

!

*
c2B[c/#cr@ )+/]

"!cJ )C
*
c2

(+/ ) r@)!S
4p
3 G

1
+

k/~1

ak
iu

+@(r@>
1k)!

v
c2

/+@(r@>H
10

)HD . (17)

The "rst term in the above equation can be rewritten as

AJ )
*
c2B(r@ )+/)"

v
2c2

J ) [e(
0
(r@ )+/)#(r@ ) e(

0
)+/]#(v/2c2)J ) [e(

0
(r@ )+/)!(r@ ) e(

0
)+/] . (18)

The "rst term in this equation is symmetric under parity inversion, and contributes to the electric
quadrupole (E2) excitation amplitudes, since

(v/2c2)J ) [e(
0
(r@ )+/)#(r@ ) e(

0
)+/]"(v/2c2)J )+@[z@(r@ )+/)] . (19)

The second term in Eq. (18) is antisymmetric in J and r@, and leads to magnetic dipole (M1)
excitations. Indeed, using Eqs. (13)}(16), one "nds

v
2c2

J ) [e(
0
(r@ )+/)!(r@ ) e(

0
)+/]"

v
2c2

J )CS
4p
3

1
+

k/~1

ak(!1)kL(r>
1,~k)D . (20)

Thus, only the last two terms on the right-hand side of Eq. (17) contribute to the electric dipole (E1)
excitations. Inserting them into Eq. (12), we get

<(E1)
fi

(t)"cS
4p
3

1
+

k/~1

(!1)kbkSI
f
M

f
DM(E1,!k)DI

i
M

i
T , (21)

where

M(E1,!k)"
i
uPd3r J(r) )+(r>

1k)"Pd3 r o(r)r>
1k(r) (22)

and

b
B
"!ak"!(+/ ) e( k)"e( k ) R//Rb,

b
0
"!a

0
!i(uv/c2)/ . (23)

The derivatives of the potential / are explicitly given by

R/
Rb

x

,+b
x
/Dr{/0

"!x( b
x

Z
1
e

[b2#c2v2t2]3@2
,

+
z
/Dr{/0

"!z( c2vt
Z

1
e

[b2#c2v2t2]3@2
. (24)

Using the results above, we get for the electric dipole potential

<(E1)
fi

(t)"S
2p
3

cGE1
(q)[M

fi
(E1,!1)!M

fi
(E1, 1)]#J2cCqE1

(q)!i
uv
cc2

E
2
(q)DMfi

(E1, 0)H ,

(25)
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where q"cv/b, and

E
1
(q)"Z

1
e/b2[1#q2]3@2 and E

2
(q)"Z

1
e/b[1#q2]1@2 (26)

are proportional to the transverse and longitudinal electric "elds generated by the relativistic
nucleus with charge Z

1
e, respectively. From the de"nition

M
fi
(M1,k)"!

i
2cP d3r J(r) )L(r>

1k) , (27)

and Eq. (19), we "nd

<(M1)
fi

(t)"iS
2p
3

v
c
cE

1
(q)[M

fi
(M1, 1)#M

fi
(M1,!1)] . (28)

The current J in Eq. (27) is made up of the usual convective part and a magnetization part,
proportional to the intrinsic (Dirac and anomalous) magnetic moment of the nucleons. To obtain
the electric quadrupole (E2) potential we use the third term in the Taylor expansion of Eq. (8).
Using the continuity equation, a part of this term will contribute to E3 and M2 excitations, which
we neglect. We then "nd that

<(E2)
fi

(q)"!S
p
30

cG3E3
(q)[M

fi
(E2, 2)#M

fi
(E2,!2)]

#cC6qE
3
(q)!i

uv
cc2

E
1
(q)D[Mfi

(E2,!1)#M
fi
(E2, 1)]

#J6 c2C(2q2!1)E
3
(q)!i

uv
cc2

qE
1
(q)DMfi

(E2, 0)H , (29)

where E
3
(q) is the quadrupole electric "eld of nucleus 1, given by

E
3
(q)"Z

1
e/b3[1#q2]5@2 . (30)

The "elds E
*
(q) peak around q"0, and decrease fastly within an interval *qK1. This corresponds

to a collisional time *tKb/cv. This means that, numerically one needs to integrate the coupled-
channels equations (Eq. (3)) only in a time interval within a range n]*q around q"0, with n equal
to a small integer number. A computer code for coupled channels calculations of relativistic
Coulomb excitation using the formalism presented in this section is available in the literature
[121].

2.1.1. First-order perturbation theory
In most cases, the "rst-order perturbation theory is a good approximation to calculate the

amplitudes for relativistic Coulomb excitation. It amounts to using a
k
"d

k0
on the right-hand side
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of Eq. (3). The time integrals can be evaluated analytically for the <
E*
(t) perturbations, given by

Eqs. (25), (28), and (29). The result is

a(E1)
145

"!iS
8p
3

Z
1
e

+vb
mGK1

(m)[M
fi
(E1,!1)!M

fi
(E1, 1)]#i

J2
c

K
0
(m)M

fi
(E1, 0)H , (31)

where K
1

(K
2
) is the modi"ed Bessel function of "rst (second) degree, and m"ub/cv. For the E2

and M1 multipolarities, we obtain respectively,

a(E2)
145

"2i S
p
30

Z
1
e

c+vb2
m2MK

2
(m)[M

fi
(E2,2)#M

fi
(E2,!2)]

#icA2!
v2
c2BK1

(m)[M
fi
(E2,!1)#M

fi
(E2,1)]

!J6K
0
(m)M

fi
(E2,0)N (32)

and

a(M1)
145

"S
8p
3

Z
1
e

+cb
mK

1
(m)[M

fi
(M1, 1)!M

fi
(M1,!1)] . (33)

These expressions are the same as those obtained from the formulae deduced in Ref. [18]. We
note that the multipole decomposition developed by those authors is accomplished by a di!erent
approach, i.e., using recurrence relations for the Gegenbauer polynomials, after the integral on time
is performed. Therefore, the above results present a good check for the time dependence of the
multipole "elds deduced here.

The formulas above have been derived under the assumption of the long-wavelength approxima-
tion. When this approximation is not valid the matrix elements given by Eqs. (22) and (27) are to be
replaced by the non-approximated matrix elements for electromagnetic excitations [16], i.e.,

M(Ej,k)"
(2j#1)!!

ij`1c(j#1)PJ(r) )+]L[ jj(ir)>jk(r( )] d3r , (34)

M(Mj,k)"!i
(2j#1)!!
ijc(j#1)PJ(r) )L[ jj(ir)>jk(r( )] d3r (35)

for electric and magnetic excitations (i"u/c), respectively. However, the other factors do not
change (see, e.g., [18]).

2.1.2. Excitation probabilities and virtual photon numbers
The square modulus of Eqs. (31)}(33) gives the probability of exciting the target nucleus from the

initial state DI
i
M

i
T to the "nal state DI

f
M

f
T in a collision with impact parameter b. If the orientation

of the initial state is not speci"ed, the probability for exciting the nuclear state of energy E
f
and spin

I
f

is

P
i?f

"

1
2I

i
#1

+
Mi,Mf

Da
fi
D2 . (36)
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Integration of (36) over all energy transfers e"+u, and summation over all possible "nal states of
the projectile nucleus (making use of the Wigner}Eckart theorem and the orthogonality of the
properties of the Clebsch}Gordan coe$cients) leads to the Coulomb excitation probability in
a collision with impact parameter b:

P
C
"+

f
PPi?f

(b)o
f
(e) de (37)

where o
f
(e) is the density of "nal states of the target with energy E

f
"E

i
#e.

Inserting (31)}(33) into (37) one "nds

P
C
(b, e)"+

pj
P

pj(b, e)"+
pj P

de
e
n

pj(b, e)ppjc (e) , (38)

where

ppjc (e)"
(2p)3(j#1)

j[(2j#1)!!]2
+
f

o
f
(e)i2j~1B(pj, I

i
PI

f
) (39)

are the photonuclear absorption cross sections for a given multipolarity pj. The total photonuclear
cross section is a sum of all these multipolarities,

pc"+
pj

ppjc (e) . (40)

The functions n
pj(e) are called the virtual photon numbers, and are given by

n
E1

(b, e)"
Z2

1
a

p2

m2

b2A
c
vB

2

GK2
1
#

1
c2

K2
0H , (41)

n
E2

(b, e)"
Z2

1
a

p2b2A
c
vB

4

G
4
c2

[K2
1
#mK

0
K

1
#m2K2

0
]#m2(2!v2/c2)2K2

1H (42)

and

n
M1

(b, e)"
Z2

1
a

p2

m2

b2
K2

1
, (43)

where all modi"ed Bessel functions Kk are functions of m(b)"ub/cv.
Since all nuclear excitation dynamics is contained in the photoabsorption cross section, the

virtual photon numbers (41)}(43) do not depend on the nuclear structure. They are kine-
matical factors, depending on the orbital motion. They may be interpreted as the number of
equivalent (virtual) photons that hit the target per unit area. These expressions show that Coulomb
excitation probabilities are exactly directly proportional to the photonuclear cross sections,
although the exchanged photons are o!-shell. This arises from the condition that the reaction
is peripheral and the nuclear charge distributions of each nuclei do not overlap during the colli-
sion. This result can be proved from "rst principles, and has been shown in some textbooks (see,
e.g., [21]).

The usefulness of Coulomb excitation, even in "rst-order processes, is displayed in Eq. (38). The
"eld of a real photon contains all multipolarities with the same weight and the photonuclear cross
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section (40) is a mixture of the contributions from all multipolarities, although only a few
contribute in most processes. In the case of Coulomb excitation the total cross section is weighted
by kinematical factors which are di!erent for each projectile or bombarding energy. This allows
one to disentangle the multipolarities when several ones are involved in the excitation process,
except for the very high bombarding energies c<1 for which all virtual photon numbers can be
shown to be the same [22].

2.1.3. Cross sections and total virtual photon numbers
The cross section is obtained by the impact parameter integral of the excitation probabilities.

Eq. (38) shows that we only need to integrate the number of virtual photons over impact parameter.
One has to introduce a minimum impact parameter b

0
in the integration. Impact parameters

smaller than b
0

are dominated by nuclear fragmentation processes. One "nds

dp
C
"+

pj
p

pj"+
pj P

de
e
N

pj(e)ppjc (e) , (44)

where the total virtual photon numbers N
pj(e)"2p:dbbnnj(b, e) are given analytically by

N
E1

(e)"
2Z2

1
a

p A
c
vB

2

CmK
0
K

1
!

v2m2

2c2
(K2

1
!K2

0
)D , (45)

N
E2

(e)"
2Z2

1
a

p A
c
vB

4

C2A1!
v2
c2BK2

1
#mA1!

v2
c2B

2
K

0
K

1

#

m2v4
2c4

(K2
1
!K2

0
)#m2(2!v2/c2)2K2

1D (46)

and

N
M1

(e)"
2Z2

1
a

p
m2

b2CmK
0
K

1
!

m2

2
(K2

1
!K2

0
)D , (47)

where all Kk's are now functions of m(b)"ub
0
/cv.

2.2. Coulomb excitation at intermediate energies

2.2.1. Classical trajectory: recoil and retardation corrections
The semiclassical theory of Coulomb excitation in low-energy collisions accounts for the

Rutherford bending of the trajectory, but relativistic retardation e!ects are neglected [17]. On the
other hand, in the theory of relativistic Coulomb excitation [18], recoil e!ects on the trajectory are
neglected (one assumes straight-line motion) but retardation is handled correctly. In fact, the onset
of retardation brings new important e!ects such as the steady increase of the excitation cross
sections with bombarding energy. In a heavy ion collision around 100AMeV, the Lorentz factor
c is about 1.1. Since this factor enters the excitation cross sections in many ways, like in the
adiabaticity parameter

m(R)"u
fi
R/cv , (48)
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one expects that some sizable modi"cations in the theory of relativistic Coulomb excitation
should occur [23]. Recoil corrections are not negligible either, and the relativistic calcula-
tions based on the straight-line parametrization should not be completely appropriate to describe
the excitation probabilities and cross sections. The Coulomb recoil in a single collision is of the
order of

a
0
"Z

1
Z

2
e2/m

0
v2 , (49)

which is half-distance of closest approach in a head-on collision, with m
0

equal to the reduced mass
of the colliding nuclei. Although this recoil is small for intermediate energy collisions, the excitation
probabilities are quite sensitive to it. This is important for example in the excitation of giant
resonances because the adiabaticity parameter is of the order of one (see, Eq. (48)). When m(b);1,
the excitation probabilities depends on b approximately like 1/b2, while when m(b) becomes greater
than one they decrease approximately as e~2pm(b)/b2. Therefore, when mK1, a slight change of
b may vary appreciably the excitation probabilities.

In the semiclassical theory of Coulomb excitation the nuclei are assumed to follow classical
trajectories and the excitation probabilities are calculated in time-dependent perturbation theory.
At low energies one assumes Rutherford trajectories for the relative motion while at relativistic
energies one assumes straight-line motion. In intermediate energy collisions, where one wants to
account for recoil and retardation simultaneously, one should solve the general classical problem
of the motion of two relativistic charged particles. But, even if radiation is neglected, this
problem can only be solved if one particle has in"nite mass [24]. This approximation should be
su$cient if we take, e.g., the collision 16O#208Pb as our system. An improved solution may be
obtained by use of the reduced mass, as we show next, in a formalism developed by Aleixo and
Bertulani [23].

In the classical one-body problem, one starts with the relativistic Lagrangian

L"!m
0
c2M1!(1/c2) (r5 2#r2/Q 2)N1@2!Z

1
Z

2
e2/r , (50)

where r5 and /Q are the radial and the angular velocity of the particle, respectively (see Fig. 2). Using
the Euler}Lagrange equations one "nds three kinds of solutions, depending on the sign of the
charges and the angular momentum in the collision. In the case of our interest, the appropriate
solution relating the collisional angle / and the distance r between the nuclei is [24]

1/r"A[e cos (=/)!1] (51)

where

="[1!(Z
1
Z

2
e2/c¸

0
)2]1@2 , (52)

A"Z
1
Z

2
e2E/c2¸2

0
=2 , (53)

e"(c¸
0
/Z

1
Z

2
e2E)[E2!m2

0
c4#(m

0
cZ

1
Z

2
e2/¸

0
)2]1@2 . (54)

E is the total bombarding energy in MeV, m
0

is the mass of the particle and ¸
0

its angular
momentum. In terms of the Lorentz factor c and of the impact parameter b, E"cm

0
c2 and

¸
0
"cm

0
vb. The above solution is valid if ¸

0
'Z

1
Z

2
e2/c. In heavy ion collisions at intermediate

energies one has ¸
0
<Z

1
Z

2
e2/c for impact parameters that do not lead to strong interactions. It is
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Fig. 2. A nuclear target is Coulomb excited by a fast moving projectile. The coordinates used in text are shown.

also easy to show that, from the magnitudes of the parameters involved in heavy ion collisions at
intermediate energies, the trajectory (51) can be very well described by approximating

="1, A"a
0
/cb2, e"J(b2c2/a2

0
)#1 , (55)

where a
0

is half the distance of closest approach in a head on collision (if the nuclei were pointlike
and if non-relativistic kinematics were used), and e is the eccentricity parameter. In the approxima-
tion (55) e is related to the de#ection angle 0 by e"(a

0
/c) cot0.

The time dependence for a particle moving along the trajectory (51) may be directly obtained by
solving the equation of angular momentum conservation. Introducing the parametrization

r(s)"(a
0
/c)[e cosh s#1] (56)

we "nd

t"(a
0
/cv)[s#e sinh s] . (57)

Using the scattering plane perpendicular to the Z-axis, one "nds that the corresponding
components of r may be written as

x"a[coshs#e] , (58)

y"a Je2!1 sinh s , (59)

z"0 , (60)

where a"a
0
/c. This parametrization is of the same form as commonly used in the non-relativistic

case [17], except that a
0

is substituted by a
0
/c,a.

In the limit of straight-line motion eKb/a<1, and the equations above reduce to the simple
parametrization

y"vt, x"b and z"0 . (61)

As we quoted before, the classical solution for the relative motion of two relativistic charges
interacting electromagnetically can only be solved analytically if one of the particles has in"nite
mass. Non-relativistically the two-body problem is solvable by introduction of center of mass and
relative motion coordinates. Then, the result is equivalent to that of a particle with reduced mass
m

0
"m

P
m

T
/(m

P
#m

T
) under the action of the same potential. The particle with reduced mass m

0
is

lighter than those with mass m
P

and m
T
, and this accounts for the simultaneous recoil of them. An
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exact relativistic solution should reproduce this behavior as the relative motion energy is lowered.
We shall use the reduced mass de"nition of m

0
as usual in the parametrization of the classical

trajectory of Coulomb excitation in intermediate energy collisions, as outlined above. In
a 16O#208Pb collision this is not a too serious approximation. For heavier systems like U#U it
would be the simplest way to overcome this di$culty. But, as energy increases, this approximation
is again unimportant since the trajectories will be straight lines parametrized by an impact
parameter b. A more exact result can be obtained numerically using the Darwin Lagrangian to
determine the classical trajectory in collisions at intermediate energies [25]. But, the parametriz-
ation of the classical trajectory as given by Eqs. (58)}(60) with a reduced mass particle, besides
reproducing both the non-relativistic and the relativistic energies, gives a reasonable solution to the
kind of collisions we want to study.

2.2.2. Excitation amplitudes
Including retardation, the amplitude for Coulomb excitation of a target from the initial state DiT

to the "nal state D f T is given in "rst-order time-dependent perturbation theory by

a
fi
"

1
i+PGofi

(r)/(u, r)#
1
c
J
fi
(r) )A(u, r)Hd3r (62)

where o
fi

(J
fi
) is the nuclear transition density (current) and

/(u, r)"Z
1
eP

=

~=

e*ut
e*i@r!r@(t)@

Dr!r@(t)D
dt , (63)

A(u, r)"
Z

1
e

c P
=

~=

*@(t) e*wt
e*i@r!r@(t)@

Dr!r@(t)D
dt (64)

are the retarded potentials generated by a projectile with charge Z
2

following a Coulomb
trajectory, and i"u/c. When the magnitude of the amplitudes (62) is small compared to unity, the
use of "rst-order perturbation theory is justi"ed.

We now use the expansion

e*i@r!r@@

Dr!r@D
"4pii+

jk
jj(ir

:
)>Hjk(r(:)hj(ir

;
)>jk(r(;) , (65)

where jj (hj) denotes the spherical Bessel (Hankel) functions (of "rst kind), r
;

(r
:

) refers to
whichever of r and r@ has the larger (smaller) magnitude. Assuming that the projectile does not
penetrate the target, we use r

;
(r
:
) for the projectile (target) coordinates. At collision energies

above the Coulomb barrier this assumption only applies for impact parameters larger than
a certain minimum, below which the nuclei penetrate each other. Using the continuity equation (11)
for the nuclear transition current (we changed the notation: o,o

fi
, J,j

fi
), we can show that the

expansion (65) can be expressed in terms of spherical tensors (see, e.g., Ref. [21, Vol. II]) and Eq. (62)
becomes

a
fi
"

Z
1
e

i+
+
jk

4p
2j#1

(!1)kMS(Ej,k)M
fi
(Ej,!k)#S(Mj,k)M

fi
(Mj,!k)N , (66)

where M(pj,k) are the matrix elements for electromagnetic transitions, as de"ned in (34) and (35).
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The orbital integrals S(pj,k) are given by

S(Ej,k)"!

iij`1

j(2j!1)!!P
=

~=

R
Rr@Mr@(t)hj[ir@(t)]N>jk[h@(t),/@(t)] e*utdt

!

ij`2

cj(2j!1)!!P
=

~=

*@(t) ) r@(t)hj[ir@(t)]>jk[h@(t),/@(t)] e*utdt (67)

and

S(Mj,k)"!

i
cm

0
c

ij`1

j(2j!1)!!
L
0
)P

=

~=

+@Mhj[ir@(t)]>jk[h@(t),/@(t)]N e*utdt , (68)

where L
0

is the angular momentum of relative motion, which is constant:

¸
0
"cam

0
v cot0/2 (69)

with 0 equal to the (center-of-mass) scattering angle.
In non-relativistic collisions

ir@"ur@/c"(v/c)(ur@/v)((v/c);1 (70)

because when the relative distance r@ obeys the relations ur@/v51 the interaction becomes
adiabatic. Then one uses the limiting form of hj for small values of its argument [26] to show that

SNR(Ej,k)KP
=

~=

r@~j~1(t)>jkMh@(t),/@(t)N e*utdt (71)

and

SNR(Mj,k)K!

1
jm

0
c
L
0P

=

~=

+@Mr@~j~1(t)>jk[h@(t),/@(t)]N e*utdt (72)

which are the usual orbital integrals in the non-relativistic Coulomb excitation theory with
hyperbolic trajectories (see Ref. [17, Eqs. (II.A.43)]).

In the intermediate energy case the relation (69) is partially relaxed (of course, for relativistic
energies, v&c, it is not valid) and one has to keep the more complex forms (67), (68) for the orbital
integrals.

Using the Z-axis perpendicular to the trajectory plane, the recursion relations for the spherical
Hankel functions and the identity

* ) r"ds/dt?dr/ds ) r"aev sinh s , (73)

we can rewrite the orbital integrals, in terms of the parametrization (58)}(60), as

S(Ej,k)"!

iijg
cj(2j!1)!!

CjkP
=

~=

ds eig(e 4*/) s`s)
(e#cosh s#iJe2!1 sinhs)k

(e cosh s#1)k~1

]C(j#1) hj!
vg
c

(e cosh s#1) hj`1
#iA

v
cB

2
ge sinh s ) hjD , (74)
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where

Cjk"GS
2j#1

4p
J(j!k)!(j#k)!
(j!k)!!(j#k)!!

(!1)(j`k)@2 for j#k"even ,

0 for j#k"odd
(75)

and

g"ua/v"ua
0
/cv , (76)

and with all hj's as functions of (v/c)g (e cosh s#1).
For convenience, we de"ne

I(Ej,k)"(vaj/Cjk)S(Ej, k) (77)

and we translate the path of integration by an amount ip/2 to avoid strong oscillations of the
integral. We "nd,

I(Ej,k)"!iA
vg
c B

j`1 1
j(2j!1)!!

e~pg@2P
=

=

ds e~ge #04) s e*gs

]
(e#i sinh s!Je2!1 cosh s)k

(ie sinh s#1)k~1 C(j#1)hj!zhj`1
!A

v
cB

2
eg cosh s ) hjD , (78)

where all hj's are now functions of

z"(v/c)g(ie sinh s#1) . (79)

In the case of magnetic excitations, one may explore the fact that L
0

is perpendicular to the
scattering plane to show that

1
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0
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)+Ghj(ir)>jkA

p
2
, /BH"c
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r
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0
2S
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2j#3
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The magnetic orbital integrals become

S(Mj,k)"!ia
v
c

ij`1

j(2j!1)!!S
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2j#3

J(j#1)2!k2

]Cj`1,k cot
0
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1
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De"ning

I(Mj,k)"!

jcajS(Mj,k)
Cj`1,k cot0/2

M[(2j#1)/(2j#3)][(j#1)2!k2]N~1@2 (82)

we obtain, using the parametrization (58)}(60), and translating the integral path by ip/2,

I(Mj,k)"
i(vg/c)j`1

(2j!1)!!
e~pg@2P

=

~=

ds hj(z) e~ge #04) s e*gs
(e#i sinh s!Je2!1 cosh s)k

(ie sinh s#1)k
. (83)
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Generally, the most important magnetic excitation has M1 multipolarity. The orbital integrals
(78), (83) can only be solved numerically.

2.2.3. Cross sections and equivalent photon numbers
In the high-energy limit the classical trajectory reduces to a straight line. One can show that

using the approximation e"b/a<1, the orbital integrals (78) and (83) can be expressed in terms of
simple analytical functions. However, it is instructive and useful to deduce the excitation ampli-
tudes from the "rst principles again.

The square modulus of Eq. (66) gives the probability of exciting the target nucleus from the
initial state DI

i
M

i
T to the "nal state DI

f
M

f
T in a collision with c.m. scattering angle 0. If the

orientation of the initial state is not speci"ed, the cross section for exciting the nuclear state of
spin I

f
is

dp
i?f

"

a2e4
4

1
2I

i
#1

+
Mi,Mf

Da
fi
D2dX , (84)

where a2e4dX/4 is the elastic (Rutherford) cross section. Using the Wigner}Eckart theorem and the
orthogonality properties of the Clebsch}Gordan coe$cients, one can show that

dp
i?f

dX
"

4p2Z2
1
e2

+2
a2e4+

jk

B(nj, I
i
PI

f
)

(2j#1)3
DS(nj,k)D2 , (85)

where p"E or M stands for the electric or magnetic multipolarity, and the reduced transition
probability is given by

B(nj; I
i
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)"

1
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i
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M

i
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f
M

f
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1
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i
#1

DSI
i
DDM(nj)DDI

f
TD2 . (86)

Integration of (85) over all energy transfers e"+u, and summation over all possible "nal states
of the projectile nucleus leads to

dp
C

dX
"+

f
P
dp

i?f
dX

o
f
(e) de , (87)

where o
f
(e) is the density of "nal states of the target with energy E

f
"E

i
#e. Inserting (85) into (87)

one "nds

dp
C

dX
"+

nj

dpnj
dX

"+
nj P

de
e

dnnj
dX

(e)pnjc (e) , (88)

where pnjc are the photonuclear absorption cross sections for a given multipolarity nj. The virtual
photon numbers, nnj(e), are given by

dnnj
dX

"

Z2
1
a

2p
j[(2j#1)!!]2

(j#1)(2j#1)3
c2a2e4
i2(j~1)
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DS(nj,k)D2 . (89)
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In terms of the orbital integrals I(Ej,k), given by (79), and using Eq. (89), we "nd for the electric
multipolarities

dn
Ej

dX
"

Z2
1
a

8p2A
c
vB

2j j[(2j#1)!!]2
(j#1)(2j#1)2

e4g~2j`2 +
kj`k/%7%/

(j!k)!(j#k)!
[(j!k)!!(j#k)!!]2

DI(Ej,k)D2 . (90)

In the case of magnetic excitations we "nd
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2(j~1) [(2j#1)!!]2
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DI(Mj,k)D2 . (91)

Only for the E1 multipolarity the integrals can be performed analytically and we get the closed
expression
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2
e4f2e~pfG

1
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[K
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where e"1/sin(h/2), a"1/137, f"ua
0
/cv, a

0
"Z

1
Z

2
e2/2E

L!"
, K

*f is the modi"ed Bessel function
with imaginary index, K@

*f is the derivative with respect to its argument. Since the impact parameter
is related to the scattering angle by b"a cot0/2, we can also write

nnj(e, b),
dnnj

2pbdb
"

4
a2e4

dnnj
dX

(93)

which are interpreted as the number of equivalent photons of energy e"+u, incident on the
target per unit area, in a collision with impact parameter b, in analogy with the results obtained
in Section 2.1.2.

Again we stress the usefulness of the concept of virtual photon numbers, especially in relativistic
collisions. In these collisions the momentum and the energy transfer due to the Coulomb
interaction are related by *p"*E/vK*E/c. This means that the virtual photons are almost real.
One usually explores this fact to extract information about real photon processes from the
reactions induced by relativistic charges, and vice versa. This is the basis of the WeizsaK cker}
Williams method, commonly used to calculate cross sections for Coulomb excitation, particle
production, Bremsstrahlung, etc. (see, e.g., Ref. [6]). In the case of Coulomb excitation, even at low
energies, although the equivalent photon numbers should not be interpreted as (almost) real ones,
the cross sections can still be written as a product of them and the cross sections induced by real
photons, as we have shown above.

2.3. Comparison of Coulomb excitation of GRs at low energies and at relativistic energies

Inserting the non-relativistic orbital integrals into Eq. (89), we get the following relation for the
non-relativistic equivalent photon numbers (NR):

dn(NR)nj
dX

"Z2
1
a
j[(2j#1)!!]2
(2p)3(j#1)

f~2j`2A
c
vB

2(j`d)dfnj
dX

(0, f) , (94)
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Fig. 3. Electric dipole number of equivalent photons per unit area d2b,2pbdb, with energy of 10MeV, incident on
208Pb in a collision with 16O at impact parameter b"15 fm, and as a function of the bombarding energy in MeV per
nucleon. The dotted line and the dashed line correspond to calculations performed with the non-relativistic and with the
relativistic approaches, respectively. The solid line represents a more correct calculation, as described in the text.

Fig. 4. Same as Fig. 3, but for the E2 multipolarity.

where d"0 for electric, and d"!1 for magnetic multipolarities, and f"ua
0
/v. The non-

relativistic Coulomb excitation functions fnj(0, f) are very well known and, e.g., are tabulated in
Ref. [17], or maybe calculated numerically.

Using Eqs. (90)}(92), we make an analysis of Coulomb excitation extending from low- to
high-energy collisions. As an example, we study the excitations induced by 16O in 16O#208Pb
collisions. Since expression (89) is quite general, valid for all energies, under the assumption that the
nuclei do not overlap, the equivalent photon numbers contain all information about the di!erences
among the low- and the high-energy scattering. In Figs. 3}5 we show dnnj,e, for the E1 (Fig. 3),
E2 (Fig. 4), and M1 (Fig. 5) multipolarities, and for the collision 16O#208Pb with an impact
parameter b"15 fm. They are the equivalent photon numbers with frequency u"10MeV/+
incident on 208Pb. The dotted lines are obtained by using the non-relativistic equation (94), while
the dashed lines correspond to the relativistic expressions (41)}(43). One observes that the
relativistic expressions overestimate the equivalent photon numbers at low energies, while the
non-relativistic expressions underestimate them at high energies. The most correct values are given
by the solid lines, calculated according to Eqs. (90) and (91). They reproduce the low- and the
high-energy limits, giving an improved interpolation between these limits at intermediate energies.
These discrepancies are more apparent for the E1 and the E2 multipolarities. In the energy interval
around 100AMeV neither the low-energy theory nor the high-energy one can reproduce well the
correct values. This energy interval is indeed very sensitive to the e!ects of retardation and of
Coulomb recoil.

At these bombarding energies, the di!erences between the magnitude of the non-relativistic and
the correct relativistic virtual photon numbers are kept at a constant value, of about 20%, for
excitation energies e"+u(10MeV. However, they increase sharply when one reaches the
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Fig. 5. Same as Fig. 3, but for the M1 multipolarity.

Fig. 6. Equivalent photon numbers per unit area incident on 208Pb, in a collision with 16O at 100AMeV and with
impact parameter b"15 fm, as a function of the photon energy +u. The curves for the E1, E2 and M1 multipolarities
are shown.

excitation energy of e"+u'10MeV. The reason is that, for such excitation energies, the
adiabaticity factor becomes greater than unity (m'1). This means that excitation energies of order
of 10MeV (like in the case of giant resonance excitation) are in the transition region from
a constant behavior of the equivalent photon numbers to that of an exponential (&e~pm) decay.
This is more transparent in Fig. 6 where we plot the equivalent photon numbers for E

-!"
"

100 AMeV, b"15 fm, and as a function of +u. One also observes from this "gure that the E2
multipolarity component of the electromagnetic "eld dominates at low frequencies. Nonetheless,
over the range of +u up to some tens of MeV, the E2 matrix elements of excitation are much smaller
than the E1 elements for most nuclei, and the E2 e!ects become unimportant. However, such e!ects
are relevant for the excitation of the isoscalar E2 giant resonance (GQR

*4
) which have large matrix

elements.
As an application of the semiclassical approach to Coulomb excitation in intermediate energy

collisions, we study the excitation of giant isovector dipole resonances (E1) and of giant isoscalar
quadrupole resonances (E2) in 208Pb by means of the Coulomb interaction with a 16O projectile.
At 100AMeV the maximum scattering angle which still leads to a pure Coulomb scattering
(assuming a sharp cut-o! at an impact parameter b"R

P
#R

T
) is 3.93. The cross sections are

calculated by assuming a Lorentzian shape for the photonuclear cross sections:

pnjc "p
m

e2C2

(e2!E2
m
)2#e2C2

(95)

with p
m

chosen to reproduce the Thomas}Reiche}Kuhn sum rule for E1 excitations,

PpE1c (e) deK60
NZ
A

MeV mb (96)
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Fig. 7. Total cross sections for the excitation of giant electric dipole (E1) and quadrupole (E2) resonances in 208Pb by
means of the Coulomb interaction with 16O, as a function of the laboratory energy.

1We observe that the original formula for the dipole case appearing in [6] has a misprinted sign in one of its terms.

and the energy-weighted sum rule for the quadrupole mode,

PpE2c (e)
de
e2
K0.22ZA2@3lb/MeV . (97)

The resonance energies are approximately given by E
GDR

K77 )A~1@3MeV and E
GQR

K

63 )A~1@3MeV. We use the widths C
GDR

"4 MeV and C
GQR

"2.2MeV for 208Pb.
We will discuss the di!erential cross sections as a function of the scattering angle later, when we

introduce the e!ects of strong absorption. To obtain the total cross sections, one has to integrate
the equivalent photon numbers in (90) and (91) from 03 to a maximum scattering angle h

.!9
, where

the nuclear absorption sets in, or equivalently, one can integrate over the impact parameter, from
a minimum value b

.*/
up to in"nity. Fig. 7 shows the total cross section for the excitation of giant

dipole and of giant quadrupole resonances in 208Pb in a collision with 16O as a function of the
laboratory energy per nucleon. The same average behavior of the photonuclear cross sections, as
assumed in Eqs. (95) and (96), is used.

Only for the E1 multipolarity the angular integration can be performed analytically. One
obtains1

N
E1
"

2
p
Z2

1
a e~pf(c/v)2G!mK

*fK@
*f!

1
2

(c/v)2m2

](f/m)2K2
if#K@2

if!K2
if!

i
e
0
AKifA

RK@k
Rk Bk/if

!K@
ifA
RKk
Rk Bk/ifBH , (98)
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where

e
0
"G

1 for 2a'b
.*/

,

R/a!1 for 2a(b
.*/

,
(99)

and m"e
0
f"ub

.*/
/cv.

It is easy to see that this equation reduces to Eq. (45) in the relativistic limit, when
fP0, e

0
PR.

The cross sections increase very rapidly to large values, which are already attained at intermedi-
ate energies. A salient feature is that the cross section for the excitation of giant quadrupole modes
is very large at low and intermediate energies, decreasing in importance (about 10% of the E1 cross
section) as the energy increases above 1A GeV. This occurs because the equivalent photon number
for the E2 multipolarity is much larger than that for the E1 multipolarity at low collision energies.
That is, n

E2
<n

E1
, for v;c. This has a simple explanation. Pictorially, as seen from an observer

at rest, when a charged particle moves at low energies the lines of force of its corresponding electric
"eld are isotropic, diverging from its center in all directions. This means that the "eld carries a large
amount of tidal (E2) components. On the other hand, when the particle moves very fast its lines of
force appear contracted in the direction perpendicular to its motion due to Lorentz contraction.
For the observer this "eld looks like a pulse of plane waves of light. But plane waves contain all
multipolarities with the same weight, and the equivalent photon numbers become all approxim-
ately equal, i.e., n

E1
Kn

E2
Kn

M1
, and increase logarithmically with the energy for c<1. The

di!erence in the cross sections when c<1 are then approximately equal to the di!erence in the
relative strength of the two giant resonances pE2c /pE1c (0.1. The excitation of giant magnetic
monopole resonances is of less importance, since for low energies n

M1
;n

E1
(n

M1
K(v/c)2n

E1
),

whereas for high energies, where n
M1

Kn
E1

, it will be also much smaller than the excitation of
electric dipole resonances since their relative strength pM1c /pE1c is much smaller than unity.

At very large energies the cross sections for the Coulomb excitation of giant resonances
overcome the nuclear geometrical cross sections. Since these resonances decay mostly through
particle emission or "ssion, this indicates that Coulomb excitation of giant resonances is a very
important process to be considered in relativistic heavy ion collisions and fragmentation processes,
especially in heavy ion colliders. At intermediate energies the cross sections are also large and this
o!ers good possibilities to establish and study the properties of giant resonances.

2.4. Quantum description of Coulomb excitation at high energies

Inelastic scattering of heavy ions at intermediate energy collisions is an important tool to
investigate the structure of stable and unstable nuclei. Laboratories like GANIL/France,
GSI/Germany, RIKEN/Japan, and MSU/USA, frequently use this technique. The angular distri-
bution of the inelastically scattered fragments are particularly useful to identify unambiguously the
multipolarity of the interaction, and consequently the spin and parities of the excited states. In
previous sections we have shown that recoil and retardation e!ects, are important at this energy
regime. However, as shown by Bertulani and Nathan [27], in order to describe correctly the
angular distribution, absorption and di!raction e!ects have to be included properly. Next we show
how quantum mechanical e!ects show up in the di!erential cross sections.
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2.4.1. Inelastic amplitudes and virtual photon numbers
De"ning r as the separation between the centers of mass of the two nuclei and r@ to be the

intrinsic coordinate of the target nucleus to "rst-order the inelastic scattering amplitude is given by

f (h)"
ik

2p+vPd3rd3r@ SU(~)k{
(r)/

f
(r@)D<

*/5
(r, r@)DU(`)k (r)/

i
(r@)T , (100)

where U(~)k{
(r) and U(`)k (r) are the incoming and outgoing distorted waves, respectively, for the

scattering of the center of mass of the nuclei, and /(r@) is the intrinsic nuclear wave function of
the target nucleus.

At intermediate energies, *E/E
-!"

;1, and forward angles, h;1, we can use eikonal wave
functions for the distorted waves, i.e.,

U(~)Hk{
(r)U(`)k (r)"expM!iq . r#is(b)N , (101)

where

s(b)"
i
+vP

=

~=

;015
N

(z@, b) dz@#it
C
(b) (102)

is the eikonal phase, q"k@!k, ;015
N

is the nuclear optical potential, and t
C
(b) is the Coulomb

eikonal phase. We have de"ned the impact parameter b by b"Dr]z( D.
For light nuclei, one can assume Gaussian nuclear densities, and the Coulomb phase is given by

t
C
(b)"2

Z
1
Z

2
e2

+v Gln(kb)#
1
2
E
1A

b2

R2
G
BH , (103)

with R(i)
G

equal to the size parameter of each Gaussian matter density, R2
G
"[R(1)

G
]2#[R(2)

G
]2, and

E
1
(x)"P

=

x

e~t

t
dt . (104)

The "rst term in Eq. (103) is the contribution to the Coulomb phase of a point-like charge
distribution. It reproduces the elastic Coulomb amplitude when introduced into the eikonal
expression for the elastic scattering amplitude. The second term in Eq. (103) is a correction due to
the extended Gaussian charge distribution. It eliminates the divergence of the Coulomb phase at
b"0, so that

t
C
(0)"2

Z
1
Z

2
e2

+v
[ln (kR

G
)!C] , (105)

where C"0.577 is the Euler constant.
For heavy nuclei a `black-spherea absorption model is more appropriate. Assuming an absorp-

tion radius R
0
, the Coulomb phase is given by

s
C
(b)"2(Z

a
Z

A
e2/+v)MH(b!R

0
)ln (kb)#H(R

0
!b)[ln (kR

0
)

#ln(1#(1!b2/R2
0
)1@2)!(1!b2/R2

0
)1@2!1

3
(1!b2/R2

0
)3@2]N . (106)

Again, the "rst term inside the parentheses is the Coulomb eikonal phase for point-like charge
distributions. The second term accounts for the "nite extension of the charge distributions.
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Table 1
Parameters [29] for the nucleon}nucleon amplitude, f

NN
(h"03)"(k

NN
/4p) p

NN
(i#a

NN
)

E (A MeV) p
NN

(fm2) a
NN

85 6.1 1
94 5.5 1.07
120 4.5 0.7
200 3.2 0.6
342.5 2.84 0.26
425 3.2 0.36
550 3.62 0.04
650 4.0 !0.095
800 4.26 !0.075
1000 4.32 !0.275
2200 4.33 !0.33

For high-energy collisions, the optical potential ;(r) can be constructed by using the t-oo
approximation [28]. One gets

;(r)"!

+v
2

p
NN

(a
NN

#i)Po1
(r@)o

2
(r!r@) d3r@ , (107)

where p
NN

is the nucleon}nucleon cross section, and a
NN

is the real-to-imaginary ratio of the
forward (h"03) nucleon}nucleon scattering amplitude. A set of the experimental values of these
quantities, useful for our purposes, is given in Table 1.

In Eq. (100) the interaction potential, assumed to be purely Coulomb, is given by

<
*/5

(r, r@)"
vk
c2

jk(r@)
e*i@r~r{@

Dr!r@D
, (108)

where vk"(c, *), with * equal to the projectile velocity, i"u/c, and jk(r@) is the charge four-current
for the intrinsic excitation of nucleus 1 by an energy of +u. Inserting (101), (102) and (108) in (100)
and following the same steps as in Ref. [6], one "nds

f (h)"i
Z

1
ek

c+v
+
njm

imA
u
cB

j
J2j#1 e~*m(X

m
(q)GnjmA

c
vBSI

f
M

f
DM(nj,!m)DI

i
M

i
T , (109)

where njm denotes the multipolarity, Gnjm are the Winther}Alder relativistic functions [18], and
SI

f
M

f
DM(nj,!m)DI

i
M

i
T is the matrix element for the electromagnetic transition of multipolarity

njm from DI
i
M

i
T to DI

f
M

f
T, with E

f
!E

i
"+u. The function X

m
(q) is given by

X
m
(q)"P

=

0

db bJ
m
(qb)K

mA
ub
cvB expMis(b)N , (110)

where q"2k sin(h/2) is the momentum transfer, h and / are the polar and azimuthal scattering
angles, respectively.
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For the E1, E2 and M1 multipolarity, the functions Gnjm(c/v) are given by [18]

G
E11

(x)"!G
E1~1

(x)"xJ8p/3, G
E10

(x)"!i4Jp(x2!1)/3 ,

G
M11

(x)"G
M1~1

(x)"!iJ8p/3, G
M10

(x)"0 ,

G
E22

(x)"G
E2~2

(x)"!2xJp(x2!1)6/5 ,

G
E21

(x)"!G
E2~1

(x)"i2Jp/6 (2x2!1)/5, G
E20

(x)"2Jp(x2!1)/5 . (111)

Using the Wigner}Eckart theorem, one can calculate the inelastic di!erential cross section from
(109), using techniques similar to those discussed in previous sections. One obtains

d2p
C

dXdEc
(Ec)"

1
Ec

+
nj

dnnj
dX

pnjc (Ec) (112)

where pnjc (Ec) is the photonuclear cross section for the absorption of a real photon with energy
Ec by nucleus 2, and dnnj/dX is the virtual photon number, which is given by [27]

dnnj
dX

"Z2
1
aA

uk
cvB

2j[(2j#1)!!]2
(2p)3(j#1)

+
m

DGnjmD2DXm
(q)D2 , (113)

where a"e2/+c.
The total cross section for Coulomb excitation can be obtained from Eqs. (112) and (113), using

the approximation dXK2pqdq/k2, valid for small scattering angles and small energy losses. Using
the closure relation for the Bessel functions, we obtain

dp
C

dEc
(Ec)"

1
Ec

+
nj

nnj(Ec)pnjc (Ec) , (114)

where

nnj(u)"Z2
1
a
j[(2j#1)!!]2
(2p)3(j#1)

+
m

DGnjmD2gm(u) , (115)

and

g
m
(u)"2pA

u
cvB

2

Pdb bK2
mA

ub
cv B expM!2s

I
(b)N , (116)

where s
I
(b) is the imaginary part of s(b), which is obtained from Eq. (102) and the imaginary part of

the optical potential.
Before proceeding further, it is worthwhile to mention that the present calculations di!er from

those of previous sections by the proper inclusion of absorption. To reproduce the angular
distributions of the cross sections, it is essential to include the nuclear transparency. In the limit of
a black-disk approximation, the above formulas reproduce the results presented in Ref. [6]. One
also observes that the Coulomb phase in the distorted waves, which is necessary for the quantitat-
ive reproduction of the experimental angular distributions, is not important for the total cross
section in high-energy collisions. This fact explains why semiclassical and quantum methods give
the same result for the total cross section for Coulomb excitation at relativistic energies [6]. At

164 C.A. Bertulani, V.Yu. Ponomarev / Physics Reports 321 (1999) 139}251



intermediate energies, however, it is just this important phase which reproduces the semiclassical
limit for the scattering of large-Z ions, as we shall see next. Using the semiclassical terminology,
for E

-!"
+100AMeV or less, the recoil in the Coulomb trajectory is relevant. At the distance

of closest approach, when the Coulomb "eld is most e!ective at inducing the excitation, the ions
are displaced farther from each other due to the Coulomb recoil. As we discussed before, this
e!ect can be accounted for approximately by using the e!ective impact parameter
b
%&&
"b#pZ

1
Z

2
e2/4E

-!"
in the semiclassical calculations. This recoil approximation can also

be used in Eq. (116), replacing b by b
%&&

in the Bessel function and the nuclear phase, in order to
obtain the total cross section. Since the modi"ed Bessel function is a rapidly decreasing function of
its argument, this modi"cation leads to sizable modi"cations of the total cross section at intermedi-
ate energy collisions.

Finally, we point out that for very light heavy ion partners, the distortion of the scattering
wavefunctions caused by the nuclear "eld is not important. This distortion is manifested in the
di!raction peaks of the angular distributions, characteristic of strong absorption processes. If
Z

1
Z

2
a<1, one can neglect the di!raction peaks in the inelastic scattering cross sections and

a purely Coulomb excitation process emerges. One can gain insight into the excitation mechanism
by looking at how the semiclassical limit of the excitation amplitudes emerges from the general
result (113). We do this next.

2.4.2. Semiclassical limit of the excitation amplitudes
If we assume that Coulomb scattering is dominant and neglect the nuclear phase in Eq. (102),

we get

X
m
(q)KP

=

0

db bJ
m
(qb)K

mA
ub
cvBexpMit

C
(b)N . (117)

This integral can be done analytically by rewriting it as

X
m
(q)"P

=

0

db b1`*2gJ
m
(qb)K

mA
ub
cv B , (118)

where we used the simple form t
C
(b)"2g ln(kb), with g"Z

1
Z

2
e2/+v. Using standard techniques

found in Ref. [30], we "nd

X
m
(q)"22*g

1
m!

C(1#m#ig)C(1#ig)KmA
cv
uB

2`2*g
F(1#m#ig; 1#ig; 1#m;!K2) , (119)

where

K"qcv/u , (120)

and F is the hypergeometric function [30].
The connection with the semiclassical results may be obtained by using the low-momentum

transfer limit

J
m
(qb)KS

2
pqb

cosAqb!
pm
2

!

p
4B"

1

J2pqb
Me*qbe~*p(m`1@2)@2#e~*qbe*p(m`1@2)@2N , (121)
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and using the stationary phase method, i.e.,

PG(x)e*((x)dxKA
2pi

/A(x
0
)B

1@2
G(x

0
)e*((x0) , (122)

where

d/(x
0
)/dx"0 and /A(x

0
)"d2/(x

0
)/dx2 . (123)

This result is valid for a slowly varying function G(x).
Only the second term in brackets of Eq. (121) will have a positive (b"b

0
'0) stationary point,

and

X
m
(q)K

1

J2pqA
2pi

/A(b
0
)B

1@2
Jb

0
K

mA
ub

0
cv B expGi/(b

0
)#i

p(m#1/2)
2 H , (124)

where

/(b)"!qb#2g ln(kb) . (125)

The condition /@(b
0
)"0 implies

b
0
"2g/q"a

0
/sin(h/2) , (126)

where a
0
"Z

1
Z

2
e2/kv2 is half the distance of closest approach in a classical head-on collision.

We observe that the relation (126) is the same [with cot(h/2)&sin~1(h/2)] as that between
impact parameter and de#ection angle of a particle following a classical Rutherford trajectory.
Also,

/A(b
0
)"!2g/b2

0
"!q2/2g , (127)

which implies that in the semiclassical limit

DX
m
(q)D2

4.#.
"

4g2

q4
K2

mA
2ug
cvqB"

1
k2A

dp
dXB

R65)

K2
mA

ua
0

cv sin(h/2)B . (128)

Using the above results, Eq. (113) becomes

dn
pj

dX
"A

dp
dXB

R65)

Z2
1
aA

u
cvB

2j[(2j#1)!!]2
(2p)3(j#1)

+
m

DG
pjmD2K2

mA
ua

0
cv sin(h/2)B . (129)

If strong absorption is not relevant, the above formula can be used to calculate the equivalent
photon numbers. The stationary value given by Eq. (126) means that the important values of
b which contribute to X

m
(q) are those close to the classical impact parameter. Dropping the index

0 from Eq. (126), we can also rewrite (129) as

dn
pj

2pbdb
"Z2

1
aA

u
cvB

2j[(2j#1)!!]2
(2p)3(j#1)

+
m

DG
pjmD2K2

mA
ub
cv B , (130)

which is equal to the semi-classical expression given in Ref. [23], Eq. (A.2).
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For very forward scattering angles, such that K;1, a further approximation can be made by
setting the hypergeometric function in Eq. (119) equal to unity [30], and we obtain

X
m
(q)"22*g(1/m!)C(1#m#ig)C(1#ig)Km(cv/u)2`2*g . (131)

The main value of m in this case will be m"0, for which one gets

X
0
(q)K22*gC(1#ig)C(1#ig)(cv/u)2`2*g"!g222*gC(ig)C(ig)(cv/u)2`2*g (132)

and

DX
0
(q)D2"g4(cv/u)4p2/g2 sinh2(pg) , (133)

which, for g<1, results in

DX
0
(q)D2"4p2g2(cv/u)4e~2pg . (134)

This result shows that in the absence of strong absorption and for g<1, Coulomb excitation is
strongly suppressed at h"0. This also follows from semiclassical arguments, since hP0 means
large impact parameters, b<1, for which the action of the Coulomb "eld is weak.

2.5. Singles spectra in Coulomb excitation of GDR

In this section, we apply the formalism developed in previous sections in the analysis of the
data of Ref. [31], in which a projectile of 17O with an energy of E

-!"
"84AMeV excites the

target nucleus 208Pb to the GDR. We "rst seek parameters of the optical potential which "ts
the elastic scattering data. We use the eikonal approximation for the elastic amplitude in the
form given by

f
%-
(h)"ikPJ0

(qb)M1!exp[is(b)]Nbdb , (135)

where J
0

is the Bessel function of zeroth order and the phase s(b) is given by Eq. (102). In Fig. 8 we
compare the calculated elastic scattering angular distribution to the data from Ref. [12]. The
calculation utilized Eq. (135), with s(b) obtained from an optical potential of a standard
Woods}Saxon form with parameters

<
0
"50MeV, =

0
"58MeV, R

V
"R

W
"8.5 fm and a

V
"a

W
"0.85 fm . (136)

The data are evidently very well reproduced by the eikonal approximation.
In order to calculate the inelastic cross section for the excitation of the GDR, we use a Loren-

tzian parameterization for the photoabsorption cross section of 208Pb [32], assumed to be all E1,
with E

GDR
"13.5MeV and C"4.0MeV. Inserting this form into Eq. (114) and doing the calcu-

lations implicit in Eq. (113) for dn
E1

/dX, we calculate the angular distribution and compare it with
the data in Fig. 9. The agreement with the data is excellent, provided we adjust the overall
normalization to a value corresponding to 93% of the energy weighted sum rule (EWSR) in the
energy interval 7}18.9MeV. Taking into account the $10% uncertainty in the absolute cross
sections quoted in Ref. [12], this is consistent with photoabsorption cross section in that energy
range, for which approximately 110% of the EWSR is exhausted.
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Fig. 8. Ratio to the Rutherford cross section of the elastic cross section for the 17O#208Pb reaction at 84AMeV, as
a function of the center-of-mass scattering angle. Data are from Ref. [12].

Fig. 9. Di!erential cross section for the excitation of the isovector giant dipole resonance in 208Pb by means of
17O projectiles at 84AMeV, as a function of the center-of-mass scattering angle. Data are from Ref. [12].

To unravel the e!ects of relativistic corrections, we repeat the previous calculations unplugging
the factor c"(1!v2/c2)~1 which appears in the expressions (115) and (116) and using the
non-relativistic limit of the functions G

E1m
, as given in Eq. (111). These modi"cations eliminate the

relativistic corrections on the interaction potential. The result of this calculation is shown in Fig. 10
(dotted curve). For comparison, we also show the result of a full calculation, keeping the relativistic
corrections (dashed curve). We observe that the two results have approximately the same pattern,
except that the non-relativistic result is slightly smaller than the relativistic one. This fact may
explain the discrepancy between the "t of Ref. [12] and ours as due to relativistic corrections not
properly accounted for in the ECIS code [33]. In fact, if we repeat the calculation for the excitation
of GDR

*7
using the non-relativistic limit of Eqs. (115) and (116), we "nd that the best "t to the data

is obtained by exhausting 113% of the EWSR. This value is very close to the 110% obtained by
Barrette et al. [12].

In Fig. 10 we also show the result of a semiclassical calculation (solid curve) for the GDR
*7

excitation in lead, using Eq. (129) for the virtual photon numbers. One observes that the semiclassi-
cal curve is not able to "t the experimental data. This is mainly because di!raction e!ects and
strong absorption are not included. But the semiclassical calculation displays the region of
relevance for Coulomb excitation. At small angles the scattering is dominated by large impact
parameters, for which the Coulomb "eld is weak. Therefore, the Coulomb excitation is small and
the semiclassical approximation fails. It also fails in describing the large angle data (dark side of the
rainbow angle), since absorption is not treated properly. One sees that there is a `windowa in the
inelastic scattering data near h"2}33 in which the semiclassical and full calculations give
approximately the same cross section.
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Fig. 10. Virtual photon numbers for the electric dipole multipolarity generated by 84AMeV 17O projectiles incident on
208Pb, as a function of the center-of-mass scattering angle. The solid curve is a semiclassical calculation. The dashed and
dotted curves are eikonal calculations with and without relativistic corrections, respectively.

Fig. 11. Di!erential cross sections for the excitation of the giant dipole resonance (GDR), the isoscalar giant quadrupole
resonance (GQR

i4
), and the isovector giant quadrupole resonance (GQR

i7
), in Pb for the collision 208Pb#208Pb at

640AMeV. The solid (dotted) [dashed-dotted] line is the di!erential cross section for the excitation of the GDR (GQR
i4
)

[GQR
i7
]. The dashed line is the result of a semiclassical calculation.

In Fig. 11 we perform the same calculation, but for the excitation of the GDR, the isoscalar giant
quadrupole resonance (GQR

*4
), and the isovector quadrupole resonance (GQR

*7
), in Pb for the

collision 208Pb#208Pb at 640AMeV. The solid (dotted) (dashed-dotted) line is the di!erential
cross section for the excitation of the GDR (GQR

*4
) [GQR

*7
]. The dashed line is the result of

a semiclassical calculation. Here we see that a purely semiclassical calculation, using Eq. (92) is able
to reproduce the quantum results up to a maximum scattering angle h

.
, at which strong absorption

sets in. This justi"es the use of semiclassical calculations for heavy systems, even to calculate
angular distributions. The cross sections increase rapidly with increasing scattering angle, up to an
approximately constant value as the maximum Coulomb scattering angle is neared. This is
explained as follows. Very forward angles correspond to large impact parameter collisions in which
case ub/cv'1 and the excitation of giant resonances in the nuclei is not achieved. As the impact
parameter decreases, increasing the scattering angle, this adiabaticity condition is ful"lled and
excitation occurs.

As discussed above, the semiclassical result works for large Z nuclei and for relativistic energies
where the approximation of Eq. (117) is justi"ed. However, angular distributions are not useful at
relativistic energies since the scattering is concentrated at extremely forward angles. The quantity
of interest in this case is the total inelastic cross section. If we use a sharp-cuto! model for the
strong absorption, so that s

I
(b)"R for b(b

.*/
and 0 otherwise, then Eqs. (115) and (116) yield

the same result as an integration of the semiclassical expression, Eq. (130), from b
.*/

to R. In fact,
this result has been obtained earlier in Ref. [6].
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2.6. Excitation and photon decay of the GDR

We now consider the excitation of the target nucleus to the giant dipole resonance and the
subsequent photon decay of that excited nucleus, leaving the target in the ground state. Experi-
mentally, one detects the inelastically scattered projectile in coincidence with the decay photon and
demands that the energy lost by the projectile is equal to the energy of the detected photon. To the
extent that the excitation mechanism is dominated by Coulomb excitation, with the exchange of
a single virtual photon, this reaction is very similar to the photon scattering reaction, except that in
the present case the incident photon is virtual rather than real. In this section, we investigate
whether the connection between these two reactions can be formalized.

We "rst review the excitation mechanism. The physical situation is that of a heavy ion of energy
E incident on a target. The projectile loses an energy *E while scattering through an angle h. We
have shown that, under the conditions *E/E;1, the cross section for excitation of the target
nucleus partitions into the following expression (we assume that the contribution of the E1-
multipolarity is dominant):

d2p
C

dXdEc
(Ec)"

1
Ec

dnc
dX

(Ec)pc(Ec) , (137)

where pc(Ec) is the photonuclear cross section for the absorption of a real photon with energy
Ec"*E by the target nucleus, and the remaining terms on the right-hand side are collectively the
number of virtual photons per unit energy with energy Ec. This latter quantity depends on the
kinematics of the scattered heavy ion and on the optical potential but is otherwise independent of
the target degrees of freedom. This partitioning allows one to relate the excitation cross section to
the photoabsorption cross section.

Now, the usual way to write the cross section d2p
Cc/dXdEc for the excitation of the target

followed by photon decay to the ground state is simply to multiply the above expression by
a branching ratio Rc, which represents the probability that the nucleus excited to an energy Ec will
emit a photon leaving it in the ground state [13]:

d2p
Cc

dXdEc
(Ec)"

1
Ec

dnc
dX

(Ec)pc(Ec)Rc(Ec) . (138)

Instead, we propose the following expression, in complete analogy with Eq. (137):

d2p
Cc

dXdEc
(Ec)"

1
Ec

dnc
dX

(Ec)pcc(Ec) , (139)

where pcc(Ec) is the cross section for the elastic scattering of photons with energy Ec. Formally,
these expressions are equivalent in that they simply de"ne the quantity Rc. However, if one treats
Rc literally as a branching ratio, then these expressions are equivalent only if it were true that the
photon scattering cross section is just product of the photoabsorption cross section and the
branching ratio. In fact, it is well-known from the theory of photon scattering that the relationship
between the photoabsorption cross section and the photon scattering cross section is more
complicated [34]. In particular, it is not correct to think of photon scattering as a two-step process
consisting of absorption, in which the target nucleus is excited to an intermediate state of energy Ec,
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Fig. 12. Calculated cross section for the excitation followed by c-decay of 208Pb induced by 17O projectiles at 84AMeV.
The photoabsorption cross section was parameterized by a simple Lorentzian representing the GDR, and the statistical
component of the photon decay was neglected. The solid curve uses the formalism described in the text (Eq. (139)) while
the dashed curve uses a constant branching ratio for photon decay (Eq. (138)).

Fig. 13. Cross section for the excitation of the GDR without the detection of the decay photon. Data are from Ref. [13].

followed by emission, in which the emitted photon has the same energy Ec. Since the intermediate
state is not observable, one must sum over all possible intermediate states and not just those
allowed by conservation of energy. Now, if the energy Ec happens to coincide with a narrow level,
then that level will completely dominate in the sum over intermediate states. In that case, it is
proper to regard the scattering as a two-step process in the manner described above, and the two
expressions for the cross section will be equal. However, for Ec in the nuclear continuum region
(e.g., in the region of the GDR), this will not be the case, as demonstrated in the following
discussion.

We again consider the inelastic scattering of 17O projectiles of energy E
-!"

"84MeV/nucleon
from a 208Pb nucleus at an angle of 2.53. We use Eq. (113) to calculate the E1 virtual photon
number and we use a Lorentzian parameterization of the GDR of 208Pb. We calculate Rc and
pcc according to the prescriptions of Refs. [13] and [34], respectively; in both cases we neglect the
statistical contribution to the photon decay. The results are compared in Fig. 12, where it is very
evident that they make very di!erent predictions for the cross section, especially in the wings of
the GDR.

We next use our expression to compare directly with the data of Ref. [13]. For this purpose, we
again calculate pcc using the formalism of Ref. [34], which relates pcc to the total photoabsorption.
For the latter, we use the numerically de"ned data set of Ref. [32] rather than a Lorentzian
parameterization. The e!ect of the underlying compound nuclear levels (i.e., the statistical contri-
bution to the photon scattering) is also included. The calculation is compared to the data in
Figs. 13 and 14. Fig. 13 shows the cross section for the excitation of the GDR without the detection
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Fig. 14. Cross section for excitation followed by c-decay of 208Pb by 17O projectiles at 84A MeV. The solid (dashed) line
includes (excludes) the Thomsom scattering amplitude. Data are from Ref. [13].

of the decay photon. The agreement with the data is excellent, giving us con"dence that our
calculation of the virtual photon number as a function of Ec is correct. Fig. 14 shows the cross
section for the excitation-decay process as a function of Ec. Although the qualitative trend of
the data are well described, the calculation systematically overpredicts the cross section on the
high-energy side of the GDR (solid curve). If the Thompson amplitude is not included in pcc, the
calculation is in signi"cantly better agreement with the data (dashed curve).

2.7. Nuclear excitation and strong absorption

Up to this point we have only considered the Coulomb excitation of the nuclei, without
accounting for nuclear excitation. But, in peripheral collisions, the nuclear interaction between the
ions can also induce excitations. This can be easily calculated in a vibrational model. The
amplitude for the excitation of a vibrational mode by the nuclear interaction in relativistic heavy
ion collisions can be obtained assuming that a residual interaction U between the projectile and the
target exists, and that it is weak. According to the Bohr}Mottelson particle}vibrator coupling
model, the matrix element for the transition iPf is given by

<N(jk)
fi

(r),SI
f
M

f
D;DI

i
M

i
T"dj/(J2j#1)SI

f
M

f
D>jkDIiMi

T>jk(r( );j(r) , (140)

where dj"bjR is the vibrational amplitude, or deformation length, R is the nuclear radius, and
;j(r) is the transition potential.

The deformation length dj can be directly related to the reduced matrix elements for electromagnetic
transitions. Using well-known sum-rules for these matrix elements one "nds a relation between the
deformation length and the nuclear masses and sizes. For isoscalar excitations one gets [35]

d2
0
"2p

+2

m
N
Sr2T

1
AE

x

, d2jz2
"

2p
3

+2

m
N

j(2j#1)
1

AE
x

, (141)

172 C.A. Bertulani, V.Yu. Ponomarev / Physics Reports 321 (1999) 139}251



where A is the atomic number, Sr2T is the r.m.s. radius of the nucleus, and E
x

is the excitation
energy.

The transition potentials for nuclear excitations can be related to the optical potential in the
elastic channel. The basic idea is that the interaction between the projectile and the target induces
surface vibrations in the target. Only the contact region between the nuclei in grazing collisions is
of relevance. One thus expects that the interaction potential is proportional to the derivatives of
the optical potential in the elastic channel, which peak at the surface. This is discussed in detail in
Ref. [35]. The transition potentials for isoscalar excitations are

;
0
(r)"3;

015
(r)#r d;

015
(r)/dr , (142)

for monopole, and

;
2
(r)"d;

015
(r)/dr , (143)

for quadrupole modes.
For dipole isovector excitations

d
1
"

p
2

+2

m
N

A
NZ

1
E

x

, (144)

where Z (N) is the charge (neutron) number. The transition potential in this case is [35]

;
1
(r)"sA

N!Z
A BA

d;
015

dr
#

1
3
R

0

d2;
015

dr2 B , (145)

where the factor s depends on the di!erence between the proton and the neutron matter radii as

s
2(N!Z)

3A
"

R
n
!R

p
1
2
(R

n
#R

p
)
"

*R
np

R
0

. (146)

Thus, the strength of isovector excitations increases with the di!erence between the neutron and
the proton matter radii. This di!erence is accentuated for neutron-rich nuclei and should be a good
test for the quantity *R

np
which enters the above equations.

The time dependence of the matrix elements above can be obtained by making a Lorentz boost.
Since the potentials;j[r(t)] peak strongly at t"0, we can safely approximate h(t)Kh(t"0)"p/2
in the spherical harmonic of Eq. (140). One gets

<N(jk)
fi

(r),SI
f
M

f
D;DI

i
M

i
T"c

dj
J2j#1

SI
f
M

f
D>jkDIiMi

T>jkAh"
p
2B;j[r(t)] , (147)

where r(t)"Jb2#c2v2t2.
Using the Wigner}Eckart theorem, the matrix element of the spherical harmonics becomes

SI
f
M

f
D>jkDIiMi

T"(!1)If~MfC
(2I

i
#1)(2j#1)

4p(2I
f
#1) D

1@2

A
I
f

j I
i

!M
f

k MBA
I
f

j I
i

0 0 0B . (148)

For high-energy collisions, the optical potential ;(r) can be constructed by using the t-oo
approximation [28], as given by Eq. (107).
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Fig. 15. The GDR Coulomb excitation probabilities as functions of the impact parameter, for sharp and smooth
absorptions. The system is 208Pb (640AMeV)#208Pb.

Fig. 16. Nuclear excitation probabilities, as functions of the impact parameter, of the isoscalar giant monopole resonance
(GMR

i4
), the GDR

i7
, and the GQR

i4
, in 208Pb for the collision 208Pb#208Pb at 640AMeV.

We are not interested here in di!raction and refraction e!ects in the scattering, but on the
excitation probabilities for a given impact parameter. The strong absorption occurring in collisions
with small impact parameters can be included. This can be done by using the eikonal approxima-
tion and the optical potential, given by Eq. (107). The practical result is that the excitation
probabilities for a given impact parameter b, including the sum of the nuclear and the Coulomb
contributions to the excitation, are given by

P
fi
(b)"DaC

fi
(b)#aN

fi
(b)D2 expG!p

NNPdzPd3r@ o
1
(r@)o

2
(r!r@)H , (149)

where r"Jb2#z2. The corresponding excitation cross sections are obtained by an integration of
the above equation over impact parameters.

2.8. Nucleon removal in peripheral relativistic heavy ion collisions

In Fig. 15 we plot the GDR excitation probability in Pb as a function of the impact parameter,
for the system 208Pb#208Pb at 640AMeV. We use 100% of the sum rule to calculate the
B(E1)-value for the electromagnetic excitation of an isolated GDR state at 13.5MeV. In the solid
line, we consider absorption according to Eq. (149). In the construction of the optical potential we
used the g.s. densities calculated from the droplet model of Myers and Swiatecki [36] in accordance
with Shen et al. [37]. We will call it by soft-spheres model.
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As shown in Ref. [38], this parametrization yields the best agreement between experiment and
theory. The dashed line does not include absorption. To simulate strong absorption at low impact
parameters, we use b

.*/
"15.1 fm as a lower limit in the impact parameter integration of Eq. (5).

This value was chosen such as to lead to the same cross section as that obtained from the solid line.
However, a more detailed comparison of the soft-sphere model for strong absorption and a simple
semiclassical calculation, based on a single parameter b

.*/
, is described next [38].

In Fig. 16, we plot the nuclear contributions to the excitation probability as a function of the
impact parameter. We study the excitation of the isoscalar giant monopole resonance (GMR

*4
), the

GDR
*7
, and the GQR

*4
, in lead for the collision 208Pb#208Pb at 640AMeV. The GMR

*4
in 208Pb

is located at 13.8MeV. As discussed previously, isovector excitations are suppressed in nuclear
excitation processes, due to the approximate charge independence of the nuclear interaction. We
use the formalism of this section, with the deformation parameters such that 100% of the sum rule
is exhausted. This corresponds to the monopole amplitude d

0
"0.054. The GDR

*7
and GQR

*4
deformation parameters are d

1
"0.31 fm and d

2
"0.625 fm, respectively. The GQR

*7
excitation

probability is much smaller than the other excitation probabilities and is, therefore, not shown. The
nuclear excitation is peaked at the grazing impact parameter and is only relevant within an impact
parameter range of &2 fm. Comparing to Fig. 15, we see that these excitation probabilities are
orders of magnitude smaller than those for Coulomb excitation. Consequently, the corresponding
cross sections are much smaller. We get 14.8 mb for the isovector GDR, 2.3 mb for the GQR

*4
, and

2.3 mb for the GDR
*7
. The interference between the nuclear and the Coulomb excitation is also

small and can be neglected.
Since they are high lying states above the continuum, giant resonances mostly decay by particle

emission (mainly neutron emission in heavy nuclei). Therefore data on neutron removal in
relativistic heavy ion collisions is an appropriate comparison between theory and experiment. As
we have seen, above, nuclear excitation of GR's contribute very little to the cross section, as
compared to Coulomb excitation. However, strong interactions at peripheral collisions also
contribute to `directa knockout (or stripping) of neutrons, and also should be considered. It has
been observed [6], however, that neutron removal cross sections induced by strong interactions
scale with A1@3

1
#A1@3

2
, while the Coulomb excitation cross sections scale with the projectile's

charge as Z2
2
, approximately. One can thus separate the nuclear contribution for the nucleon

removal of a target (or projectile) by measuring the cross sections for di!erent projectiles (or
targets).

In the semiclassical approach, the total cross section for relativistic Coulomb excitation is
obtained by integrating the excitation probabilities over impact parameter, starting from a min-
imum value b

.*/
. It is assumed that below this minimum value the interaction is exclusively due to

the strong interaction (`sharp-cuto!a approximation). It has been found that with this approxima-
tion the Coulomb cross sections are very sensitive to the parameterization of the minimum impact
parameter [39}42].

One commonly used parameterization at relativistic energies is that of Benesh et al. [43], "tted
to Glauber-type calculations and reading

bBCV
.*/

"1.35(A1@3
p

#A1@3
t

!0.75(A~1@3
p

#A~1@3
t

)) fm (150)

which we refer to hereafter as `BCVa. In Ref. [43] a detailed study has been made concerning the
parametrization procedure of the minimum impact parameter. It was also found that the nuclear
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contribution to the neutron removal channels in peripheral collisions has a negligible interference
with the Coulomb excitation mechanism. This is a very useful result since the Coulomb and nuclear
part of the cross sections may be treated separately.

The other parametrization is that of Kox et al. [44] which reproduced well measured total
reaction cross sections of light and medium-mass systems:

bK09
.*/

"1.1AA1@3
p

#A1@3
t

#1.85
A1@3

p
A1@3

t
A1@3

p
#A1@3

t

!1.9B fm . (151)

This parametrization has been used previously [41] and a reasonable agreement with the measured
data for 1n cross sections was found. It should be noted, however, that the Kox parametrization of
total interaction cross sections has been derived mainly from experiments with light projectiles and
that its application to heavy systems involves an extrapolation into a region where no data points
are available.

To achieve a good a comparison with experimental data on neutron-removal cross sections
we will use the experimental photo-neutron emission cross sections from Refs. [32,45]. A
Lorentzian "t to the (c, n)-data is used to parameterize the GDR in gold. The parameters
are 13.72MeV excitation energy, a width of 4.61MeV, and a strength of 128% of the TRK
sum rule. The Lorentz parameters for the isoscalar (isovector) GQR are taken as 10.8
(23.0)MeV for the excitation energy, 2.9 (7.0)MeV for the width, and we assume 95% exhaustion
of the respective sum rules [5]. With these parameters we calculate the excitation cross sections
dp(E)/dE for dipole and quadrupole excitations. The respective neutron emission cross sections
are given by

p
n
"P

dp(E)
dE

f
n
(E) dE , (152)

where f
n
(E) is the probability to evaporate one neutron at excitation energy E. f

n
(E) is taken from

the experimental (c, n)-data at low E and from a statistical decay calculation with the code HIVAP
[46] for excitation energies above 20MeV. Since the three-neutron emission threshold in gold is
above the energy of the GDR state, this channel is fed mainly by the two-phonon excitation
mechanism, while the 1n cross section is dominated by the excitation of the GDR.

We expect that the BCV parametrization of b
.*/

should yield similar results as the soft-spheres
calculation since it was derived in "tting the complementary process, the nuclear interaction,
calculated also with Glauber theory. Fig. 17 shows that this expectation could be veri"ed: the
soft-spheres calculation for 1n-removal from 197Au by ED processes (upper full curve) is almost
indistinguishable from a sharp-cuto! calculation using bBCV

.*/
(upper dotted curve). This remarkable

agreement tells us that for practical purposes we can avoid the extra numerical complication
connected with the use of a soft spheres model and corroborates the use of bBCV

.*/
in sharp-cuto!

calculations in earlier works [47,48]. We also think that the soft-spheres calculation (and the
sharp-cuto! calculation using bBCV

.*/
) is physically better justi"ed than the Kox parametrization [44]

since the former is derived from realistic nuclear density distributions, whereas the latter is an
extrapolation of measured total reaction cross sections into a region where no data points are
available. We will return later to discuss the other data points of Fig. 17 when we treat the problem
of the excitation of multiphonon states. However, it is worthwhile noticing that a point in the above
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Fig. 17. Experimental 1n- and 3n-removal cross sections for 197Au bombarded with relativistic projectiles (from Ref.
[38]) in comparison with theoretical calculations from this work (solid curve: `soft-spheresa model; dotted curve:
`sharp-cuto!a model with bBCV

.*/
from Eq. (150)). For completeness, we also show a sharp-cuto! calculation with bK09

.*/
(Eq. (151)) used in Ref. [41].

Fig. 18. A nuclear target is Coulomb excited by a fast moving deformed projectile. Besides the angle h, the orientation of
the projectile also includes an azimuthal angle / which can rotate its symmetry axis out the scattering plane. For
simplicity, this is not shown. s is the angular position of the c.m. of the projectile with respect to the target.

curve, for uranium targets, is not well reproduced by the theory. In fact, this has been observed in
other experiments [49], and deserves a special treatment.

2.9. Excitation by a deformed nucleus

Either by using the soft-sphere model, or by means of a semiclassical calculation, Coulomb
excitation by a relativistic projectile, or target, is well described theoretically if the charge
distribution of the projectile is spherically symmetric [50].

However, there was found a discrepancy between theory and experiment with data with
deformed projectiles, as measured by Justice et al. [49] for uranium projectiles. This problem was
studied theoretically by Bertulani in [51], and we will brie#y discuss it here. To obtain a qualitative
insight of the e!ects we shall consider a prolate deformed projectile with a variable deformation.

In the frame of reference of the projectile the Coulomb "eld at a position r with respect to the
center-of-charge of the distribution is given by

/(r)"4p+
j,k

1
2j#1

1
rj`1
>Hjk(h,/)M(Ejk) , (153)
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where

M(Ejk)"Po(r@)r@l>jk(r( @) d3r@ , (154)

with o(r) equal to the ground-state charge distribution of the projectile. For simplicity, we will
consider a uniform spheroidal charge distribution with the z-axis along the symmetry axis. The
charge distribution drops to zero for distances to the center greater than the angle-dependent
radius

R(h)"R
0
(1#b>

20
(h)) . (155)

In lowest order in the multipole expansion, Eq. (153) becomes

/(r)"
Z

1
e

r
#S

p
5

1
r3
>

20
(h)Q(#)

0
, (156)

where Q(#)
0

is the quadrupole moment of the charge distribution,

Q(#)
0
"

3

J5p
Z

1
eR2

0
b(1#0.16b)#O(b2) . (157)

To obtain the (time-dependent) "eld in the frame of reference of the target we perform a Lorentz
transformation of Eq. (156). For a straight-line trajectory one "nds

/(r@, t)"
cZ

1
e

r@
#cS

p
5

1
r@3
>

20
(h@)Q(#)

0
(158)

where r@"Jb2#c2v2t2, with b equal to the impact parameter, v the projectile velocity, and
c"(1!v2/c)~1@2.

The "rst term in the above equation is the well-known LieH nard}Wiechert potential of a relativis-
tic charge. It gives rise to monopole}multipole excitations of the target, which we have discussed so
far. The second term accounts for quadrupole}multipole excitations of the target and is a correc-
tion due to the deformation of the projectile. This "eld will depend on the orientation of the
projectile with respect to its trajectory (see Fig. 18). We can separate the orientation angles from
the angular position of the projectile (along its trajectory) with respect to the target by using the
identity

>
20

(h@)"S
4p
5

+
m

>
2m

(h,/)>
2m

(s@, 0) , (159)

where (h, /) denotes the orientation of the projectile symmetry axis with respect to the bombarding
axis and s@"cos~1 [cvt/r@(t)].

The dipole excitation of the target is the most relevant and we shall restrict ourselves to this case
only [6]. At a point r,(x, y, z) from the center of mass of the target the "eld is obtained by
replacing r@"(b, 0, cvt) by [b!x, y, c(vt!z)] in Eq. (158). The excitation amplitude to "rst order is
given by Eq. (62). Using the continuity equation and expanding (62) to lowest order in r we "nd

a
fi
"a(1)

fi
#a(2)

fi
(160)
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where

a(1)
fi
"!i
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1
e

+v
m
bGK1
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1
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and
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2
, 0B , (162)

where m"ub/cv and K
i
is the modi"ed Bessel function of order i. To simplify the notation, we have

used the Cartesian de"nition of the matrix elements. The dipole matrix elements for the nuclear
excitation are given by

Dx(z)
fi

"S f Dx(z)DiT . (163)

In terms of the spherical coordinates, D(x)
fi
"J2p/3[M

fi
(E1,!1)!M

fi
(E1, 1)], and D(z)

fi
"

J4p/3M
fi
(E1, 0). Thus, Eq. (161) is equal to Eq. (31).

In expression (162) we have used the approximation >
2m

(s, 0)K>
2m

(p/2, 0) which is valid for
high-energy collisions since the quadrupole "eld is strongly peaked at t"0, corresponding to the
distance of closet approach. Eqs. (161) and (162) allow us to calculate the dipole excitation cross
section by integrating their absolute squares over impact parameter, starting from a minimum
impact parameter for which the strong interaction sets in. Neglecting the di!useness of the matter
distribution of the nuclei we can write (see Fig. 18)

b
.*/

(h)KR
1
#R

2
[1#b>

20
(p/2#h)] (164)

with the nuclear radii given by R
i
"1.2A1@3

i
fm. The total cross section is

p"2pP
b.*/(h)

db bSDa
fi
(b, X)D2T (165)

where the S2T sign means that an average over all the possible orientations of the projectile, i.e.,
over all angles X"(h,/), is done.

We will apply the above formalism to the Coulomb excitation of 208Pb by 238U projectiles. We
will give the 238U an arti"cial deformation in the range b"0}1 to check the dependence of the
cross sections with this parameter. The cross section given above contains three terms:
p"p

1
#p

2
#p

12
. p

1
is due to the monopole}dipole excitation amplitude, p

2
is due to the

quadrupole}dipole excitation amplitude, and p
12

is the interference between them.
In Fig. 19 we present the results for the numerical calculation of the quantity

D"100](p
1
!pb/0

1
)/pb/0

1
(166)

which is the percent correction of dipole excitations in 208Pb by a uranium projectile due to the
average over the orientation of the projectile. pb/0

1
is the cross section for b"0. We present results

for three bombarding energies, 10A GeV, 1A GeV and 100AMeV, and as a function of b. The
quantity de"ned by Eq. (166) is independent of the nature of the state excited, since the dipole
matrix elements cancel out. They depend on the energy of the state. In order to see how the e!ect
depends qualitatively on the energy of the state we used three di!erent excitation energies E

fi
"1,
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Fig. 19. Percent increase of the Coulomb excitation cross section of dipole states in 208Pb due to the dependence of the
minimum impact parameter on the deformation. The e!ect is shown for 238U projectiles at 100AMeV, 1A GeV and 10A
GeV, respectively, and as a function of the deformation parameter b. The solid (dashed) [dotted] line corresponds to an
excitation energy of 25 (10) [1] MeV. For the actual deformation of 208U, bK0.3, the e!ect is small.

Fig. 20. Coulomb excitation cross section of a giant dipole resonance in 208Pb due to the quadrupole}dipole interaction
with 100AMeV uranium projectiles, as a function of the deformation parameter b. These cross section are averaged over
all possible orientations of the projectile.

10 and 25MeV, respectively. These correspond to the dotted, dashed and solid lines in Fig. 19,
respectively.

One observes from Fig. 19 that the deformation e!ect accounted for by an average of the
minimum impact parameter which enters Eq. (165) increases the magnitude of the cross section.
Thus the average is equivalent to a smaller `e!ectivea impact parameter, since the cross sections
increase with decreasing values of b

.*/
. The e!ect is larger the greater the excitation energy is. This

e!ect also decreases with the bombarding energy. For very high bombarding energies it is very
small even for the largest deformation. These results can be explained as follows. The Coulomb
excitation cross section at very high bombarding energies, or very small excitation energies, is
proportional to ln[ub

.*/
(h)/cv)]. Averaging over orientation of the projectile means an average of

ln(b
.*/

) due to the additivity law of the logarithm. One can easily do this average and the net result
is a rescaling of b

.*/
as f b

.*/
, with f smaller, but very close to one.
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Table 2
Cross sections (in mb) for Coulomb excitation of the giant dipole resonance in 208Pb by 238U projectiles at 100AMeV. In
the second (third) column the cross sections are due to the monopole (quadrupole)}dipole interaction. The last column is
the total cross section. An average over the orientation of the projectile was done. A realistic value of the deformation of
238U corresponds to bK0.3. But, a variation of b is used to obtain an insight of the magnitude of the e!ect

b p
1

(mb) p
2

(mb) p (mb)

0 1171 0 1171
0.1 1173 0.179 1174
0.2 1179 0.748 1184
0.3 1189 1.773 1200
0.4 1202 3.34 1224
0.5 1220 5.57 1242
0.6 1241 8.61 1291
0.7 1265 12.6 1335
0.8 1294 17.9 1389
0.9 1326 24.7 1446
1 1362 33.3 1522

For high excitation energies, or small bombarding energies, the cross section is proportional to
expM!2ub

.*/
(h)/cvN due to the adiabaticity condition [18]. Thus, in these situations, the cross

section is strongly dependent on the average over orientation due to the strong variation of the
exponential function with the argument.

Now we consider the e!ect of the second term of Eq. (158), namely of the quadrupole}dipole
excitations. In Fig. 20 we show the excitation of a giant resonance dipole state in lead
(E

fi
"13.5MeV) due to the second term Eq. (158), as a function the deformation parameter b and

for a bombarding energy of 100AMeV. We assume that the giant dipole state exhausts fully the
TRK sum rule, Eq. (96), in lead. Now the average over orientation also includes the dependence of
the quadrupole}dipole interaction on X"(h, /). As expected the cross section increases with b. But
it is small as compared to the monopole}dipole excitations even for a large deformation. At this
beam energy the monopole}dipole excitation is of order of 1 barn.

The total cross section contains an interference between the amplitudes a(1)
fi

and a(2)
fi

. This is
shown in Table 2 for 100AMeV for which the e!ect is larger. The second column gives the cross
sections for monopole}dipole excitations of a giant resonance dipole state in lead. The e!ect of the
orientation average can be seen as an increase of the cross section as compared to the value in the
"rst row (zero deformation). For b"0.3 which is approximately the deformation parameter
for 238U the correction to the cross section is negligible. In the third column the cross section for
quadrupole}dipole excitation are given. They are also much smaller than those for the mono-
pole}dipole excitations. The total cross sections, given in the last column, are also little dependent
on the e!ect of the deformation. For b"0.3 it corresponds to an increase of 3% of the value of the
original cross section ("rst row). This e!ect also decreases with the bombarding energy. For
1AGeV, pb/0"5922mb, while p"5932 mb for b"0.3, with all e!ects included.

In conclusion, the e!ect of excitation by a deformed projectile, which can be studied by averag-
ing over the projectile orientation, is to increase slightly the cross sections. The inclusion of
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the quadrupole}dipole interaction increases the cross section, too. However, these corrections are
small for realistic deformations. They cannot be responsible for the large deviations of the
experimental values of the Coulomb fragmentation cross sections from the standard theory [6,18],
as has been observed [41,49] for deformed projectiles.

3. Heavy ion excitation of multiphonon resonances

3.1. Introduction

Much of the interest on multiphonon resonances relies on the possibility of looking at exotic
particle decay of these states. For example, in Ref. [52], a hydrodynamical model was used to
predict the proton and neutron dynamical densities in a multiphonon state of a nucleus. Large
proton and neutron excesses at the surface are developed in a multiphonon state. Thus, the
emission of exotic clusters from the decay of these states are a natural possibility. A more classical
point of view is that the Lorentz contracted Coulomb "eld in a peripheral relativistic heavy ion
collision acts as a hammer on the protons of the nuclei [6]. This (collective) motion of the protons
seem only to be probed in relativistic Coulomb excitation. It is not well known how this classical
view can be related to microscopic properties of the nuclei in a multiphonon state.

Since there is more energy deposit in the nuclei, other decay channels are open for the
multiphonon states. Generally, the GRs in heavy nuclei decay by neutron emission. One expects
that the double, or triple, GDR decays mainly in the 2n and 3n decay channel. In fact, such a picture
has been adopted in [38,41] with success to explain the total cross sections for the neutron removal
in peripheral collisions. The method is the same that we used to explain the one-neutron removal
cross sections, i.e., by replacing f

n
by f

2n
, and f

3n
, in Eq. (152).

Although the perspectives for an experimental evidence of the DGDR via relativistic Coulomb
excitation were good, on the basis of the large theoretical cross sections, it was "rst found in pion
scattering at the Los Alamos Pion Facility [53]. In pion scattering o! nuclei the DGDR can be
described as a two-step mechanism induced by the pion-nucleus interaction. Using the Axel}Brink
hypotheses, the cross sections for the excitation of the DGDR with pions were shown to be well
within the experimental possibilities [53]. Only about 5 years later, the "rst Coulomb excitation
experiments for the excitation of the DGDR were performed at the GSI facility in Darmstadt/
Germany [39,40]. In Fig. 21 we show the result of one of these experiments, which looked for the
neutron decay channels of giant resonances excited in relativistic projectiles. The excitation
spectrum of relativistic 136Xe projectiles incident on Pb are compared with the spectrum obtained
in C targets. A comparison of the two spectra immediately proofs that nuclear contribution to the
excitation is very small. Another experiment [39] dealt with the photon decay of the double giant
resonance. A clear bump in the spectra of coincident photon pairs was observed around the energy
of two times the GDR centroid energy in 208Pb targets excited with relativistic 209Bi projectiles.

The advantages of relativistic Coulomb excitation of heavy ions over other probes (pions,
nuclear excitation, etc.) was clearly demonstrated in several GSI experiments [39}41,54]. A collec-
tion of the experimental data on the energy and width of the DGDR is shown in Fig. 22. The data
points are from a compilation from pion (open symbols), and Coulomb excitation and nuclear
excitation (full symbols) experiments [8].
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Fig. 21. Experimental results for 136Xe projectile excitation (at 690AMeV) on a Pb target (squares) and a C target
(circles). The spectrum for the C target is multiplied by a factor 2 for better presentation. The resonance energies for one-
and two-phonon giant resonances are indicated. The dashed curve re#ects the results of a "rst-order calculation for the
Pb target. The "gure is taken from Ref. [40].

Fig. 22. Compilation of experimental "ndings with heavy ion (full symbols) and pion induced (open symbols) reactions
for the energy, width, and cross sections of the double giant resonance. The data are compared to the energies and widths
of the giant dipole resonance, respectively, and to the theoretical values of excitation cross sections.

The dashed lines are guide to the eyes. We see from Fig. 22(a) that the energy of the DGDR
agrees reasonably with the expected harmonic prediction that the energy should be about twice the
energy of the GDR, although small departures from this prediction are seen, especially in pion and
nuclear excitation experiments. The width of the DGDR seems to agree with an average value of
J2 times that of the GDR, although a factor 2 seems also to be possible, as we see from Fig. 22(b).
Fig. 22(c) shows the ratio between the experimentally determined cross sections and the calculated
ones. Here is where the data appear to be more dispersed. The largest values of p

%91
/p

5)
come from

pion experiments, yielding up to a value of 5 for this quantity.
We now discuss many features of the double GDR excitation theoretically and some attempts to

solve the discrepancies between theory and experiment observed in Fig. 22.
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3.2. Perturbation theory and harmonic models

3.2.1. Sum rules for single and double resonances
The simplest way to determine the matrix elements of excitation of giant resonances is by means

of sum rules under the assumption that those sum rules are exhausted by collective states. We have
done this when we used the sum rules (96), (97). Let us look at these with more details, since they
will be useful for the determination of the matrix elements for multiphonon excitations. The
conventional sum rules for the dipole and quadrupole transitions, derived without exchange and
velocity-dependent corrections, are (+"1)

+
f

u
fi
DD(m)

fi
D2"

3
4p

1
2m

N

NZ
A

e2 , (167)

+
f

u
fi
DQ(m)

fi
D2"2

1
2m

N

3R2

4p
e2]G

Z2/A, isoscalar excitations ,

NZ/A, isovector excitations ,
(168)

where D(m),M(E1m) and Q(m),M(E2m).
We explain our procedure on the example of the dipole sum rule (167). The right-hand side S

D
of

(167) being calculated for the "xed initial state DiT in fact does not depend on the choice of DiT. (This
dependence is rather weak even if the exchange terms are taken into account). Since S

D
does not

depend on the projection m of the dipole operator D(m)
1

as well, it is convenient to introduce in usual
way the reduced matrix elements of multipole operators,

S f; I
f
M

f
DO(m)

l
Di; I

i
M

i
T"SI

f
M

f
DI
i
lM

i
mT( f; I

f
DDO

l
DDi; I

i
) , (169)

where f stands now for all quantum numbers except angular momentum ones, I and M, and to
perform the additional summation of Eq. (167) over m. In such a way one obtains

+
f,If

u
fi
(2I

f
#1)( f; I

f
DDDDDi; I

i
)2"3(2I

i
#1)S

D
. (170)

Now let us take the ground state D0T of an even}even nucleus with angular momentum I
0
"0 as an

initial one Di; I
i
T. If we assume that the single GDR D1T,D1; 1T is an isolated state saturating the

corresponding sum rule, we just divide the right-hand side of (170) by the excitation energy u
10

to
obtain the reduced matrix element

(1DDDDD0)2"S
D
/u

10
. (171)

In order to be able to calculate the cross section of excitation of the double GDR, we have to take
the single GDR state D1T as an initial one. The corresponding sum in Eq. (170), according to our
assumption, is saturated by (i) `downa transition to the ground state D0T, which has negative
transition energy !u

10
and, due to the symmetry properties of the Clebsch}Gordan coe$cients,

the strength which is 3 times larger than that of Eq. (171), and (ii) `upa transitions to the double
GDR states D2; I

2
"¸T where ¸ can be equal to 0 and 2. The resulting sum rule for the up

transitions is

+
L/0,2

(2¸#1)u(L)
21

(2;¸DDDDD1)2"12S
D

, (172)
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where u(L)
21
,E

2_ L
!E

1
is the energy of the second excitation. Actually, considering, instead of the

sum over m, the original dipole sum rule (167) for "xed m, one can separate the two contributions to
the sum (172) and "nd

(2;¸DDDDD1)2"2 S
D
/uL

21
. (173)

Obviously, it is consistent with the sum rule (172).
Eqs. (171) and (173) imply the relation between the strengths of sequential excitation

processes,

(2;¸DDDDD1)2"2(u
10

/u(L)
21

)(1DDDDD0)2 . (174)

For the equidistant vibrational spectrum this result is nothing but the standard Bose factor of
stimulated radiation; our result is valid under more broad assumptions. The resulting enhancement
factor includes, in addition, the ratio of transition frequencies which, according to the data, is
slightly larger than 1. The generalization for the third and higher order excitation processes is
straightforward.

3.2.2. Spreading widths of single and double resonances
The above assumption of saturation certainly does not account for the fact that the resonances

are wide. In fact, this might be also relevant for the calculation of total cross sections since the
Coulomb excitation amplitudes given by may vary strongly with the excitation energy. Therefore,
they might be sensitive to the shape of the strength function. The widths of the resonances can be
taken into account in a simpli"ed approach, as we describe next.

In a microscopic approach, the GDR is described by a coherent superposition of one-particle
one-hole states. One of the many such states is pushed up by the residual interaction to the
experimentally observed position of the GDR. This state carries practically all the E1 strength. This
situation is simply realized in a model with a separable residual interaction. We write the GDR
state as (one phonon with angular momentum 1M) D1, 1MT"As

1M
D0T where As

1M
is a proper

superposition of particle}hole creation operators. Applying the quasi-boson approximation we can
use the boson commutation relations and construct the multiphonon states (N-phonon states).
A N-phonon state will be a coherent superposition of N-particle N-hole states. The width of the
GDR in heavy nuclei is essentially due to the spreading width, i.e., to the coupling to more complex
quasibound con"gurations. The escape width plays only a minor role. We are not interested in
a detailed microscopic description of these states here. We use a simple model for the strength
function [15]. We couple a state DaT (i.e. a GDR state) by some mechanism to more complex states
DaT, for simplicity we assume a constant coupling matrix element <

aa"SaD<DaT"SaD<DaT"v.
With an equal spacing of D of the levels DaT one obtains a width

C"2p v2/D , (175)

for the state DaT. We assume the same mechanism to be responsible for the width of the N-phonon
state: one of the N-independent phonons decays into the more complex states DaT while the other
(N!1)-phonons remain spectators. We write the coupling interaction in terms of creation
(destruction) operators cs

a
(ca) of the complex states DaT as

<"v(As
1M

ca#A
1M

csa) . (176)
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For the coupling matrix elements v
N
, which connects an N-phonon state DNT to the state DN!1, aT

(N!1 spectator phonons) one obtains

v
N
"SN!1, aD<DNT"vSN!1DA

1M
DNT"v.JN , (177)

i.e., one obtains for the width C
N

of the N-phonon state

C"2pN(v2/D)"NC , (178)

where C is given by Eq. (175).
Thus, the factor N in (178) arises naturally from the bosonic character of the collective states. For

the DGDR this would mean C
2
"2C

1
. The data points shown in Fig. 22(b) seem to favor a lower

multiplicative factor.
We will assume that the damping of the collective modes is mostly due to the coupling to the

background of complex con"gurations in the vicinity of the resonance energy. Then the resonance
state DjT gets fragmented acquiring the spreading width Cj. The stationary "nal states D fT in the
region of the GR are superpositions (with the same exact quantum numbers as the collective mode)
of the form

D f T"C(f)j DjT#+
l

C(f)l DlT , (179)

where DjT is a pure GR state and DlT are complex many particle-many hole states. If the resonance
component dominates in the excitation process as it should be for the one-body multipole
operator, we "nd the "rst-order amplitude a(j)

fi
of the excitation of the individual state D f T in the

fragmentation region

a(j)
fi
K[C(f)j ]Ha145j (u

fi
) . (180)

Here a145j stands for the original "rst-order excitation amplitude. As a function of the transition
energy, the probability for the one-phonon excitation is

P145j (u)"+
f

[DC(f)j D2d(u!u
fi
)]Da145j (u

fi
)D2,Fj(u)Da145j (u)D2 , (181)

where we introduced the strength function Fj(u).
The traditional derivation of the strength function (see Ref. [55]) is based on the rough

assumptions concerning mixing matrix elements and the equidistant spectrum of complex states.
The matrix elements<jl which couple the collective mode to the background states are assumed to
be of the same average magnitude for all remote states DlT from both sides of the resonance. Under
those conditions the resulting strength function has the Breit}Wigner (BW) shape

Fj(u)"
1
2p

Cj
(u!uj)2#C2j/4

, (182)

where Cj is the spreading width of the collective resonance,

Cj"2pS<2jlTl/d , (183)
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d is the mean level spacing of complex states, coupling matrix elements are averaged over the states
DlT and uj is the energy centroid. We will use in our numerical calculations the BW strength
function (182) with the empirical parameters uj and Cj. However, the same procedure can be
applied to any speci"c form of Fj(u). Later we come back to the question of justi"cation of the
model leading to Eqs. (182) and (183).

The multiphonon states could also be reached by a direct excitation. Quite similarly, we can
repeat the above arguments to calculate the probability for the direct excitation of a multiphonon
state, with the appropriate spreading width and energy centroid of that state. The direct (or
"rst-order) probabilities are then given by

P145
2

(u)"F
2
(u)Da145

2
(u)D2 . (184)

Let us now treat the case of the two-step excitation of GR (double-phonon). For simplicity, we
denote the single-phonon state by D1T and the double-phonon state by D2T, the corresponding
centroids being at u

1
and u

2
, respectively. The total probability to excite the double-phonon state

is obtained by

P(u)"+
f

Da145
fi

#a2/$
fi

D2d(u!u
fi
),P145(u)#P2/$(u)#P*/5(u) , (185)

where P145 is the direct (or "rst-order) excitation of the double-phonon state, P2/$ is the two-step (or
second-order) excitation term, and the last term in Eq. (185) is the interference between the two.

3.2.3. Second-order perturbation theory
To second-order, the amplitude for a two-step excitation to a state D2T via intermediate states D1T

is given by

a2/$
20

"+
1

1
(i+)2P

=

~=

dt e*u21t<
21

(t)P
t

~=

dt@ e*u10t{<
10

(t@) , (186)

where <
21

(t) is a short notation for the interaction potential inside brackets of the integral of
Eq. (186) for the transition D1TPD2T.

Using the integral representation of the step function

H(t!t@)"! lim
d?0`

1
2piP

=

~=

e~*q(t~t{)

q#id
dq"G

1 if t't@ ,

0 if t(t@ ,
(187)

one "nds [16]

a2/$
20

"

1
2
+
1

a145
21

(u
21

)a145
10

(u
10

)#
i

2p
+
1

PP
=

~=

dq
q

a145
21

(u
21
!q)a145

10
(u

10
#q) , (188)

where P stands for the principal value of the integral. For numerical evaluation it is more
appropriate to rewrite the principal value integral in Eq. (188) as

PP
=

~=

dq
q

a145
21

(u
21
!q)a145

10
(u

10
#q)

"P
=

0

dq
q

[a145
21

(u
21
!q)a145

10
(u

10
#q)!a145

21
(u

21
#q) a145

10
(u

10
!q)] . (189)
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To calculate a145(u) for negative values of u, we note that the interaction potential can be written as
a sum of an even and an odd part. This implies that a145(!u)"![a145(u)]H. For three-phonon
excitation we use the third term of the time-dependent perturbation expansion, and the same
procedure as above (Eqs. (187)}(189)).

3.2.4. Harmonic vibrator model
A simpli"ed model, often used in connection with multiphonon excitations, is the harmonic

vibrator model. In this model, the resonance widths are neglected and the Coupled-Channel
equations can be solved exactly, in terms of the "rst-order excitation amplitudes [15]. The
excitation amplitude of the nth harmonic oscillator state, for any time t, is given by

a(n)
).0.

(t)"([a
145

(t)]n/Jn!) expM!Da
145

(t)D2/2N , (190)

where a
145

(t) is the excitation amplitude for the 0 (g.s.)P1 (one phonon) calculated with the
"rst-order perturbation theory.

For the excitation of giant resonances, n can be identi"ed with the state corresponding to
a multiple n of the single giant resonance state. This procedure has been often used in order to
calculate the cross sections for the excitation of multiphonon giant resonances. Since this result is
exact in the harmonic vibrator model, it accounts for all coupling between the states. However, this
result can be applied to studies of giant resonance excitation only if the same class of multipole
states is involved. I.e., if one considers only electric dipole excitations, and use the harmonic
oscillator model, one can calculate the excitation probabilities, and cross sections, of the GDR,
double-GDR, triple-GDR, etc. Eq. (190) is not valid if the excitation of other multipolarities are
involved, e.g., if the excitation of dipole states and quadrupole states are treated simultaneously.
In Ref. [50] a hybrid harmonic oscillator model has been used. In this work, it is assumed that
the di!erence between the amplitudes obtained with the harmonic oscillator model and with nth
order perturbation theory is due to the appearance of the exponential term on the r.h.s. of Eq. (190).
This exponential takes care of the decrease in the occupation amplitude of the ground state as
a function of time. As argued in Ref. [50], the presence of other multipole states, e.g., of quadrupole
states, together with dipole states, may be accounted for by adding the "rst-order excitation
amplitudes for the quadrupole states to the exponent in Eq. (190). This would correct for the #ux
from the ground state to the quadrupole states. In other words, Eq. (190) should be corrected
to read

a(n)
).0.

(nj, t)"([a
145

(nj, t)]n/Jn!) expG!+
p{j{

Da
145

(n@j@, t)D2/2H . (191)

The harmonic oscillator model is not in complete agreement with the experimental "ndings. The
double-GDR and -GQR states do not have exactly twice the energy of the respective GDR and
GQR states [7}9]. Apparently, the matrix elements for the transition from the GDR (GQR) to the
double-GDR (double-GQR) state does not follow the boson rule [42]. This is borne out by the
discrepancy between the experimental cross sections for the excitation of the double-GDR and
the -GQR with the perturbation theory, and with the harmonic oscillator model [7}9]. Thus,
a Coupled-Channels calculation is useful to determine which matrix elements for the transitions
among the giant resonance states reproduce the experimental data [121].
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Table 3
Cross sections (in mb) for the Coulomb excitation of the GDR

*7
, GQR

*4
and GQR

*7
in 136Xe incident on 208Pb at 0.69A

GeV. The cross sections in the last column are calculated with the widths of the states taken into account. The values
outside (inside) parentheses use b

.*/
"13.3 (15.6) fm

m"$2 m"$1 m"0 p
505!-

p
8*$5)

GDR
*7

* 949 (712) 264 (201) 2162 (1630) 2482 (1820)
GQR

*4
90 (64) 8.4 (6.09) 14.3 (10.6) 211 (150) 241 (169)

GQR
*7

29.7 (25.6) 6.1 (5.46) 14 (12.4) 84.1 (74.5) 102 (93)

Assuming that one has pnjc (E) somehow (either from experiments, or from theory), a simple
harmonic model following the discussion above can be formulated to include the widths of the
states. As we have mentioned, in the harmonic oscillator model the inclusion of the coupling
between all multiphonon states can be performed analytically [15]. One of the basic changes is that
the excitation probabilities calculated to "rst-order, P145nj (E, b), are modi"ed to include the #ux of
probability to the other states. That is,

Pnj(E, b)"P145nj (E, b) expM!P145nj (b)N , (192)

where P145nj (b) is the integral of over the excitation energy E. In general, the probability to reach
a multiphonon state with the energy E(n) from the ground state, with energy E(0), is obtained by an
integral over all intermediate energies

P(n)nHjH(E(n), b)"
1
n!

expM!P145nj (b)NP dE(n~1)dE(n~2)2dE(1)

]P145nj (E(n)!E(n~1),b)P145nj (E(n~1)!E(n~2), b)2P145nj (E(1)!E(0), b) . (193)

3.2.5. Comparison with experiments
The reactions 136Xe#208Pb at 0.69A GeV and 209Bi#208Pb at 1A GeV have been measured

at GSI [39,40]. We apply the formalism developed in the preceding sections to calculate the
excitation probabilities and cross sections for these systems.

Cross sections (in mb) for the Coulomb excitation of the GDR
*7
, GQR

*4
and GQR

*7
in 136Xe

incident on Pb at 0.69A GeV are given in Table 3. We have assumed that the GDR
*7
, GQR

*4
and

the GQR
*7

are located at 15.3, 12.3 and 24MeV, and that they exhaust 100%, 70% and 80% of
the corresponding sum rules, respectively [56]. We used b

.*/
"1.2(A1@3

1
#A1@3

2
) fm "13.3 fm as

a lower limit guess and b
.*/

"15.6 fm suggested by the parameterization [44] as an upper limit
(number inside parentheses). The parameterization [43] yields an intermediate value for this
quantity. The contributions to various angular momentum projections of each state are shown
separately. In the last column the total cross sections are calculated with the widths of the states
taken into account. We use for the GDR

*7
, GQR

*4
and GQR

*7
the BW strength functions (182) with

the resonance widths C"4.8, 4 and 7 MeV, respectively [56]. We see that states with higher
angular momentum projections are more populated. The inclusion of the widths of the resonances
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Table 4
Excitation cross sections (in mb) of the GDR

*7
, and of the [GDR]n states in the reaction 208Pb#208Pb at 640AMeV.

A comparison with "rst-order perturbation theory and the harmonic oscillator is made

State 1st pert. th. Harm. osc. c.c.

GDR
*7

3891 3235 3210
[GDR

*7
]2 388 281 280

[GDR
*7
]3 39.2 27.3 32.7

[GDR
*7
]4 4.2 2.4 3.2

in the calculation increases the cross sections by about 10}20%. The experimental value [40]
1110$80 mb for the GDR is much smaller which made the authors of [40] to claim that the GDR
absorbs only 65% of the sum rule (this number apparently contradicts to the systematics of data for
real monochromatic photons [56]). Using this value, our result reduces to 1613 (1183) mb which
seems to prefer the upper value of b

.*/
. The numbers in parentheses are also in rough agreement

with the data [40] for the GQR
*4

and GQR
*7
.

Using the formalism developed in Section 2.8 we have also calculated the cross sections for the
nuclear excitation of the GQR

*4
in the same reaction. The cross sections for the excitation of

isovector modes are reduced by a factor [(N!Z)/A]2 since the isovector mode is excited due to the
di!erence in strength of the nuclear interaction between the target and the protons and neutrons of
the projectile [55]. This implies that the isovector excitations are strongly suppressed in nuclear
excitations. Therefore, we do not consider them here. For the excitation of the GQR

*4
we "nd

pN"5.3 mb, if we use the deformation parameter bR"0.7 fm for 136Xe. In the calculation of the
nuclear potential we used Fermi density distributions with parameters o

0
"0.17 fm~3 and

R"5.6 (6.5) fm, a"0.65 (0.65) fm for Xe (Pb). The nucleon}nucleon cross section used was 40 mb.
Again we see that the nuclear contribution to the total cross section is very small.

The double dipole phonon state can couple to total angular momentum 0 or 2. For the state with
¸"2 there is the possibility of a direct quadrupole Coulomb excitation (¸"0 states cannot be
Coulomb excited [6]). For simplicity, we do not consider here the physics of the isospin coupling of
the two GDR.

We calculated the direct and the two-step probabilities for the excitation of the double-phonon
state according to the approach discussed in the previous sections. The total cross sections
obtained are shown in Table 4. We found that the principal value term in Eq. (188) contributes very
little (less than 1%) to the GDR]GDR cross section via a two-step process.

From Table 5 we see that the inclusion of the widths of the "nal (GDR]GDR) and the
intermediate (GDR) state increase the cross sections by 10}20%. For the position and width of the
GDR]GDR state we took E"28.3MeV and C"7 MeV, respectively [40] which corresponds to
u

10
"15.3MeV and u

21
"13MeV, both for ¸"2 and ¸"0. For the calculation of the direct

excitation we assumed that the resonance would exhaust 20% of the GQR
*4

sum rule. It is based on
the hypotheses that the missing strength of the low-lying GQR

*4
could be located at the double

dipole phonon state as a consequence of the anharmonic phonon coupling of the (QDD)-type.
Obviously, it should be considered as highly overestimated upper boundary of the direct excitation.
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Table 5
Cross sections (in mb) for the Coulomb excitation of the double GDR in 136Xe incident on Pb at 0.69A GeV. The cross
sections in the last column are calculated with the widths of the states taken into account. The values outside (inside)
parentheses use b

.*/
"13.3 (15.6) fm

DGDR state m"$2 m"$1 m"0 p
505!-

p
8*$5)

L"0 (two-step) * * 22.8 (10.7) 22.8 (10.7) 28.4 (13.3)
L"2 (two-step) 23.3 (11.2) 13.4 (6.6) 51.4 (26.8) 124.8 (62.4) 154 (77)
L"2 (direct!20% of SR) 3.27 (2.85) 0.86 (0.77) 2.12 (1.88) 10.3 (9.12) 11.8 (10.8)

In Ref. [57] the reduced transition probability for the excitation of double-phonon states within the
quasiparticle-phonon model have been calculated. The value B(2`,E2)"4.2e2 fm4 has been
obtained. Using this value we get that the cross section for the direct excitation of the ¸"2 state is
12lb, much smaller than what we quote above. We conclude that even in the more optimistic cases
the contribution of the direct mechanism to the total cross section for Coulomb excitation of the
double-phonon state is much less than that of the two-step process.

Another conclusion drawn from the numbers of Table 5 is that the excitation of the ¸"2
double-phonon state is much stronger than for the ¸"0 state. Adding the two contributions we
"nd that the total cross section for the excitation of the double-phonon state (excluding the direct
mechanism) in the reaction above is equal to 182 (101) mb. The experimental value of Ref. [40] is
about 215$50mb. As stated above, the nuclear contribution to the (direct) excitation of the
double-phonon state is not relevant. If we assume again that about 20% of the sum rule strength is
exhausted by this state (using e.g. bR"0.1 fm), we get 1.1 mb for the nuclear excitation of the ¸"2
double-phonon state. Contrary to the single phonon case, the appropriate value of b

.*/
for the

double GDR experiment [40] is b
.*/

"13.3 fm.
We also compare our results with the experiment of Ritman et al. [39]. They measured the

excitation of a 208Pb target by means of 209Bi projectiles at 1A GeV and obtained 770$220 mb
for the excitation cross section of the double resonance. We calculate the cross sections for the same
system, using E

1
"13.5MeV, C

1
"4 MeV, E

2
"27MeV and C

2
"6 MeV for the energy position

and widths of the GDR and the GDR]GDR in 208Pb, respectively. Using the formalism
developed in Sections 3.2.2 and 3.2.3 and including the e!ects of the widths of the states, we
"nd p

1
"5234 b for the excitation of the GDR and p

2
"692 mb for the excitation of the

GDR]GDR, using b
.*/

"1.2(A1@3
P

#A1@3
T

) fm"14.2 fm. Thus, while the cross section for the
excitation of single phonons is a factor 2.8 larger than that of the experiment of Ref. [40], the cross
sections for the excitation of double phonons is larger by a factor 3.8. This is due to the larger value
for the excitation probabilities caused by a larger B(E1) value for this reaction. The parameteriz-
ation [44] with b

.*/
"b

.*/
"16.97 fm would lead to smaller cross sections p

1
"4130 mb and

p
2
"319 mb.
We found the ratio of (P

m/`1
#P

m/~1
)/P

m/0
"9.4 for the excitation of the GDR in the

experiment of Ref. [39]. They quote the value 28 in their calculations and "t the gamma-ray
angular distribution according to this value. We think that this result could somewhat change the
extracted value of the GDR]GDR cross section which is quoted in Ref. [39].
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Using the formalism shown in Section 3.2.4 we "nd that the cross sections for the excitation of
three-phonon states in the experiment of Schmidt et al. [40] is equal to 19.2 mb (with
b
.*/

"13.3 fm) while it is equal to 117 mb (with b
.*/

"14.2 fm) for the experiment of Ritman et al.
[39]. The identi"cation of these resonances is therefore more di$cult, but possible with the present
experimental techniques. Using the same arguments leading to Eq. (174) we "nd for the reduced
matrix elements, in obvious notations, DD

32
D2"3(u

10
/u

32
)DD

10
D2, which we used in our calculation.

We assumed that u
10

/u
32
Ku

10
/u

21
. These enhancement factors for the excitation of higher

phonon states are very important to explain the magnitude of the cross sections. The anharmonic
e!ects, suggested in [40] to explain the large excitation of double GDR, are expected to be small
since the mixing of single- and double-phonon states is forbidden by the angular momentum and
parity. The main anharmonic e!ect, apart from the weak coupling of the double GDR with ¸"2
to GQR, is the IBM-like scattering of dipole phonons which splits ¸"0 and ¸"2 states but
hardly changes excitation and decay properties.

Another important question is related to the expected width of the multiphonon states. Early
estimates [15] presented in Section 3.2.2 indicated that these widths should scale as C

n
"nC

1
.

The experiments show however that a scaling as C
n
"JnC

1
is more appropriate, at least for the

double GDR. We next address in detail di!erent aspects of physics responsible for the width of the
double-phonon state.

3.3. General arguments on the width of the double-phonon state

Here we discuss in qualitative terms the problem of the width of a collective state which can be
thought of as being created by the excitation of two quanta in a complex many-body system. We
assume that the genuine decay to continuum is of minor importance at the given excitation energy.
Therefore, we focus on the damping width which comes from the fact that the collective mode is
a speci"c coherent superposition of simple con"gurations (for instance, of a particle-hole character)
rather than a pure stationary state.

In the actual excitation process the predominant mechanism is that of the sequential one-
phonon excitation. Under our assumption that the sum rule is saturated by the GR the intermedi-
ate states contribute to this process as far as they contain a signi"cant collective component.
Therefore the interference of many incoherent paths can be neglected so that we are interested in
the shape P(E) of the excitation function at a given energy E"E

1
#E

2
which can be obtained as

a convolution of the single-phonon excitation functions,

P(E)"PdE
1
dE

2
P
1
(E

1
)P

2
(E

2
)d(E!E

1
!E

2
) . (194)

The same shape should be revealed in the deexcitation process.
In this formulation the problem is di!erent from what is usually looked at when one is interested,

for example, in sound attenuation. In such classical problems the conventional exponential
decrease of the wave intensity does not correspond to the decay of the state with a certain
initial number of quanta. Contrary to that, here we have to compare the damping rates of
individual quantum states with the "xed number of quanta, single- and double-phonon states in
particular.
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We have to mention also that in the nuclear GR case quantum e!ects are more pronounced since
the temperature corresponding to the relevant excitation energy is less than +u, whereas in the
measurements of the attenuation of the zero and "rst sound in the macroscopic Fermi liquid [58]
the situation is always inverse and the quantum limit is hardly attainable. (In nuclear physics the
classical case can be studied with low-lying quadrupole vibrations.)

Independently of speci"c features of nuclear structure (level density, A-dependence, shell e!ects,
"niteness of the system leading to the linear momentum nonconservation and, therefore, to the
estimate of the available phase space which could be di!erent from that for in"nite matter, and so
on) we can try to make several comments of general nature.

If the anharmonic e!ects could be considered to be small we can assume that the phonons
decay independently by what can be described, using the language of stationary quantum mechan-
ics, as mixing to complex background states. The decay rate C

1
(e) of an individual quasi-

particle (elementary excitation) with energy e depends on the background level density and,
whence, on the excitation energy. The decay of a state with n quasiparticles occurs as far as
one of the constituents decays. It implies the simple estimate of the width C

n
of the n-quantum

state, C
n
KnC

1
(E/n). For the decay of typical many particle-many hole con"gurations [59}61]

one usually takes the Fermi-liquid estimate C
1
(e)Je2 which leads to C

n
J¹3JE3@2 since

the average number of quasiparticles in a typical thermal con"guration at temperature ¹ is nJ¹.
This estimate agrees with data. In the case of the pure n-phonon state E/n"+u which results in the
ratio r

n
,C

n
/C

1
Kn.

Thus, the simplest line of reasoning favors the width of the double GR to be twice as big as the
width of the single GR. At the "rst glance, this estimate is especially reasonable for the giant dipole
since here the anharmonic e!ects, determining the whole pattern of low-lying vibrations, are
expected to be very weak. Angular momentum and parity conservation forbids cubic anharmonic-
ity which would mix single- and double-quantum states and in#uence both excitation cross
sections and spreading widths. The main anharmonic term, apart from mentioned in Section 3.2.2
weak mixing of the giant quadrupole to the double dipole state with ¸"2, probably corresponds
to the phonon scattering similar to that in the IBM. It results in the shift of the double-phonon
state from 2+u and splitting of ¸"0 and ¸"2 states hardly changing the decay properties.
Experimentally, the energy shift seems to be rather small.

There are also other arguments for the width ratio r
2
"2. In our calculation of cross sections we

assumed the BW shape (182) of strength functions (181). If the sequential excitation is described by
the BW functions P

1
(E

1
) with the centroid at e and the width C, and P

2
(E

2
) with corresponding

parameters e@ and C@, the convolution (194) restores the BW shape with the centroid at e#e@ and
the total width C#C@. For identical phonons it means that the width ratio r

2
"2.

As we mentioned in Section 3.2.2, the BW shape of the strength function is derived analytically
within the simple model [55] of coupling between a phonon and complex background states. One
diagonalizes "rst the Hamiltonian in the subspace of those complex states and get their energies el.
If the underlying dynamics is nearly chaotic, the resulting spectrum will show up level repulsion
and rigid structure similar to that of the Gaussian Orthogonal Ensemble (GOE), with the mean
level spacing d. Roughly speaking, one can assume the equidistant energy spectrum. The collective
phonon D1T at energy E

1
is coupled to those states and corresponding matrix elements <

1l are
assumed to be of the same order of magnitude (much larger than the level spacing d) for all states
DlT in the large energy interval around the collective resonance. Then the energies of the stationary
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states ("nal states D fT in the notations of previous sections) are the roots E"E
f

of the secular
equation

F(E),E!E
1
!+

l

<2
1l

E!el
"0 , (195)

and the distribution of the collective strength, Eq. (179),

DC(f)
1

D2"[dF/dE]~1
E/Ef

"C1#+
l

<2
1l

(E
f
!el)2D

~1
(196)

reveals the BW shape (182) and the `golden rulea expression (183) for the width C
1
.

We can repeat the procedure for the double phonon state. Phonons of di!erent kind would
couple to di!erent background states with di!erent level spacing and coupling matrix elements. It
corresponds to independent decay leading as we discussed above to C

2
"C#C@. For the identical

phonons, we should take into account that the double phonon state D2T is coupled to the states
`single phonon#backgrounda and the background states here are the same as those determining
the width of the single phonon state D1T. This picture is in accordance with the famous Axel}
Brink hypotheses. Therefore, the expression for the width, Eq. (183), contains the same level
density whereas all coupling matrix elements for the transition to a complex state DlT
(plus a remaining phonon) have to be multiplied by the Bose factor, <

2l"J2<
1l. Thus, we come

again to r
2
"2.

The approach of the proceeding paragraph can be slightly modi"ed by introducing explicitly
coupling via a doorway state [62] or GOE internal dynamics [63]. In both cases the Bose factor
J2 leads to the same result r

2
"2.

In addition, the collective resonance might be further broadened by the coupling to low-lying
collective vibrational or rotational modes. For example, in the simplest model where the dipole
phonon radiates and absorbs low-energy scalar quanta, it is easy to show that, in the stationary
cloud of scalar quanta, their average number, which determines the fragmentation region of the
dipole mode, is proportional to the squared number of dipole phonons. Hence it gives a large width
ratio r

2
"4. For the nuclei where actual data exist, this is not important since they are rather rigid

spherical nuclei with no adiabatic collective modes.
On the other hand, one can present some arguments in favor of the width ratio r

2
"J2 which

apparently is preferred by the existing data.
First of all, this value follows from the convolution (194) of Gaussian distribution functions

(instead of BW ones). Of course, this is the inconsistent approach since the experimentalists use BW
or Lorentzian "t. But one can easily understand that the result r

2
"J2 is not restricted to

Gaussian "t. For an arbitrary sequence of two excitation processes we have SET"SE
1
#E

2
T and

SE2T"S(E
1
#E

2
)2T; for uncorrelated steps it results in the addition of #uctuations in quadrature

(*E)2"(*E
1
)2#(*E

2
)2. Identifying these #uctuations with the widths up to a common factor, we

get for the identical phonons C2
2
"2C2

1
, or r

2
"J2.

The same conclusion will be valid for any distribution function which, as the Gaussian one, has
a "nite second moment, contrary to the BW or Lorentzian ones with the second moment diverging.
In some sense we may conclude that, in physical terms, the di!erence between r

2
"2 and r

2
"J2

194 C.A. Bertulani, V.Yu. Ponomarev / Physics Reports 321 (1999) 139}251



is due to the di!erent treatment of the wings of the distribution functions which re#ect small
admixtures of far remote states.

In the standard model of the strength function [55] all remote states are coupled to the collective
mode equally strong. This is obviously an unrealistic assumption. The shell model (more generally,
mean "eld) basis is the `naturala one [64] for estimating a degree of complexity of various states in
a Fermi system at not very high excitation energy. In this representation matrix elements of
residual interaction couple the collective state (coherent superposition of particle}hole excitations
found for example in the framework of the RPA) only to the states of the next level of complexity
(exciton class). Those states, in turn, become mixed with more complex con"gurations. This process
proliferates and each simple state acquires its spreading, or fragmentation, width 2a"Nd where
N stands for a typical number of stationary states carrying the noticeable weight of the ancestor
state and the level spacing d is basically the same as in the mean "eld approximation. Inversely,
N can be viewed as the localization length of a stationary complex state in the mean "eld basis.

In the stochastic limit the local background dynamical properties can be modeled by those of
the GOE with the semicircle radius a. This intrinsic spreading width a, which is expected to be of
the order of magnitude of typical matrix elements of the original residual interaction between
simple con"gurations, is the dynamical scale missed in the standard model which corresponds to
the limit aPR. The existence of this intrinsic scale can be associated with the saturation [65] of
the width of a single GR at high temperature.

The standard model supposedly is valid for the spreading width C small in comparison with a.
Because of the relatively weak interaction leading to the isospin impurity, this is the case for the
isobaric analog states (IAS) [66,67] where typical spreading widths are less than 100 keV. This
approach allows one to explain, at least qualitatively, small variations of the spreading widths of
the IAS. The tunneling mixing of superdeformed states with the normal deformed background
presents an extreme example of the small spreading width. However, in the case of GR the situation
might be di!erent.

To illustrate the new behavior in the opposite case of C5a, we can imagine the limit of the
almost degenerate intrinsic states with very strong coupling to a collective mode. (The actual
situation presumably is intermediate.) Assuming that the unperturbed phonon state has an energy
in the same region, one can easily see from Eqs. (195) and (196) that the coupling results in the
appearance of the two collective states sharing evenly the collective strength and shifted symmetric-
ally from the unperturbed region by *E"$J+l<2l . The physical reason is evident: the interac-
tion of the background states through the collective mode creates a speci"c coherent superposition
which is hybridized with and repelled from the original collective state. The similar e!ect was
discussed in di!erent context in [68] and observed in numerical simulations [69]. The well-known
doubling of the resonance peak at the passage of a laser beam through a cavity containing
a two-level atom is the simplest prototype of such a phenomenon.

In this limit one gets the e!ective width of collective response 2*E"2JNS<2lT"2JaC
s
/n

where C
s
is the standard spreading width (183). This e!ective width is linearly proportional to the

average coupling matrix element. Therefore it should increase by factor Jn when applied to
a n-phonon collective state. Thus, we anticipate in this limit r

2
"J2. One may say that the

phonons do not decay independently being correlated via common decay channels. In the
literature the similar result, due to apparently the same physical reasons, was mentioned in [70]
referring to the unpublished calculations in the framework of the second RPA.
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3.4. Coupled-channel calculations with inclusion of the GR widths

We have seen that the excitation probabilities of excitation of single- and double-giant reson-
ances are quite large. It is worthwhile to study the excitation process with a coupled channels
calculation and compare to the other approximations. We will now study this e!ect by using the
Coupled-Channels Born approximation. This approximation was used in Ref. [71] to describe the
excitation of the double-giant resonance in relativistic heavy ion collisions. It is based on the idea
that in such cases only the coupling between the ground state and the dominant giant dipole state
has to be treated exactly. The reason is that the transitions to giant quadrupole and to the
double-phonon states have low probability amplitudes, even for small impact parameters. How-
ever, an exact treatment of the back-and-forth transitions between the ground state and the giant
dipole state is necessary. This leads to modi"cations of the transitions amplitudes to the remaining
resonances, which are populated by the ground state and the GDR. In Ref. [71] the application of
the method was limited to the use of an schematic interaction, and the magnetic substates were
neglected. These de"ciencies are corrected here. The method allows the inclusion of the width of the
giant resonances in a very simple and straightforward way. It will be useful for us to compare with
the coupled-channels calculations with isolated states, as we described in the previous sections.
Fig. 23 represents the procedure. The GDR is coupled to the ground state while the remaining
resonances are fed by these two states according to "rst-order perturbation theory. The coupling
matrix elements involve the ground state and a set of doorway states DD(n)jkT, where n speci"es the
kind of resonance and jk are angular momentum quantum numbers. The amplitudes of these
resonances in real continuum states are

a(n)(e)"S/(e) DD(n)jkT , (197)

where /(e) denotes the wave function of one of the numerous states which are responsible for the
broad structure of the resonance. In this equation e"E

x
!E

n
, where E

x
is the excitation energy

and E
n
is the centroid of the resonance considered.

As we have stated above, in this approach we use the coupled-channels equations for the
coupling between the ground state and the GDR. This results in the following coupled-channels
equations:

i+ a5
0
(t)"+

k PdeS/(e) DD(1)
1kTSD(1)

1k D<
E1,k(t) D 0T expG!

i
+
(E

1
#e)tHa(1)e,1k(t)

"+
k Pde a(1)(e)<(01)k (t) expG!

i
+

(E
1
#e)tHa(1)e,1k(t) (198)

and

i+ a5 (1)e,1k(t)"[(a(1)(e)<(01)k (t)]H expMi(E
1
#e)t/+Na

0
(t) . (199)

Above, n"1 stands for the GDR, a
0

denotes the occupation amplitude of the ground state and
a(1)e,1k the occupation amplitude of a state located at an energy e away from the GDR centroid,
and with magnetic quantum number k (k"!1, 0, 1). We used the short-hand notation
<(01)k (t)"SD(1)

1k D<
E1,k(t)D 0T.
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Fig. 23. Schematic representation of the excitation of giant resonances, populated in heavy ion collisions.

Integrating Eq. (199) and inserting the result in Eq. (198), we get the integro-di!erential equation
for the ground state occupation amplitude

aK
0
(t)"!

1
+2

+
k
<(01)k (t)PdeDa(1)(e)D2P

t

~=

dt@[<(01)k (t@)]HexpM!i(E
1
#e)(t!t@)/+Na

0
(t@) , (200)

where we used that a(1)e,1k(t"!R)"0. To carry out the integration over e, we should use an
appropriate parametrization for the doorway amplitude a(1)(e). A convenient choice is the
Breit}Wigner (BW) form

Da(1)(e)D2"
1
2pC

C
1

e2#C2
1
/4D , (201)

where C
1

is chosen to "t the experimental width. In this case, this integral will be the simple
exponential

PdeDa(1)(e)D2 expG!i
(E

1
#e)t
+ H"expG!i

(E
1
!iC

1
/2)t

+ H . (202)

A better agreement with the experimental line shapes of the giant resonances is obtained by using
a Lorentzian (L) parametrization for Da(1)(e)D2, i.e.,

Da(1)(e)D2"
2
pC

C
1
E2

x
(E2

x
!E2

1
)2#C2

1
E2
x
D , (203)

where E
x
"E

1
#e. The energy integral can still be performed exactly [72] but now it leads to the

more complicated result

PdeDa(1)(e)D2 expG!i
(E

1
#e)t
+ H"A1!i

C
1

2E
1
B expG!i

(E
1
!iC

1
/2)t

+ H#*C(t) , (204)

where *C(t) is a non-exponential correction to the decay. For the energies and widths involved in
the excitation of giant resonances, this correction can be shown numerically to be negligible. It will
therefore be ignored in our subsequent calculations. After integration over e, Eq. (200) reduces to

aK
0
(t)"!S

1
+
k
<(01)k (t)P

t

~=

dt@ [<(01)k (t@)]H expG!i
(E

1
!iC

1
/2)(t!t@)

+ Ha0(t@) , (205)

where the factor S
1

is S
1
"1 for BW-shape and S

1
"1!iC

1
/2E

1
for L-shape.
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We can take advantage of the exponential time dependence in the integral of the above equation,
to reduce it to a set of second-order di!erential equations. Introducing the auxiliary amplitudes
Ak(t), given by the relation

a
0
(t)"1#+

k
Ak(t) , (206)

with initial conditions Ak(t"!R)"0, and taking the derivative of Eq. (205), we get

A$ k(t)!C
<Q (01)k (t)
<(01)k (t)

!

i
+AE1

!i
C

1
2 BDAQ k(t)#S

1

D<(01)k (t)D2
+2 C1#+

k{
Ak{(t)D"0 . (207)

Solving the above equation, we get a
0
(t). Using this amplitude and integrating Eq. (199), one can

evaluate a(1)e,1k(t). The probability density for the population of a GDR continuum state with energy
E
x

in a collision with impact parameter b, P
1
(b,E

x
), is obtained through the summation over the

asymptotic (tPR) contribution from each magnetic substate. We get

P
1
(b,E

x
)"Da(1)(E

x
!E

1
)D2+

k KP
=

~=

dt@ expMiE
x
t@N[<(01)k (t@)]Ha

0
(t@)K

2
, (208)

where Da(1)(E
x
!E

1
)D2 is given by Eq. (201) or by Eq. (203), depending on the choice of the resonance

shape.
To "rst order, DGDR continuum states can be populated through E2-coupling from the ground

state or through E1-coupling from GDR states. The probability density arising from the former is
given by Eq. (208), with the replacement of the line shape Da(1)D2 by its DGDR counterpart Da(2)D2
(de"ned in terms of parameters E

2
and C

2
) and the use of the appropriate coupling-matrix elements

<(02)k (t) with the E2 time dependence given by (29). On the other hand, the contribution from the
latter process is

P
2
(b,E

x
)"Da(2)(E

x
!E

2
)D2S

1
+
l KP

=

~=

dt@ expMiE
x
t@N+

k
(<(12)lk (t@))H

]P
t{

~=

dtA (<(01)k (tA)) expG!i
(E

1
!iC

1
/2)(t!t@)

+ Ha0(tA)K
2

. (209)

We should point out that Eq. (209) is not equivalent to second-order perturbation theory. This
would be true only in the limit a

0
(t)P1. In this approach, a

0
(t)O1, since it is modi"ed by the

time-dependent coupling to the GDR state. This coupling is treated exactly by means of
the Coupled-Channels equations. We consider that this is the main e!ect on the calculation of the
DGDR excitation probability. This approach is justi"ed due to the small excitation amplitude for
the transition 1P2, since a

1
(t);a

0
(t).

Equations similar to (208) can also be used to calculate the GQR
*4

and GQR
*7

excitation
probabilities, with the proper choice of energies, widths, and transition potentials (e.g., <

E2
(t), or

<
N2

(t), or both).
In the next section we will apply the results of this section to analyze the e!ect of the widths of the

GRs in a Coupled-Channels approach to relativistic Coulomb excitation.
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Fig. 24. Time dependence of the occupation probabilities Da
0
D2 and Da

1
D2, in a collision with impact parameter b"15 fm.

The time is measured in terms of the dimensionless variable q"(vc/b) t. The system is 208Pb (640AMeV)#208Pb.

3.4.1. Zero-width calculations
We consider the excitation of giant resonances in 208Pb projectiles, incident on 208Pb targets at

640AMeV, which has been studied at the GSI/SIS, Darmstadt [7,9]. For this system the excitation
probabilities of the isovector giant dipole (GDR

*7
) at 13.5MeV are large and, consequently,

high-order e!ects of channel coupling should be relevant. To assess the importance of these e!ects,
we assume that the GDR state depletes 100% of the energy-weighted sum-rule and neglect the
resonance width.

As a "rst step, we study the time evolution of the excitation process, solving the Coupled-
Channels equations for a reduced set of states. We consider only the ground state (g.s.) and the
GDR. The excitation probability is then compared with that obtained with "rst-order perturbation
theory. This is done in Fig. 24, where we plot the occupation probabilities of the g.s., Da

0
(t)D2, and of

the GDR, Da
1
(t)D2, as functions of time, for a collision with impact parameter b"15 fm. As discussed

earlier, the Coulomb interaction is strongly peaked around t"0, with a width of the order
*tKb/cv. Accordingly, the amplitudes are rapidly varying in this time range. A comparison
between the CC-calculation (solid line) and "rst-order perturbation theory (dashed line) shows that
the high-order processes contained in the former lead to an appreciable reduction of the GDR
excitation probability. From this "gure we can also conclude that our numerical calculations can
be restricted to the interval !10(q(10, where q"(cv/b) t is the time variable measured in
natural units. Outside this range, the amplitudes reach asymptotic values.

It is worthwhile to compare the predictions of "rst-order perturbation theory with those of the
harmonic oscillator model and the CC calculations. In addition to the GDR, we include the
following multiphonon states: a double-giant dipole state ([GDR

*7
]2) at 27MeV, a triple-giant

dipole state ([GDR
*7
]3) at 40.5MeV, and a quadruple giant dipole state ([GDR

*7
]4) at 54MeV. The
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Table 6
Transition probabilities at b"14.3 fm, for the reaction 208Pb#208Pb at 640AMeV. A comparison with "rst order
perturbation theory is made

Trans. 1st pert. th. c.c.

g.s.Pg.s. * 0.515
g.s.PGDR

*7
0.506 0.279

g.s.PGQR
*4

0.080 0.064
g.s.PGQR

*7
0.064 0.049

g.s.P[GDR
*7
]2 0.128 0.092

coupling between the multiphonon states are determined by boson factors, i.e., for 0P1 and
n!1Pn [42]:

DSn!1DD<
E@N,1

DDnTD2"nDS0DD<
E@N,1

DD1TD2 . (210)

Direct excitations of the multiphonon states from the g.s. are not considered. The angular
momentum addition rules for bosons yields the following angular momentum states: ¸"0 and 2,
for the [GDR]2 state; ¸"1, 2, and 3, for the [GDR]3 state; and ¸"0, 1, 2, 3, and 4, for the
[GDR]4 state. We assume that states with the same number of phonons are degenerate. In Table 5,
we show the resulting cross sections. The excitation probabilities and the cross section were
calculated with the formalism of Section 3.4. The integration over impact parameter was carried
out in the interval b

.*/
(b(R. As we discuss below, the low-b cut-o! value [42] b

.*/
"14.3 fm

mocks up absorption e!ects. We have checked that the CC results are not signi"cantly a!ected by
the unknown phases of the transition matrix elements. Since the multiphonon spectrum is equally
spaced, and the coupling matrix elements are related through boson factors (as in Eq. (210)), the
harmonic oscillator and the CC cross sections should be equal. In fact the numerical results of these
calculations given in the table are very close. We also see that the excitation cross sections of triple-
and quartic-phonon states are much smaller than that for the [GDR]2. Therefore, we shall
concentrate our studies on the [GDR]2, neglecting other multiphonon states.

Next, we include the remaining important giant resonances in 208Pb. Namely, the isoscalar giant
quadrupole (GQR

*4
) at 10.9MeV and the isovector giant quadrupole (GDR

*7
) at 22MeV. Also in

this case, we use 100% of the energy-weighted sum rules to deduce the strength matrix elements. In
Table 6, we show the excitation probabilities in a grazing collision, with b"14.3 fm. We see that
"rst-order perturbation theory yields a very large excitation probability for the GDR

*7
state. This is

strongly reduced in a c.c. calculation, as we have already discussed in connection with Fig. 24.
The excitations of the remaining states are also in#uenced. They are reduced due to the lowering
of the occupation probabilities of the g.s. and of the GDR

*7
state in the c.c. calculation. As ex-

pected, perturbation theory and c.c. calculations agree at large impact parameters, when the
transition probabilities are small. For the excitation of the [GDR

*7
]2 state we used second-order

perturbation theory to obtain the value in the second column. The presence of the GQR
*4

and
the GQR

*7
in#uence the c.c. probabilities for the excitation of the GDR and the [GDR

*7
]2,

respectively.
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Fig. 25. Excitation energy spectra of the main giant resonances for both Breit}Wigner and Lorentzian line shapes. The
system is 208Pb (640AMeV)#208Pb.

Fig. 26. Ratio between the DGDR and the GDR cross sections in 208Pb#208Pb collisions, as a function of the
bombarding energy.

Table 7
Centroid energies and widths of the main giant resonances in 208Pb

GDR DGDR GQR
is

GQR
iv

E (MeV) 13.5 27.0 10.9 20.2
C (MeV) 4.0 5.7 4.8 5.5

3.4.2. Ewect of resonance widths
We now turn to the in#uence of the giant resonance widths on the excitation dynamics. We had

considered this in Section 3.2. But, now we show that the coupled-channels e!ects lead to
important quantitative modi"cations of the results. We use the CCBA formalism developed in
Section 3.4. Schematically, the CC problem is that represented Fig. 23. As we have seen above, the
strongest coupling occurs between the g.s. and the GDR.

In Fig. 25, we show the excitation energy spectrum for the GDR, the DGDR (a notation for the
[GDR

*7
]2), GQR

*4
and GQR

*7
. The centroid energies and the widths of these resonances are listed

in Table 7. The "gure shows excitation spectra obtained with both Breit-Wigner (BW) and
Lorentzian (L) line shapes. One observes that the BW and L spectra have similar strengths at the
resonance maxima. However, the low-energy parts (one or two widths below the centroid) of the
spectra are more than one order of magnitude higher in the BW calculation. The reason for this
behavior is that Coulomb excitation favors low energy transitions and the BW has a larger low
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Fig. 27. Dependence of p
GDR

and p
DGDR

on the GDR width, treated as a free parameter. For details see the text. The
system is 208Pb (640AMeV)#208Pb.

energy tail as compared with the Lorentzian line shape. The contribution from the DGDR leads to
a pronounced bump in the total energy spectrum. This bump depends on the relative strength of
the DGDR with respect to the GDR. In Fig. 26, we show the ratio p

DGDR
/p

GDR
as a function of

the bombarding energy. We observe that this ratio is roughly constant in the energy range
E
-!"

/A"200}1000MeV and it falls beyond these limits. This range corresponds to the SIS-energies
at the GSI-Darmstadt facility.

We now study the in#uence of the resonance widths and shapes on the GDR and DGDR cross
sections. This study is similar to that presented in Ref. [71], except that we now have a realistic
three-dimensional treatment of the states and consider di!erent line shapes. In the upper part of
Fig. 27, denoted by (a), we show p

GDR
as a function of C

GDR
, treated as a free parameter. We note

that the BW and ¸ parameterizations lead to di!erent trends. In the BW case the cross section
grows with C

GDR
while in the L case it decreases. The growing trend is also found in Ref. [71],

which uses the BW line shape. The reason for this trend in the BW case is that an increase in the
GDR width enhances the low energy tail of the line shape, picking up more contributions from the
low energy transitions, favored in Coulomb excitation. On the other hand, an increase of the GDR
width enhances the doorway amplitude to higher energies where Coulomb excitation is weaker. In
Fig. 27(b) and (c), we study the dependence of p

GDR
on C

GDR
. In (b), the DGDR width is kept "xed at

the value 5.7MeV while in (c) it is kept proportional to p
GDR

, "xing the ratio C
DGDR

/C
GDR

"J2.
The "rst point to be noticed is that the BW results are systematically higher than the L ones. This is
a consequence of the di!erent low-energy tails of these functions, as discussed above. One notices
also that p

DGDR
decreases with C

GDR
both in the BW and L cases. This trend can be understood in
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Table 8
Cross sections (in mb) for the excitation of giant resonances in lead, for the reaction 208Pb#208Pb at 640AMeV. See text
for details

GDR DGDR GQR
is

GQR
iv

2704 184 (199) [198] 347 186

terms of the uncertainty principle. If the GDR width is increased, its lifetime is reduced. Since the
DGDR is dominantly populated from the GDR, its short lifetime leads to decay before the
transition to the DGDR.

To assess the sensitivity of the DGDR cross section on the strength of the matrix elements and
on the energy position of the resonance, we present in Table 8 the cross sections for the excitation of
the GDR, DGDR, GQR

*4
and GQR

*7
, obtained with the CCBA approximation and 100% of the

sum-rules for the respective modes. In this calculation we have included the strong absorption, as
explained in Section 2.7. For comparison, the values inside parenthesis (and brackets) of the
DGDR excitation cross section include a direct excitation of the ¸"2 DGDR state. We assumed
that 20% of the E2 sum rule could be allocated for this excitation mode of the DGDR. The cross
sections increase by less than 10% in this case. The value inside parentheses (brackets) assume
a positive (negative) sign of the matrix element for the direct excitation.

Since the excitation of the DGDR is weak, it is very well described by Eq. (209) and the DGDR
population is approximately proportional to the squared strength of <(12). Therefore, to increase
the DGDR cross section by a factor of 2, it is necessary to violate the relation E

DGDR
"2E

GDR
by

the same factor. This would require a strongly anharmonic Hamiltonian for the nuclear collective
modes, which would not be supported by traditional nuclear models [42]. Arguments supporting
such anharmonicities have recently been presented in Refs. [73}75]. Another e!ect arising from
anharmonicity would be the spin or isospin splitting of the DGDR. Since the Coulomb interaction
favors lower energy excitations, it is clear that a decrease of the DGDR centroid would increase its
cross section. A similar e!ect would occur if a strongly populated substate is splitted to lower
energies. To study this point, we have varied the energy of the DGDR centroid in the range
20MeV4E

DGDR
427MeV. The obtained DGDR cross sections (including direct excitations) are

equal to 620 mb, 299mb and 199mb, for the centroid energies of 20, 24 and 27MeV, respectively.
Although the experimental data on the DGDR excitation [7}9] seem to indicate that
E
DGDR

&2E
GDR

, a small deviation (in the range of 10}15%) of the centroid energy from this value
might be possible. However, the data are not conclusive, and more experiments are clearly
necessary. We conclude, that from the arguments analyzed here, the magnitude of the DGDR cross
section is more sensitive to the energy position of this state. The magnitude of the DGDR cross
section would increase by a factor 2 if the energy position of the DGDR decreases by 20%, as found
in Refs. [73}75], due to anharmonic e!ects. In Ref. [19] one obtained p

DGDR
"620, 299 and

199mb for the centroid energies of E
DGDR

"20, 24 and 27 MeV, respectively. This shows that
anharmonic e!ects can play a big role in the Coulomb excitation cross sections of the DGDR,
depending on the size of the shift of E

DGDR
. However, in Ref. [42] the source for anharmonic e!ects

were discussed and it was suggested that it should be very small, i.e., *(2)E"E
DGDR

!2E
GDR

K0.
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The anharmonic behavior of the giant resonances as a possibility to explain the increase of the
Coulomb excitation cross sections has been studied by several authors (see also Ref. [76], and
references therein). It was found that the e!ect is indeed negligible and it could be estimated [76] as
*(2)E(E

GDR
/(50.A)&A~4@3MeV.

One attempt to explain the larger experimental cross section is to include contributions from
excitation of a single coherent phonon on `hota "ne structure states (Brink}Axel mechanism).
Recently [77,78] this has been done through two di!erent approaches. In the "rst one [77], the
nucleus is described as a collective harmonic oscillator interacting with a set of oscillators
representing statistical degrees of freedom. In the second [78], a statistical approach along the lines
proposed by Ko [79] (see also [15]) is used. These works indicate that the Brink}Axel mechanism
should play an important role, being able to explain, in part, some discrepancies between theory
and experimental cross sections. Further work along these lines were published by, Hussein and
collaborators [80}82]. In a recent publication [83], the in#uence of the isospin structure of the
double-giant resonance was studied in detail. It was shown that this structure also leads to an
enhancement of the calculated cross sections.

The calculations discussed so far are based on macroscopic properties of the nuclei, sum rules,
etc. Now we show that, in order to obtain a better quantitative description of double-giant
resonances it is necessary to include the internal degrees of freedom of the nuclei appropriately. We
will discuss this next. But, we "rst describe the formalism that we will use for this purpose.

4. Description of one- and multi-phonon excited states within the quasiparticle-phonon model

4.1. The model Hamiltonian and phonons

The Hamiltonian, H, of the quasiparticle-phonon model (QPM) (see Refs. [84}86] for more
details) is introduced on the basis of physical ideas of nucleons moving in an average "eld and
interacted among each other by means of a residual interaction. Schematically it can be written in
the form

H"H
4.1.

#H
1!*3

#H
3.*.

. (211)

We limit ourselves here only by the formalism for even}even spherical nuclei. The "rst term of
Eq. (211), H

4.1.
, corresponds to the average "eld for neutrons (n) and protons (p). In the second-

quantized representation it can be written in terms of creation (annihilation) a`
jm

(a
jm

) operators of
particles on the level of the average "eld with quantum numbers j,[n, l, j] and m as follows:

H
4.1.

"

n,p
+
q

+
j,m

E
j
a`
jm

a
jm

, (212)

where E
j

is the energy of the single-particle level degenerated in spherical nuclei by magnetic
quantum number m. The second term of Eq. (211), H

1!*3
, corresponds to residual interaction

responsible for pairing in non-magic nuclei. In the QPM this interaction is described by monopole
pairing with a constant matrix element G(0)q

H
1!*3

"

n,p
+
q

G(0)q +
j,j{

J(2j#1)(2j@#1)[a`
jm

a`
j~m

]
00

[a
j{~m{

a
j{m{

]
00

, (213)
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[a`
j

a`
j{
]jk" +

m,m{

Cjk
jmj{m{

a`
jm

a`
j{m{

, (214)

where Cjk
jmj{m{

is the Clebsch}Gordan coe$cient. Since the QPM is usually applied for a description
of properties of medium and heavy nuclei with a "lling of di!erent subshells for neutrons and
protons, the neutron}proton monopole pairing is neglected. The residual interaction, H

3.*.
, is taken

in the QPM in a separable form as a multipole decomposition. Its part in the particle}hole channel
can be written as

H(p~h)
3.*.

"+
jk

B1
+
qo

(i(j)
0
#oi(j)

1
)M`jk(q)Mjk(oq) , (215)

where i(j)
0(1)

are the model parameters which determine the strength of isoscalar (isovector) residual
interaction. The multipole operator M`jk(q) has the form

M`jk(q)" +
j,m,j{,m{

S jm D ijf qj(r)>jk(X) D j@m@Ta`
jm

a
j{m{

(216)

for the natural parity states and the form

M`jk(q)" +
j,m,j{,m{,lm1

S jm D ilf q
l
(r)[r )Y

lm1
(X)]jk D j@m@Ta`

jm
a
j{m{

(217)

for the unnatural parity states. The function f qj(r) is a radial formfactor which in actual calculations
is taken either as rj or as a derivative of the central part of the average "eld: f qj(r)"d;q(r)/dr. The
value q"!1(#1) corresponds to neutrons (protons). We will not consider here the residual
interaction in the particle}particle channel which is the most important for the description of
two-nucleon transfer reactions.

The basic QPM equations are obtained by means of step-by-step diagonalization of the model
Hamiltonian (211). In the "rst step its "rst two terms (212) and (213) are diagonalized. For that the
Bogoliubov's canonical transformation from particle creation (annihilation) operators to quasipar-
ticle creation (annihilation) operators a`

jm
(a

jm
) is applied:

a`
jm
"u

j
a`
jm
#(!1)j~mv

j
a
j~m

. (218)

The ground state of even}even nucleus, DT
q
, is assumed as a quasiparticle vacuum: a

jm
DT

q
,0. Then

the energy of the ground state is minimized:

dGSDH
4.1.

#H
1!*3

DT
q
#+

j

k
j
(u2

j
#v2

j
!1)H"0 , (219)

where k
j

are Lagrange coe$cients. The result of this minimization are the well-known BCS
equations solving which one obtains correlation functions Cq"G(0)q +

j
u
j
v
j
and chemical potentials

jq for neutron and proton systems. The coe$cients of the Bogoliubov transformation u
j
and v

j
can

be calculated from these values as follows:

v2
j
"

1
2G1!

E
j
!jq
e
j
H, u2

j
"1!v2

j
, (220)
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where e
j
is the quasiparticle energy:

e
j
"JC2q#[E

j
!jq]2 . (221)

In magic nuclei the BCS equations yield a zero value for the correlation function and the position
of the chemical potential in the gap between particles and hole is uncertain. This results in
vanishing of monopole pairing correlations and the Bogoliubov's coe$cients u

j
(v

j
) equal to 0(1) for

holes and to 1(0) for particles, respectively.
After diagonalization of the "rst two terms of the model Hamiltonian (211) they can be written

as:

H
4.1.

#H
1!*3

"

n,p
+
q

+
j,m

e
j
a`
jm

a
jm

(222)

and the multiple operator (216) in terms of quasiparticle operators has the form

M`jk(q)"
q
+
jj{

f (j)
jj{

J2j#1G
u(`)
jj{
2

([a`
j

a`
j{

]jk#(!1)j~k[a
j{
a
j
]j~k)!v(~)

jj{
Bq( jj@; jk)H , (223)

Bq( jj@; jk)"+
mm{

(!1)j{`m{Cjk
jmj{m{

a`
jm

a
j{~m{

, (224)

where f (j)
jj{

"S jDDijf qj(r)>j(X)DD j@T is the reduced matrix element of the multipole operator. We also
introduced the following combinations of the Bogoliubov's coe$cients: u(B)

jj{
"u

j
v
j{
$u

j{
v
j

and
v(Y)
jj{

"u
j
u
j{
Gv

j
v
j{

to be used below.
We have determined the ground state of even}even nuclei as the quasiparticle vacuum. In this

case, the simplest excited states of nucleus are two-quasiparticle states, a`
jm

a`
j{m{

DT
q
, which corres-

pond to particle}hole transitions if monopole pairing vanishes. Two fermion quasiparticle oper-
ators couple to the total integer angular momentum corresponding to the Bose statistics. Thus, it is
convenient to project the bi-fermion terms [a`

j
a`
j{
]jk and [a

j{
a
j
]j~k in Eq. (223) into the space of

quasi-boson operators. Following this boson mapping procedure, we introduce the phonon
operators of the multipolarity j and projection k as

Q`jki"
1
2
n,p
+
q

+
jj{

Mtji
jj{

[a`
j

a`
j{
]jk!(!1)j~kuji

jj{
[a

j{
a
j
]j~kN . (225)

The total number of di!erent phonons for the given multipolarity j should be equal to the sum of
neutron and proton two-quasiparticle states coupled to the same angular momentum. The index
i is used to number these di!erent phonons.

One obtains the coe$cients tji
jj{

and uji
jj{

of the linear transformation (225) by diagonalization of
the model Hamiltonian in the space of one-phonon states, Q`jkiDTph

. This can be done for example by
applying again the variation procedure

dGSDQjkiHQ`jkiDTph
!(uji/2)C+

jj{

M(tji
jj{

)2!(uji
jj{

)2N!2DH"0 . (226)
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It yields the well-known equations of the random-phase approximation (RPA) which for the case of
the separable form of the residual interaction in ph-channel may be written as

KK
(i(j)

0
#i(j)

1
)Xj

n
(u)!1 (i(j)

0
!i(j)

1
)Xj

n
(u)

(i(j)
0
!i(j)

1
)Xj

p
(u) (i(j)

0
#i(j)

1
)Xj

p
(u)!1KK"0 , (227)

where the following notation have been used:

Xjq (u)"
1

2j#1
q
+
jj{

( f j
jj{

u(`)
jj{

)2(e
j
#e

j{
)

(e
j
#e

j{
)2!u2

. (228)

The determinant equation (227) is a function of the nucleus excitation energy u. Solving this
equation for each multipolarity jn, one obtains the spectrum of nuclei one-phonon excitation uji.
The index i in the de"nition of the phonon operator (225) gets the meaning of the order number of
the solution of Eq. (227). The fermion structure of phonon excitation, i.e. the amplitudes t and u,
corresponding to the contribution of di!erent two-quasiparticle components to the phonon
operator, are obtained from the following equation:

A
t

uB
ji

jj{

(q)"
1

J2Yjiq

f j
jj{

(q)u(`)
jj{

e
j
#e

j{
Guji

, (229)

where the value Yjiq is determined from normalization condition for phonon operators:

SDQjkiQ`jkiDT1)
"

n,p
+
q

+
jj{

M(tji
jj{

)2!(uji
jj{

)2N"2 (230)

and one obtains

Yjiq ">jiq #>ji
~qG

1!(i(j)
0
#i(j)

1
)Xjq (uji)

(i(j)
0
!i(j)

1
)Xj

~q(uji) H
2
,

>jiq "
1

2j#1
q
+
jj{

( f j
jj{

u(`)
jj{

)2(e
j
#e

j{
)uji

[(e
j
#e

j{
)2!u2]2

.
(231)

Equations (227), (229) and (231) correspond to natural parity phonons. Similar equations are valid
for unnatural parity phonons by substituting the reduced spin-multipole matrix element f *pl+j

jj{
and

combination of coe$cients of Bogoliubov transformation u(~)
jj{

for f j
jj{

and u(`)
jj{

, respectively. Also,
amplitude uji

jj{
changes the sign in Eq. (229) for unnatural parity phonons.

The RPA equations have been obtained under the assumption that the nucleus ground state is
the phonon vacuum, QjkiDTph

,0. This means that the ground-state correlations due to the last
term of the model Hamiltonian, H

3.*
, are taken into account. If they are not accounted for and

the ground state is still considered as a quasiparticle vacuum DT
q
, one obtains the so-called

Tamm}Dankov approximation (TDA). The TDA equations can be easily obtained from the RPA
ones by neglecting backward going amplitudes in the de"nition of the phonon operator (225), i.e.
applying uji

jj{
,0.
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Table 9
Parameters of Woods}Saxon potential, Eq. (233), for di!erent A-mass regions

A Neutrons Protons

<n
0

Rn
0

an
0

<n
ls

<p
0

Rp
0

ap
0

<p
ls

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV)

49 !41.35 4.852 0.6200 !9.655 !58.65 4.538 0.6301 !9.506
59 !46.20 5.100 0.6200 !9.540 !53.70 4.827 0.6301 !8.270
91 !44.70 5.802 0.6200 !9.231 !56.86 5.577 0.6301 !9.609

121 !43.20 6.331 0.6200 !8.921 !59.90 6.133 0.6301 !10.363
141 !45.95 6.610 0.6200 !9.489 !57.70 6.454 0.6301 !10.069
209 !44.83 7.477 0.6301 !8.428 !60.30 7.359 0.6301 !11.186

The relation between the wave functions of the phonon and quasiparticle vacuums is the
following [84]:

DT
ph
"

1
N

<
j

expG!
1
4
+
ik

+
j1j2
j3j4

(tji
j3j4

)~1uji
j1j2

(!1)j~k[a`
j1

a`
j2

]jk[a`
j3
a`
j4

]j~kHKU
q

, (232)

where N is a normalization factor.
For actual numerical calculations one needs to determine the model parameters. The average
"eld for neutrons and protons is described in the QPM by phenomenologic Woods}Saxon
potential:

;q(r)"
<q

0
1#e(r~R

q
0)@aq0

!

+2

k2c2
1
r

d
drA

<q
ls

1#e(r~R
q
ls)@aqls

l ) sB#<C(r) . (233)

The parameters of this potential for di!erent A-mass regions are listed in Table 9 (see, also
Ref. [87]). We usually use Rq

ls
"Rq

0
, aq

ls
"aq

0
, and R

C
"Rp

0
. All single-particle levels from the

bottom are included in calculation. The single-particle continuum is approximated by narrow
quasibound states. This approximation gives a good description of the exhaust of the energy
weighted sum rules (EWSR) for low values of j in medium and heavy nuclei. For the lead region
we use the single-particle spectrum near the Fermi surface from Ref. [88] which was adjusted
to achieve a correct description of low-lying states in neighboring odd nuclei. The parameters of the
monopole G(0)q have been "tted to reproduce the pairing energies.

The parameters of the residual interaction are obtained the following way. The strength of the
residual interaction for jn"2` and 3~ is adjusted to reproduce the properties (excitation energy
and B(Ej) value, known from experiment) of the 2`

1
and 3~

1
states. Usually it is not possible within

one-phonon approximation, discussed in this subsection, if su$ciently large single-particle spec-
trum is used. When the energy of the lowest excitation is adjusted to the experimental value, the
RPA equation yields an overestimated collectivity, B(Ej) value, for this state. And vice versa, if
the collectivity of this state is reproduced, the excitation energy is too high as compared to the
experimental value. The situation su$ciently improves when the coupling of one-phonon states to
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more complex con"gurations is taken into account as will be discussed in the next subsection. For
the lowest excited state the coupling to complex con"gurations results in the energy shift down-
wards. Thus, for nuclei not very far from a closed shell it becomes possible to achieve a good
description of both, the excitation energy and the B(Ej) value. The ratio between isoscalar
and isovector strength of the residual interaction is usually "xed as i(j)

1
/i(j)

0
"!1.2 in calculation

with the radial formfactor of the multipole operator as a derivative of the average "eld. With
this ratio the best description of isovector multipole resonances with j'1 is achieved although
the experimental information on these resonances is still sparse. For the dipole}dipole residual
interaction the strength parameter are adjusted to exclude the spurious center of mass motion
and to obtain a correct position of the GDR centroid. For the phonons with the multipolarity
j54 the same procedure of adjusting the strength parameters as for jn"2` and 3~ cannot
be applied. First, it is because the lowest states of high multipolarity are much less collective
and their properties are more sensitive to description of single-particle levels near the Fermi
surface than to the strength of the residual interaction. Second, in many cases the lowest states
with j54 are either two-phonon states or the states with a large admixture of two-phonon
con"gurations, thus, their properties are determined by phonons of another multipolarity.
For these reasons we use i(j)

0,1
"i(2`)

0,1
for even parity phonons and i(j)

0,1
"i(3~)

0,1
for odd parity

in calculation with f qj(r)"d;q(r)/dr. In fact, the di!erence between i(2`)
0,1

and i(3~)
0,1

does not exceed
a few percent with this radial formfactor of residual force.

4.2. Mixing between simple and complex conxgurations in wave functions of excited states

Diagonalization of the model Hamiltonian in the space of one-phonon states allows us to write it
in the form

H"+
jki

ujiQ`jkiQjki#H
*/5.

, (234)

H
*/5.

"!

1
2
+
jki G[(!1)j~kQ`jki#Qj~ki]+

jj{q

f j
jj{

v(~)
jj{

J2Yjiq
Bq( jj@; j!k)#h.c.H , (235)

where the origin of the second term in Eq. (234) can be traced back to the last term of multipole
operator (223) which cannot be projected onto the space of the phonon operators. On the other
hand, applying Marumori expansion technique [89], one may expand the operator
Bq( jj@; j!k)&a`a in an in"nite sum of even-number phonon operators. Keeping only the "rst
term of this expansion, the non-diagonal term of the model Hamiltonian, H

*/5.
, in the space of

phonon operators may be re-written as

H
*/5.

"

j
+
jkij1k1i1j2k2i2

;jii1j2i2
(ji)Q`jki[Qj1k1i1

Qj2k2i2
]jk#h.c. , (236)
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where the matrix element of interaction between one- and two-phonon con"gurations,;j1i1j2i2
(ji), can

be calculated by making use of the internal fermion structure of phonons, i.e. t and u coe$cients,
and reduced matrix elements of the separable force formfactor, f j

j1j2
. It has the form

;jii1j2i2
(ji)"SQjiDHD[Q`j1i1

Q`j2i2
]jT"(!1)j1`j2~jS

(2j
1
#1)(2j

2
#1)

2

]
n,p
+
q

+
j1j2j3

C
f j
j1j2

v(Y)
j1j2

JYjiq
G

j
1

j
2

j

j
2

j
1

j
3
H(tj1i1

j3j1
uj2i2

j2j3
$tj2i2

j2j3
uj1i1

j3j1
)

#

f j1
j1j2

v(Y)
j1j2

JYj1i1q
G

j
1

j
2

j

j
3

j
2

j
1
H(uji

j2j3
uj2i2

j3j1
$tji

j2j3
tj2i2

j3j1
)

#

f j2
j1j2

v(Y)
j1j2

JYj2i2q
G

j
1

j
2

j

j
1

j
3

j
2
H(tji

j3j1
tj1i1

j2j3
$uji

j3j1
uj1i1

j2j3
)D . (237)

The upper (lower) sign in each of three terms in Eq. (237) correspond to multipole (spin-multipole)
matrix element f j

j1j2
, f j1

j1j2
or f j2

j1j2
, respectively.

Thus, we have completed a projection of the nuclear Hamiltonian into the space of phonon
operators. Now we may assume that phonons obey boson statistics and work in the space of boson
operators only. The presence of the term of interaction, H

*/5
, in the model Hamiltonian means that

the approximation, in which excited states of the nucleus are considered as pure one-, two-,
multi-phonon states, is not su$cient. In fact, we have already mentioned above that it is not
possible to describe the properties of the lowest collective vibrations in spherical nuclei in
one-phonon approximation. It is also well-known that the coupling between one- and two-phonon
con"gurations is the main mechanism for the damping of giant resonances. All this means that one
needs to go beyond the approximation of independent phonons and take into account a coupling
between them. To accomplish this task we write the wave function of excited states with angular
momentum J and projection M in even}even nuclei in the most general form as a mixture of
one-, two-, etc. phonon con"gurations:

Wl(JM)"G+a1 Sla1(J)Q`a1
# +

a2b2

Dla2b2
(J)

J1#da2,b2

[Q`a2Q`b2
]
JM

# +
a3b3c3

¹la3b3c3
(J)

J1#da3,b3,c3
[Q`a3Q`b3

Q`c3]JM#2HKU
ph

, (238)

da3,b3,c3"da3,b3
#da3,c3#db3,c3#2da3,b3

da3,c3 . (239)

By greek characters we mean the phonon's identity, i.e. its multipolarity and order number, a,jni,
the index l ("1, 2, 3,2) labels whether a state J is the "rst, second, etc., state in the total
energy spectrum of the system. It is assumed that any combination a, b, c of phonons appears
only once. The second and the third terms in Eq. (238) include phonons of di!erent multipolarities
and parities, they only must couple to the same total angular momentum J as the one-phonon
term.
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Let us limit the wave function of excited states by three-phonon terms and diagonalize the model
Hamiltonian of Eqs. (234) and (236) in the space of these states. We use for that a minimization
procedure

dMSWl(JM)DHDWl(JM)T!EJ
x
SWl(JM) D Wl(JM)TN"0 , (240)

which yields a set of linear equations over unknown wave function coe$cients Sla1(J), Dla2b2
(J) and

¹la3b3c3(J):

(ua1!EJ
x
)Sla1(J)# +

a2,b2

Dla2b2
(J);I a1a2b2

"0 ,

+
a1

Sla1(J);I a1a2b2
#(ua2#ub2

!EJ
x
)Dla2b2

(J)# +
a3b3c3

¹la3b3c3(J);I a2b2a3b3c3"0 ,

+
a2b2

Dla2b2
(J);I a2b2a3b3c3#(ua3

#ub3
#uc3!EJ

x
)¹la3b3c3(J)"0 . (241)

Applying boson commutation relations for phonons, the matrix element of interaction between
two- and three-phonon con"gurations,

;I a2b2a3b3c3
"J1#da2,b2

J1#da3,b3,c3S[Qa2Qb2
]
JM

DH
*/5.

D[Q`a3Q`b3
Q`c3

]
JM

T , (242)

can be expressed as a function of matrix elements of interaction between one- and two-phonon
con"gurations,

;I a1a2b2
"J1#da2,b2

SQa1DH*/5.
D[Q`a2Q`b2

]
JM

T"J1#da2,b2
;b2a2(a1) , (243)

as follows:

;I a2b2a3b3c3
"J1#db3,c3[;I a2b3c3

db2,a3#;I b2b3c3
da2,a3]

#J1#da3,c3[;I a2a3c3
db2,b3

#;I b2a3c3
da2,b3

]#J1#da3,b3
[;I a2a3b3

db2,c3#;I b2a3b3
da2,c3]

(244)

and the value ;I b2a2(a1
) is calculated according to Eq. (237). Since we have used pure boson

commutation relations for phonons the two-phonon con"guration [a
2
b
2
]
J

couples only to those
three-phonon con"gurations [a

3
b
3
c
3
]
J

where either a
3
, b

3
or c

3
are equal to a

2
or b

2
. This is

governed by d-functions in Eq. (244).
The number of linear equations (241) equals to the number of one-, two- and three-phonon

con"gurations included in the wave function (238). Solving these equations we obtain the energy
spectrum EJl of excited states described by wave function (238) and the coe$cients of wave function
(241), S, D and ¹.

It should be pointed out that within this approximation, in which phonons are considered
as ideal bosons and nuclear Hamiltonian includes one-phonon exchange term, multi-phonon
con"gurations of course possess no anharmonicity features. The strength of any one- or many-
phonon con"guration included in the wave function (238) fragments over some energy interval
due to the interaction with other con"gurations. But the centroid of the strength distribution
remains at the unperturbed energy. Thus, the energy centroid of two-phonon con"guration
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[a
2
b
2
]
J

equals exactly to the sum of energies of a
2

and b
2

phonons for all values of J. To
consider anharmonic properties of multi-phonon states, one needs to go beyond pure boson
features of excitations in even}even nuclei and take into account their internal fermion
structure.

Another reason to return back to the fermion origin of phonon excitations is two main problems
in considering multi-phonon states associated with the boson mapping procedure. The "rst
problem is an admixture of spurious npnh con"gurations which violate Pauli principle in the wave
function of n-phonon state. The second is related to the fact that the set of pure n-phonon states is
mathematically non-orthonormal if the internal fermion structure of phonons is taken into account
(see Refs. [90,91] for more details). To overcome these problems we will keep on using a phonon's
imaging of nuclear excitation and use the same expression for the wave function of excited states
(238) but in calculation of the norm of this wave function, SWl(JM) D Wl(JM)T, and the energy
of this state, SWl(JM)DHDWl(JM)T, we will use exact commutation relations between phonon
operators:

[Qjki,Q`j{k{i{]}"dj,j{dk,k{di,i{! +
jj{j2

mm{m2

a`
jm

a
j{m{

]Mtji
j{j2

tj{i{
jj2

Cjk
j{m{j2m2

Cj{k{
jmj2m2

!(!)j`j{`k`k{uji
jj2

uj{i{
j{j2

Cj~k
jmj2m2

Cj{~k{
j{m{j2m2

N (245)

and exact commutation relations between phonon and quasiparticle operators:

[a
jm

, Q`jki]}"+
j{m{

tji
jj{

Cjk
jmj{m{

a`
j{m{

,

[a`
jm

, Q`jki]}"(!1)j~k +
j{m{

uji
jj{

Cj~k
jmj{m{

a
j{m{

. (246)

Also we will not expand the operator Bq( jj@; jk) in Eq. (235) into a sum of phonon operators but use
its exact fermion structure. The "rst term of Eq. (245) corresponds to the ideal boson approxima-
tion while the second one is a correction due to the fermion structure of phonon operators. The
overlap matrix elements between di!erent two-phonon con"gurations modify as

S[Qb{Qa{]JD[Q`a Q`b ]
J
T"S[bb{ba{]JD[b`a b`b ]

J
T#KJ(b@a@Dab) , (247)

where b`a is the ideal boson operator and the quantity K,

KJ(b@a@Dab)"KJ(j
4
i
4
j
3
i
3
Dj

1
i
1
j
2
i
2
)"J(2j

1
#1)(2j

2
#1)(2j

3
#1)(2j

4
#1)

](!1)j2`j4+
j1j2
j3j4

(!1)j2`j4G
j
1

j
2

j
4

j
4

j
3

j
3

j
1

j
2

J H(tj3i3
j3j4

tj1i1
j1j4

tj2i2
j3j2

tj4i4
j1j2

!uj3i3
j3j4

uj1i1
j1j4

uj2i2
j3j2

uj4i4
j1j2

) ,

(248)

is the Pauli principle correction coe$cient. The experience of realistic calculations shows that
usually DKJ(baDab)D<DKJ(b@a@Dab)D (where aOa@ and/or bOb@) and that the so-called diagonal
Pauli principle approximation, KJ(b@a@Dab)"KJ(ab)da,a{db,b{, provides rather good accuracy and
su$ciently simpli"es the calculation. For these reasons we will use this diagonal Pauli principle
approximation in what follows.
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A similar expression, as (247), is valid for the overlap matrix elements between di!erent
three-phonon con"gurations. It can be used as a de"nition of the Pauli principle correction
quantity KJ

I
(c@b@a@Dabc) which we will also keep in diagonal approximation only. The relation

between KJ(ab) and KJ
I
(abc) quantities is the following [92]:

KJ
I
(abc)"KI(ab)A3#+

I{

;2(abJc; I, I@)KI{(bc)B , (249)

where ;2 stands for the Jahn coe$cients [93].
When internal fermion structure of phonons is taken into account and exact commutation

relations (245), (246) are applied the secular equation (241) transforms into

(ua1!EJ
x
)Sla1(J)# +

a2,b2

Dla2b2
(J);I a1a2b2

"0 ,

+
a1

Sla1(J);I a1a2b2
#(ua2#ub2

#*uJa2b2
!EJ

x
)Dla2b2

(J)# +
a3b3c3I

¹la3b3c3
(J);I a2b2a3b3c3

"0 ,

+
a2b2

Dla2b2
(J);I a2b2a3b3c3#(ua3

#ub3
#uc3#*uJa3b3c3!EJ

x
)¹la3b3c3(J)"0 . (250)

The values *uJa2b2
and *uJa3b3c3"*uJa3b3

#*uJb3c3
#*uJa3c3 are anharmonicity shifts of two- and

three-phonon con"gurations, respectively, due to the Pauli principle corrections. In diagonal
approximation they can be calculated according to

*uJa2b2
"!

KJ(a
2
b
2
)

4
n,p
+
q C

Xa2q
Ya2q

#

Xb2q
Yb2q D . (251)

Another role of Pauli principle corrections is a somewhat renormalization of the interaction
between n- and (n#1)-phonon con"gurations. We have used the same notations for these matrix
elements ;I a1a2b2

as in the case of the `ideal boson approximationa (see, Eqs. (242) and (243)). But
calculating the matrix elements SQa1DH*/5.

D[Q`a2Q`b2
]
JM

T we take into account the fermion structure
of phonons and nuclear Hamiltonian and obtain

;I a1a2b2
"J1#da2,b2

;b2a2
(a

1
)][1#1

2
KJ(a

2
b
2
)] , (252)

where the value ;b2a2(a1
) is calculated again according to Eq. (237). A similar additional factor

[1#1/2]KJ
I
(a

3
b
3
c
3
)] receives the matrix element of interaction between two- and three-phonon

con"gurations.
The minimal value of the quantity KJ(ab) equals to !2. It corresponds to the case of the

maximal Pauli principle violation, i.e. to a spurious multi-phonon con"guration. It happens only
when a

2
and b

2
phonons are purely two-quasiparticle states. In such a case the matrix element of

interaction ;I a1a2b2
,0 (see Eq. (252)) and the spurious state is completely separated from other

states. While dealing with collective a
2

and b
2

phonons, when a possible admixture of the spurious
four-quasiparticle con"gurations is small, the value of KJ(ab) is close to 0. Nevertheless, the value
of the anharmonicity shift *uJa2b2

is not vanishingly small for the later because of the relatively large
value of the ratio Xaq/Yaq in Eq. (251). This shift is the largest one for the collective low-lying
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multi-phonon con"gurations. For non-collective multi-phonon states the shift is small because of
the small value of the above-mentioned ratio.

Equations (250) have been obtained under two main assumptions. The "rst one is the already
discussed diagonal Pauli principle approximation. The second assumption is the neglecting of the
higher-order terms of the interaction part of the nuclear Hamiltonian as compared to the one in
Eq. (236) which couples n- and (n$1)-phonon con"gurations. For Eqs. (250) it means that a direct
coupling between one- and three-phonon con"gurations of the wave function (238) which is
possible due to non-zero matrix element SQa1Da`

jm
a
jm

D[Q`a3Q`b3
Q`c3

]
JM

T, is neglected. In realistic
calculation we will also use a selection of three-phonon con"gurations provided by Eq. (244)
although now the matrix element ;I a2b2a3b3c3O0 even if one of a

3
, b

3
or c

3
is not necessarily equal to

a
2

or b
2
. These omitted matrix elements are orders of magnitude smaller as compared to the

accounted for ones.
Solving the system of linear equations (250) we obtain the spectrum of excited states, EJl,

described by the wave function (238) and coe$cients Sla1
(J), Dla2b2

(J) and ¹la3b3c3(J) re#ecting the
phonon structure of excited states. Usually, in calculation of the properties of single giant
resonances the three-phonon terms of the wave function (238) are omitted. Then it is possible to
solve the system of linear equations (250) with the rank of the 103}104 order by a direct
diagonalization. But while considering the damping properties of two-phonon resonances, three-
phonon con"gurations cannot be omitted. For this case instead of the diagonalization of the linear
matrices of very high orders, an alternative solution is possible. We may substitute the "rst and last
equations of (250) into the second equation and obtain the system of non-linear equations

detKK(ua2
#ub2

#*uJa2b2
!EJ

x
)da2b2,a@2b@

2
!+

a1

;I a1a2b2
;I a1a@2b@

2

ua1!EJ
x

! +
a3b3c3

;I a2b2a3b3c3;I a
@
2b@

2a3b3c3
ua3#ub3

#uc3
#*uJa3b3c3!EJ

x
KK"0 , (253)

the rank of which equals to the number of two-phonon con"gurations included in the wave
function (238). The solution of the system (253) by some iterative method yield again the spectrum
of excited states EJl and coe$cients Dla2b2

(J). Other coe$cients of the wave function (238) are related
to these coe$cients as follows:

Sla1(J)"!

+a2b2
Dla2b2

(J);I a1a2b2

ua1!El
x

,

¹la3b3c3(J)"!

+a2b2
Dla2b2

(J);I a2b2a3b3c3
ua3#ub3

#uc3#*uJa3b3c3!EJl
. (254)

It may be argued that the boson mapping with keeping the fermion information of the
phonons' images at all stages of transformations gives no advantage as compared to npnh approach
since, mathematically, a direct correspondence between two methods can be established only
if the full basis of n-phonon states is used. However, many npnh con"gurations interact very
weakly with other ones and as a result practically do not mix with them. It allows a su$cient
truncation of multi-phonon con"gurations in the wave function (238) based on their physical
properties with keeping a good accuracy for the components important for the subject of
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research. From the point of view of the Pauli principle violation the most dangerous multi-phonon
con"gurations are the ones made of non-collective RPA states. On the other hand, these con"gura-
tions interact with the other ones much weaker than the multi-phonon con"gurations including at
least one collective phonon. For these reasons the "rst are not accounted for in the wave function
(238) in realistic calculation. As the criteria `collective/non-collectivea we take the contribution of
the main two-quasiparticle component to the wave function of the phonon operator. If the
contribution exceeds 50}60% we will call the phonon non-collective.

Let us consider now the electromagnetic excitation of pure one- and multi-phonon states from
the ground state. The one-body operator of electromagnetic transition has the form

M(Ejk)"
n,p
+
q

e(j)q +
jj{
mm{

(!1)j{`m{
S jDDEjDD j@T

J2j#1
Cjk

jmj{m{
a`
jm

a
j{~m{

, (255)

where the single-particle transition matrix element S jDDEjDD j@T,S jDDij>jrjDD j@T and e(j)q are e!ective
charges for neutrons and protons. In calculations we use the following values of e!ective charges:
e(1)
n
"!Z/A and e(1)

p
"N/A to separate the center of mass motion and e(jE1)

n
"0 and e(jE1)

p
"1.

Performing the transformation from particle operators to quasiparticle and phonon ones in
Eq. (255), this equation transforms into

M(Ejk)"
n,p
+
q

e(j)q +
jj{

S jDDEjDD j@T

J2j#1 G
u(`)
jj{
2

+
i

(tji
jj{
#uji

jj{
)(Q`jki#(!)j~kQj~ki)

#v(~)
jj{

+
mm{

Cjk
jmj{m{

(!)j{`m{a`
j{m{

a
j{~m{H , (256)

where the "rst term corresponds to one-phonon exchange between initial and "nal states and the
second one is responsible for `boson-forbiddena electromagnetic transitions (see for details
Ref. [94]). Then the reduced matrix element of the electromagnetic excitation of the one-phonon
state ji from the ground state 0`

'.4.
in even}even nuclei may be calculated according to

SQjiDDM(Ej)DD0`
'.4.

T"
n,p
+
q

e(j)q +
j1j2

1
2
S j

1
DDEjDD j

2
Tu(`)

j1j2
(tji

j1j2
#uji

j1j2
) . (257)

Due to the ground-state correlations the direct excitation of pure two-phonon states [Q`j1i1
]Q`j2i2

]j
from the ground state is also possible when we are dealing with the RPA phonons. The physical
reason for that becomes clear if we remember that the ground state wave function includes a small
admixture of four-, eight-, etc. quasiparticle con"gurations (see, Eq. (232)). The second term of
Eq. (256) is responsible for these transitions and the reduced matrix element can be obtained by
applying the commutation relations (246). It has the form

S[Qj2i2
]Qj1i1

]jDDM(Ej)DD0`
'.4.

T"J(2j
1
#1)(2j

2
#1)

n,p
+
q

e(j)q +
j1j2j3

v(~)
j1j2

]S j
1
DDEjDD j

2
TG

j
2

j
1

j

j
1

j
2

j
3
H(tj2i2

j2j3
uj1i1

j3j1
#tj1i1

j3j1
uj2i2

j2j3
) . (258)

C.A. Bertulani, V.Yu. Ponomarev / Physics Reports 321 (1999) 139}251 215



Another type of boson-forbidden c-transitions which take place due to the internal fermion
structure of phonons are the ones between one-phonon initial, Q`j1i1

DT
ph

, and "nal, Q`j2i2
DT

ph
, states.

The reduced matrix element of such transitions can be calculated according to

SQj2i2
DDM(Ej)DDQ`j1i1

T"J2j
2
#1

n,p
+
q

e(j)q +
j1j2j3

v(~)
j1j2

S j
1
DDEjDD j

2
T

]G
j
1

j
2

j

j
1

j
2

j
3
H(tj1i1

j2j3
tj2i2

j3j1
#uj1i1

j2j3
uj2i2

j3j1
) . (259)

The matrix element for transitions between the two-phonon states [Q`j1i1
]Q`j2i2

]j{DTph
and

[Q`j3i3
]Q`j4i4

]jADTph
is very complex and not presented here. Its "rst-order term is very similar

to the one for transitions between the one-phonon states Q`j1i1
DT

ph
and Q`j4i4

DT
ph

and may be
obtained by assuming that the fermion structure of one phonon is `frozena, i.e., assuming that
j
2
i
2
,j

3
i
3
.

When the coupling between one- and multi-phonon con"gurations is accounted for in the wave
function of excited states, the reduced matrix element of the electromagnetic excitation of the states
of Eq. (238) may be written as

SWl(J)DDM(Ej)DD0`
'.4.

T"G+a1 Sla1(J)SQjiDDM(Ej)DD0`
'.4.

T

# +
a2b2

Dla2b2
(J)

J1#da2,b2

S[Qj2i2
]Qj1i1

]jDDM(Ej)DD0`
'.4.

TH , (260)

where we have neglected the direct excitation of three-phonon con"gurations from the ground
state. Since an admixture of multi-quasiparticle con"gurations in the ground-state wave function is
very small, the reduced matrix element, Eq. (258), is typically about two orders of magnitude
smaller as compared to the reduced matrix element, Eq. (257). For this reason, in most of the cases
keeping only the "rst term in Eq. (260) and neglecting the second one together with interference
e!ects provides very good accuracy in calculation. Nevertheless, there are a few exceptional cases.

The "rst one is the excitation of the lowest 1~ state in spherical nuclei. It is well known that no
collective one-phonon 1~ con"gurations appear in the low-energy region and the wave function of
the 1~

1
state has the dominant two-phonon component [2`

1
]3~

1
]
1~. There are three main

mechanisms to explain the E1-excitation of this state observed in the experiment [95]. The "rst is
an in#uence of the GDR. In microscopic theories it appears in a natural way due to the coupling of
one- and two-phonon con"gurations. Since the GDR is located about 10MeV higher, this coupling
yields only a very small portion of the observed strength. The second mechanism is the excitation of
non- and weakly collective one-phonon 1~ con"gurations which have relatively small B(E1) values
but are located in low-energy region. The last mechanism is the direct excitation of two-phonon
con"gurations from the ground state. Although the direct excitation of two-phonon con"gurations
from the ground state is a second-order e!ect, excitation of collective two-phonon con"gurations
[2`

1
]3~

1
]
1~ play an essential role since the other two mechanisms yield much weaker E1 strengths.

In this case, interference e!ects between the "rst and the third mechanisms are also important [94].
The second term of Eq. (260), although very weak as compared to the "rst one, may also play

some role at the excitation energies above 20MeV where the density two-phonon con"gurations is
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a few orders of magnitude higher as compared to the density of one-phonon con"gurations. It will
be discussed below.

Considering the two-step mechanism of the DGDR excitation in second-order perturbation
theory we also need the reduced matrix element of the electromagnetic excitation of the two-
phonon DGDR state [1~

i
]1~

i{
]
J
from the one-phonon GDR state 1~

i
. In ideal boson approxima-

tion this matrix element

S[1~
i{
]1~

i
]
J
DDM(E1)DD1~

i
T"J(1#d

i,i{
)(2J#1)/3S1~

i{
DDM(E1)DDg.s.T . (261)

4.3. Comparison with other approaches

The properties of the double-giant resonances have been also microscopically studied with the
Skyrme forces [74,96] and within the second-RPA approach [97,98].

The most close to the QPM approach is the one of the "rst group of papers. The main di!erence
between these two approaches is that in calculations with the Skyrme forces the properties of the
ground and 1p1h excited states are calculated self-consistently. As within the QPM, in calculations
with the Skyrme forces the 1p1h basis is mapped into the phonon space. Multi-phonon states are
obtained by folding of one-phonon states. The phonon basis in Refs. [74,96] is restricted by only
a few, the most collective, phonons for each multipolarity. Calculations are performed with the
wave function including one- and two-phonon terms. The main attention is paid to the e!ects of
anharmonicity and non-linearity. The latter is an in#uence of taking into account the boson-
forbidden transition matrix elements, Eqs. (258), (259), on the absolute value of the DGDR
excitation in heavy ion collisions.

In the second-RPA approach [99] the wave function of excited states is written as a mixture of
1p}1h and 2p}2h con"gurations:

Q`l DT
'.4.

"+
ph

(Xl
ph

a`
p

a
h
!>l

ph
a`
h

a
p
)# +

pp{hh{

(Xl
pp{hh{

a`
p

a`
p{

a
h{
a
h
!>l

pp{hh{
a`
h

a`
h{
a
p{
a
p
)DT

'.4.
. (262)

The operators Q`l are assumed as bosons and the energy spectrum and coe$cients X and > are
obtained by diagonalization of the model Hamiltonian in the space of states described by the wave
functions of Eq. (262).

5. Physical properties of the double-giant resonances

In the present section we will consider the properties of the DGDR as predicted by the QPM
mainly in 136Xe and 208Pb for which experimental data in relativistic heavy ion collision (RHIC)
are available. Before proceeding with that let us brie#y check an accuracy of the description of the
properties of low-lying states and single-giant resonances within this approach. It provides an
estimate how good the phonon basis, to be used in the forthcoming calculation of the DGDR
properties, is since no extra free parameters are used after this basis is "xed. The results of our
calculations of the position and exhaust of the energy weighted sum rule (EWSR) of low-lying
states and giant resonances as well as the width of resonances in 136Xe and 208Pb are presented in
Table 10 in comparison with the experimental "ndings. The comparison indicate a rather good
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Table 10
Integral characteristics (position, E

x
, exhaust of the energy weighted sum rule (EWSR) and width of resonances, C) of

low-lying excited states and one-phonon giant resonances in 136Xe and 208Pb

Calculation Experiment

Nucl. jn E
x

C EWSR E
x

C EWSR
(MeV) (MeV) (%) (MeV) (MeV) (%)

2`
1

1.4 2.6 1.31 2.4
3~
1

3.3 5.6 3.28 5.2
136Xe GDR

*7
15.1 4.0 107 15.2! 4.8! 80}120

GQR
*4

12.5 3.2 75 12.3" 4.0" 70"

GQR
*7

23.1 3.6 80 22.1$0.7 45.4 93$45

2`
1

4.2 16.4 4.09 16.9
3~
1

2.4 21.3 2.61 20
208Pb GDR

*7
13.35 3.5 94 13.4 4.0 89}122

GQR
is

10.6 3.1 67 10.5}10.9 2.4}3.0 60}80
GQR

iv
21.9 5.0 81 22.6$0.4 6$2 +50

!Interpolation of experimental data [56].
"Interpolation of experimental data [5].

correspondence between calculated characteristics and experimental data. The calculation some-
what underestimate the width of resonances, especially of the isovector GQR. The main reason is
related to the necessity of truncating of complex con"gurations included in the wave function of
excited states in actual calculation. The density of multi-phonon con"gurations is rapidly increas-
ing with the excitation energy. That is why the e!ect of the basis truncation the most strongly
in#uences on the width of the GQR

*7
located at higher energies.

5.1. One-step excitation of two-phonon states in the energy region of giant resonances

Let us consider a direct photoexcitation of the two-phonon states in the energy region of giant
resonances from the ground state of even}even nuclei (see, Refs. [57,100] for more details). Since in
RHIC experiments the Coulomb mechanism of excitation plays the most essential role, the cross
sections of photoexcitation can be easily recalculated into RHIC cross sections for di!erent
energies and Z-values of target and projectile nuclei. In calculation of the B(Ej) values we use only
the terms proportional to tu (see Eq. (258)). The complete set of diagrams corresponding to
a direct transition to two-phonon states from the ground state is presented in Ref. [101]. As one
can see from the analytical expressions the main part of the contributions from di!erent terms
disappears due to the cancellation between particles and holes.

The cross sections of the direct photoexcitation of the groups of two-phonon states made of
phonons of de"nite multipolarities in 136Xe and 208Pb are presented in Fig. 28. E2-excitation of
[1~?1~]

2` states is plotted in the top part of the "gure. E1-excitation of the two-phonon states
[1~?2`]

1~ and [2`?3~]
1~ is shown in the middle and the bottom parts, respectively. The
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Fig. 28. Cross sections of the direct photoexcitation of two-phonon con"gurations [1~?1~]
2`, [1~?2`]

1~ and
[2`?3~]

1~ from the ground state in 136Xe and 208Pb.

integral characteristics of two-phonon states which are a single giant resonances built on top of
either a low-lying state or another single resonance in the same nuclei are given in Table 11.

The main feature of the top part of Fig. 28 is that just all two-phonon states which form this
double-phonon resonance are constructed of the one-phonon 1~

i
states belonging to the GDR in

the one-phonon approximation. The structure of the [1~?2`]
1~ and [2`?3~]

1~ states is more
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Table 11
Integral characteristics (energy centroid, width and cross section of direct photoexcitation from the ground state) of some
groups of two-phonon states which are a giant resonance built on top of either a low-lying state or another single-giant
resonance in 136Xe and 208Pb

Nucl. Con"guration Centroid Width pc
(MeV) (MeV) (mb)

[1~
GDR*7

?2`
GQR*4

]
1~ 24.0 2.9 4.3

136Xe [1~
GDR*7

?1~
GDR*7

]
2` 30.2 4.0 0.33

[2`
GQR*4

?2`
GQR*4

]
2` 21.3 0.5 0.1

[1~
GDR*7

?2`
1
]
1~ 17.4 2.2 1.7

[1~
GDR*7

?2`
1
]
2~ 17.2 2.1 8.7]10~4

208Pb [1~
GDR*7

?2`
1
]
3~ 17.7 3.4 4.9]10~5

[1~
GDR*7

?3~
1
]
2` 15.3 3.9 5.2]10~2

[1~
GDR*7

?2`
GQR*4

]
1~ 25.1 3.8 9.6

[1~
GDR*7

?1~
GDR*7

]
2` 25.5 4.4 0.22

complex. For example, among [1~?2`]
1~ states the substructure in the energy range from 15 to

20MeV in 208Pb (right middle part of Fig. 28) is formed mainly by 1~
i

phonons from the GDR
region coupled to the 2`

1
state. The small substructure above 32MeV is due to the GDR

1~
i

phonons coupled to the 2`
i{

phonons of the isovector GQR. As for the broad structure between
20 and 30MeV not only [GDR?GQR

is
]
1~ states but many other two-phonon states built of less

collective 1~
i

and 2`
i{

phonons, the role of which is marginal for properties of single resonances, play
an essential role. The same conclusions are valid for the direct photoexcitation of [1~?2`]

1~

states in 136Xe. The cross section of the direct photoexcitation of the two-phonon 1~ states built of
phonons of the higher multipolarities yield non-resonance feature. It is already seen for the case of
[2`?3~]

1~ states (bottom part of Fig. 28), especially in 208Pb.
While dealing with electromagnetic, or with Coulomb excitation from a 0` ground state, the

priority attention has to be paid to the "nal states with the total angular momentum and parity
Jn"1~. For that we have calculated the cross section for the photoexcitation of two-phonon
states [jn1

1
?jn2

2
]
1~, where jn1

1
and jn2

2
are both natural jnn (nn"(!1)j) and unnatural

jnu (nu"(!1)j`1) parity phonons with multipolarity j from 0 to 9.
The results of the calculation for 136Xe and 208Pb integrated over the energy interval from 20 to

35MeV are presented in Table 12. Each con"guration [jn1
1
?jn2

2
] in the table means a sum over

a plenty of two-phonon states made of phonons with a given spin and parity jn1
1
, jn2

2
, but di!erent

RPA root numbers i
1
, i

2
of its constituents

p([jn1
1
?jn2

2
])"+

i1,i2

p([jn1
1
(i
1
)?jn2

2
(i
2
)]) . (263)

The total number of two-phonon 1~ states included in this calculation for each nucleus is about
105 and they exhaust 25% and 15% of the EWSR in 136Xe and 208Pb, respectively. The absolute
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Table 12
Cross sections for the direct photoexcitation of di!erent two-phonon con"gurations from the ground state integrated
over the energy interval from 20 to 35MeV in 136Xe and 208Pb. The GDR cross section integrated over the energy of its
location is presented in the last line for a comparison

pc (mb)

Con"guration 136Xe 208Pb

[0`?1~]
1~ 4.4 3.9

[1~?2`]
1~ 36.6 44.8

[2`?3~]
1~ 82.8 33.1

[3~?4`]
1~ 101.0 56.7

[4`?5~]
1~ 68.9 37.3

[5~?6`]
1~ 49.2 46.2

[6`?7~]
1~ 31.9 49.8

[7~?8`]
1~ 13.6 12.5

[8`?9~]
1~ 4.9 9.0

9
+

j1,j2/1

[jnn
1

1
?jnu

2
2
]
1~

71.4 58.5

9
+

j1,j2/1

[jnu
1

1
?jnu

2
2
]
1~

46.7 71.1

9
+

j1,j2/0

[jnn,u
1

1
?jnn,u

2
2

]
1~

511.4 422.9

[GDR?GDR]
2` 0.33 0.22

9
+

j1,j2/1

[jnn
1

1
?jnn

2
2
]
2`

38.1 21.7

GDR 2006 2790

value of the photoexcitation of any two-phonon state under consideration is negligibly small but
altogether they produce a sizable cross section. Table 12 demonstrates that di!erent two-phonon
con"gurations give comparable contributions to the total cross section which decreases only for
very high spins because of the lower densities of such states. As a rule, unnatural parity phonons
play a less important role than natural parity ones. For these reasons we presented in the table only
the sums for [natural?unnatural] and [unnatural?unnatural] two-phonon con"gurations.

The cross section for the photoexcitation of all two-phonon 1~ states in the energy region
20}35MeV from the ground state equals in our calculation to 511 and 423mb for 136Xe and
208Pb, respectively. It is not surprising that we got a larger value for 136Xe than for 208Pb. This is
because the phonon states in Xe are composed of a larger number of two-quasiparticle con"gura-
tions due to the pairing. The same values for two-phonon states with angular momentum and
parity Jn"2` are an order of magnitude smaller. We point out that the direct excitation of
[1~?1~]

2` or [GDR?GDR]
2`

con"gurations is negligibly weak (compare results in Tables 11
and 12). The calculated values should be compared to the cross section for the photoexcitation
of the single-phonon GDR which in our calculation equals to 2006 and 2790mb, respectively.
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Fig. 29. Photoexcitation cross section of the GDR in 136Xe and 208Pb. Calculations are performed: (a) within
one-phonon approximation and (b) with taking into account of the coupling between one- and two-phonon con"gura-
tions. Continuous curves in the bottom part are the strength functions calculated with a smearing parameter D"1MeV;
dashed curve corresponds to electromagnetic transitions to one-phonon 1~ states, solid curve } to one- and two-phonon
1~ states.

A contribution of two-phonon 1~ states to the total cross section at GDR energies is weaker than
at higher energies because of the lower density of two-phonon states and the lower excitation
energy and can be neglected considering the GDR itself. It is clearly demonstrated in Fig. 29b. In
this "gure the cross sections of the photoexcitation of 1~ states in 136Xe and 208Pb are presented.
The top part of the "gure corresponds to a calculation performed in one-phonon approximation.
The results of calculations with the wave function which includes a coupling between one- and
two-phonon 1~ con"gurations are plotted in the bottom part of the "gure. For a visuality the last
calculations are also presented as strength functions

b(p,E)"
1
2p

+
l

pJl
D

(E!EJl)2#D2/4
(264)

with a smearing parameter D"1 MeV, where pJl is a partial cross section for the state with the
excitation energy EJl plotted also by a vertical line. The E1-transitions to one-phonon components
of the wave function of excited 1~ states are plotted by dashed curve. It should be compared with
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Fig. 30. Photoneutron cross sections in 208Pb. Solid curve is the result of calculation with the wave function including
one- and two-phonon terms presented with a smearing parameter D"1MeV; vertical lines (in arbitrary units) } within
one-phonon approximation. Experimental data are plotted by experimental error bars.

Fig. 31. Photo-neutron cross section for 208Pb. Experimental data (dots with experimental errors) are from Ref. [103].
The long-dashed curve is the high energy tail of the GDR, the short-dashed curve is the GQR

i7
and the curve with squares

is their sum. The contribution of two-phonon states is plotted by a curve with triangles. The solid curve is the total
calculated cross section.

the solid curve which is the sum of transitions to one- and two-phonon 1~ con"gurations in the
GDR energy region.

For 208Pb photoexcitation cross sections are known from experimental studies in (c, n) reactions
up to the excitation energy about 25MeV [102,103]. It was shown that QPM provides a very good
description of the experimental data in the GDR region [102] (see, Fig. 30), while theoretical
calculations at higher excitation energies which account for contributions from the single-phonon
GDR and GQR

*7
essentially underestimated the experimental cross section [103]. The experi-

mental cross sections above 17MeV are shown in Fig. 31 together with theoretical predictions. The
results of the calculations are presented as strength functions obtained with averaging parameter
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equal to 1 MeV. The contribution to the total cross section of the GQR
*7

(short-dashed curve), the
high-energy tail of GDR (long-dashed curve), and their sum (squared curve), are taken from
Ref. [103]. The curve with triangles represents the contribution of the direct excitation of the two-
phonon states from our present studies. The two-phonon states form practically a #at background
in the whole energy region under consideration. Summing together the photoexcitation cross
sections of all one- and two-phonon states, we get a solid curve which is in a very good agreement
with the experimental data.

Thus, from our investigation of photoexcitation cross sections we conclude that in this reaction
very many di!erent two-phonon states above the GDR contribute on a comparable level, forming
altogether a #at physical background which should be taken into account in the description of
experimental data. On the other hand, Coulomb excitation in relativistic heavy ion collisions
provides a unique opportunity to excite a very selected number of two-phonon states by the
absorption of two virtual c's in a single process of projectile}target interaction [6]. Theoretically,
this process is described using the second-order perturbation theory of the semi-classical approach
of Winther and Alder [6,18] and discussed in Section 3.2.3. Since excitation cross sections to
second order are much weaker than to "rst order of the theory, two-phonon states connected to the
ground states by two E1-transitions are predominantly excited. These two-phonon states have the
structure [1~(i)?1~(i@)]

J
` and form the DGDR.

5.2. 1` component of the DGDR

According to the rules of angular momentum coupling two one-phonon states with the spin and
parity equal to 1~ may couple to the total angular momentum Jn"0`, 1` and 2`. Thus, in
principle, three components of the DGDR with these quantum numbers should exist. In phenom-
enological approaches describing the single GDR as one collective state, the [1~?1~]

1` compon-
ent the DGDR is forbidden by symmetry properties. Taking into account the Landau damping this
collective state splits into a set of di!erent 1~

i
states distributed over an energy interval. In

microscopic studies the Landau damping is taken into account by solving the RPA equations.
Again, the diagonal components [1~

i
?1~

i
]
1` are forbidden by the same symmetry properties but

nondiagonal ones [1~
i

?1~
i{

]
1` exist and should be taken into consideration. Consequently, the role

of these nondiagonal components depends on how strong is the Landau damping.
We produce here two-phonon DGDR states with quantum numbers Jn"0`, 1` and 2` by

coupling one-phonon RPA states with the wave function D1~
i

T
m
, to each other. The index m stands

for di!erent magnetic substates. The wave function of the two-phonon states has the form

D[1~
i

?1~
i

]
J
n/0`,2`T

M
"

1

J2
+
m,m{

(1m1m@DJM)D1~
i
T
m
D1~

i
T
m{

, (265)

for two-phonon states made of two identical phonons while for other DGDR states it is

D[1~
i

?1~
i{

]
J
n/0`,1`,2`T

M
" +

m,m{

(1m1m@DJM)D1~
i
T
m
D1~

i{
T
m{

. (266)

In the present calculation we do not include the interaction between DGDR states, of Eqs. (265)
and (266), and we do not couple them to states with di!erent than two number of phonons (it will
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Fig. 32. The possible paths to the excitation of a given magnetic substate of the 1` component of the DGDR are
displayed. The transitions caused by the di!erent projections of the operator<

E1
are shown by: (a) dashed lines for m"0,

(b) dashed-dotted lines for m"!1, and (c) solid lines are m"#1.

be considered below). Thus, our two-phonon states D[1~
i
?1~

i{
]
J
nT

M
have excitation energy equal to

the sum of one-phonon energies u
i
#u

i{
and are degenerated for di!erent values of the total spin

Jn and its projection M.
Since the main mechanism of excitation in projectile ions at relativistic energies is the Coulomb

part of interaction with a target, the nuclear part of interaction has been neglected in the present
analysis. In a semi-classical approach [6], the two-phonon DGDR states can be excited in
second-order perturbation theory via the two-step process g.s.PGDRPDGDR. The second-
order amplitude can be written as

a(2)
*1~

i c1~
i{ +,M

"

1
2

+
m

a(1)
1~

i ,m?*1~
i c1~

i{ +,M
a(1)
'.4.?1~

i ,m
, (267)

where assuming the Coulomb mechanism of excitation the "rst-order amplitude a(1)
Ji?Jf

is pro-
portional to the reduced matrix element of SJ

f
DDE1DDJ

i
T. The reduced matrix element

S[1~
i{
?1~

i
]
J
nDDE1DD1~

i
T of electromagnetic excitation of two-phonon states, Eqs. (265) and (266),

from the one-phonon state D1~
i

T
m

is related, in the boson picture of nuclear excitation, to the
excitation of D1~

i
T
m

from the ground state according to (261). It should be noted that although for
the two-phonon states, Eq. (265), we have an extra factor J2, the states of Eq. (266) play a more
important role in two-step excitations since they can be reached by two di!erent possibilities:
g.s.P1~

i
P[1~

i
?1~

i{
] and g.s.P1~

i{
P[1~

i
?1~

i{
]. First of all, we point out that in second-order

perturbation theory the amplitude for this process is identically zero in a semi-classical approach.
This can be understood by looking at Fig. 32. The time-dependent "eld <

E1
carries angular

momentum with projections m"0, $1. Thus, to reach the 1` DGDR magnetic substates, many
routes are possible. The lines represent transitions caused by the di!erent projections of <

E1
: (a)

dashed lines are for m"0, (b) dashed-dotted lines are for m"!1, and (c) solid lines are for
m"#1. The relation <

E1,m/0
O<

E1,m/B1
holds, so that not all routes yield the same excitation

amplitude. Since the phases of the wave functions of each set of magnetic substates are equal, the
di!erence between the transition amplitudes to a "nal M, can also arise from di!erent values of
the Clebsch}Gordan coe$cients (1m1m@D1M). It is easy to see that, for any route to a "nal M, the
second-order amplitude will be proportional to (001mD1m)(1m1m@D1M) <

E1,m{
<

E1,m
#(m%m@).
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2As demonstrated in the previous subsection the direct excitation of two-phonon con"gurations from the ground state
is very weak. It allows us to exclude in our calculation matrix elements of the form S[1~

i
?1~

i{
]
2`(1`)

DDE2(M1)DDg.s.T which
correspond to direct transitions and produce higher-order e!ects in comparison with accounted ones. These matrix
elements give rise to DGDR excitation in "rst-order perturbation theory. Thus, to prove our approximation, we have
calculated such cross sections and got total values equal to 0.11 and (0.01 mb for the 21 2` and the 15 1` basic
two-phonon states, respectively. These values have to be compared to 244.9 mb for the total DGDR cross section in the
second-order perturbation theory.

The two amplitudes carry opposite signs from the value of the Clebsch}Gordan coe$cients. Since
(001mD1m),1, the identically zero result for the excitation amplitude of the 1` DGDR state is
therefore a consequence of

+
mm{

(1m1m@D1M)"0 . (268)

We have also performed a coupled-channels calculation [104] following the theory described in
Ref. [19]. As shown in Ref. [19], the coupling of the electric quadrupole (isovector and isoscalar)
and the electric dipole states is very weak and can be neglected. We therefore include in our space
only one-phonon 1~ and two-phonon [1~

i
?1~

i{
]
J
n (Jn"0`, 1` and 2`) states. In coupled-

channels calculation we take into account interference e!ects in the excitation of di!erent GDR
and DGDR states and obtain the occupation amplitudes by solving the coupled-channels equa-
tions. By solving these equations we thus account for unitarity and for multi-step excitations,
beyond the two-step processes of Eq. (267). The time-dependent electric dipole "eld is that of
a straight-line moving particle with charge Ze, and impact parameter b (we use Eqs. (25) and (26) of
Ref. [19]).

Due to the large number of degenerate magnetic substates, to make our coupled-channels
calculation feasible, we have chosen a limited set of GDR and DGDR states. We have taken six
1~ states which have the largest value of the reduced matrix element S1~

i
DDE1DDg.s.T. These six states

exhaust 90.6% of the classical EWSR, while all 1~ states up to 25MeV in our RPA calculation
exhaust 94.3% of it. This value is somewhat smaller than the 122% reported in Ref. [32]. It is
because the continuum in our RPA calculation was approximated by narrow quasibound states.
From these six one-phonon 1~ states we construct two-phonon [1~

i
?1~

i{
]
J
n states, Eqs. (265) and

(266), which also have the largest matrix element of excitation S[1~
i

?1~
i{

]
J
nDDE1DD1~

i
T for excitations

starting from one-phonon states.2 The number of two-phonon states equals to 21 for Jn"0` and
2`, and to 15 for Jn"1`. The cross section for the DGDR excitation was obtained by summing
over the "nal magnetic substates of the square of the occupation amplitudes and, "nally, by an
integration over impact parameter. We have chosen the minimum impact parameter, b"15.54 fm,
corresponding to the parameterization of Ref. [43], appropriate for lead}lead collisions.

The electromagnetic excitation cross sections for the reaction 208Pb (640AMeV)#208Pb with
excitation of all our basic 63 states is shown in Fig. 33. The total cross sections for each
multipolarity are presented in Table 13, together with the results of "rst-order (for one-phonon
excitations) and second-order (for two-phonon excitations) perturbation theory. The coupled-
channels calculation yields a non-zero cross section for the 1` DGDR state due to other possible
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Fig. 33. The electromagnetic excitation cross sections for the reaction 208Pb (640AMeV)#208Pb calculated in coupled
channels. It is shown the excitation of the GDR (top) and the three components Jn"0`, 2` and 1` of the DGDR. The
B(E1) strength distribution (in arbitrary units) over 1~ states is shown by dashed lines. For a visuality it is shifted up by
100 keV.

Table 13
Cross section (in mb) for the excitation of the GDR and the three components with Jn"0`, 2`, 1` of the DGDR in
208Pb (640AMeV)#208Pb collisions. Calculations are performed within coupled-channels (CC) and within "rst (PT-1)
and second (PT-2) order perturbation theory, respectively

CC PT-1 PT-2

GDR 2830. 3275. 0.

DGDR
0` 33.0 0.0 43.1

DGDR
2` 163.0 0.11 201.8

DGDR
1` 6.3 (0.01 0.0

DGDR/GDR 0.071 0.075
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routes (higher-order), not included in second-order perturbation theory. One observes a consider-
able reduction of the DGDR cross sections, as compared to the predictions of the second-order
perturbation theory. The GDR cross sections are also reduced in magnitude. However, the
population of the 1` DGDR states are not appreciable and cannot be the source of the missing
excitation cross section needed to explain the experiments. In general, the coupled-channels
calculation practically does not change the relative contribution of di!erent one-phonon 1~

i
and

two-phonon states [1~
i

?1~
i{
]
J
n to the total cross section with given Jn"1~, 0` and 2`. But since

the 1` component of the DGDR, with its zero value of excitation cross section in second-order
perturbation theory, has a special place among the two other components, the main e!ect of
coupled-channels is to redistribute the total cross section between the Jn"0`, 2` and Jn"1`

components.
The calculated cross section in coupled channels for both GDR and DGDR are somewhat

lower than that reported in experimental "ndings [54,105]. This is not surprising since
as mentioned above our chosen six 1~ states exhaust only 90.6% of EWSR while the photo-
neutron data [32] indicate that this value equals to 122%. Due to this underestimate of exhaust
of the EWSR the cross section for the DGDR excitation reduces more strongly than the one for
the single GDR. This is because the GDR cross section is roughly proportional to the total B(E1)
value while for the DGDR it is proportional to the square of it. We will return back in more detail
to the problem of absolute cross sections of the DGDR excitation in RHIC in the forthcoming
subsection.

5.3. Position, width and cross section of excitation in RHIC of the DGDR in 136Xe and 208Pb

To describe the width of two-phonon resonances it is necessary to take into account a coupling
of two-phonon con"gurations, which form these resonances, with more complex ones. For this two
types of calculations have been performed. In the "rst of them [106] the "ne structure of the GDR
calculated with the wave function which includes one- and two-phonon con"gurations and
presented in Fig. 29b has been used. The DGDR states have been constructed as a product of
the GDR to itself. In other words, following the Axel}Brink hypotheses on top of each 1~ state in
Fig. 29b we have built the full set of the same 1~ states.

The calculation has been performed for the nucleus 136Xe. In the dipole case, jn"1~, the
one-phonon states exhaust 107% of the classical oscillator strength and are displayed in the left
part of Fig. 29a. Of these, 20 states have an oscillator strength which is at least 1% of the strongest
strength and together exhaust 104% of the classical EWSR. We have used these states in the
coupling to two-phonon states. We have included all the natural parity phonons jn"1~!8`

with energy lower or equal to 21MeV, obtaining 2632 two-phonon con"gurations. One obtains
1614 states described by the wave function which includes one- and two-phonon con"gurations, in
the energy interval from 7MeV to 19.5MeV. Their photoexcitation cross sections are shown in Fig.
29b. The B(E1) value associated with each mixed state is calculated through its admixture with
one-phonon states, as DSlDDM(E1)DD0TD2"D+

i
Sl
i
(1~)S0DDQ

1~
i
M(E1)DD0TD2. Also shown by dashed curve

in the left part of Fig. 29b is the result obtained adding an averaging parameter of 1.0MeV. This
parameter represents in some average way the coupling to increasingly more complicated states
and eventually to the compound nuclear states. From the resulting smooth response it is easy to
directly extract the centroid and the full width at half maximum of the GDR. The corresponding
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Fig. 34. The cross section for Coulomb excitation of the one-phonon GDR (continuous curve), of the isoscalar GQR
(dash-dotted), of the isovector GQR (long dashed) as well as for the double-phonon GDR (short dashed) are shown. They
have been calculated at E

-!"
"681AMeV, taking into account the energy reduction of the beam in the target [40]. The

one-phonon GDR cross section has been reduced in the "gure by a factor 10.

Table 14
Calculated (for two values of r

o
) and experimental cross section (in mb) for the excitation of giant resonances in 136Xe in

136Xe (690AMeV)#208Pb reaction. In the last row, the experimental cross sections for Coulomb excitation of one- and
two-phonon states from Ref. [40] are shown. The value of the integrated cross section reported in Ref. [40] is 1.85$0.1
b. The nuclear contribution has been estimated in Ref. [40] to be about 100 mb, while about 3% (50 mb) of the cross
section is found at higher energy. Subtracting these two contributions and the two-phonon cross section, leads to the
value 1485$100 mb shown in the table

GDR GQR
*4

GQR
*7

GDR#GQR DGDR

r
o
"1, 2 fm 2180 170 120 2470 130

r
o
"1, 5 fm 1480 110 60 1650 50

Experiment 1024$100 } } 1485$100 215$50

values are E
GDR

"15.1MeV and C
GDR

"4 MeV. They can be compared with the values extracted
from experiment, E

GDR
"15.2MeV and C

GDR
"4.8MeV.

The isoscalar and the isovector giant quadrupole resonances (GQR) have also been calculated.
The centroid, width and percentage of the EWSR associated with the isoscalar mode are 12.5MeV,
3.2MeV and 75%, respectively. The corresponding quantities associated with the isovector GQR
are 23.1MeV, 3.6MeV and 80%.

The di!erential Coulomb-excitation cross sections as a function of the energy associated with the
one-phonon GDR and GQR resonances and the two-phonon DGDR in 136Xe (690AMeV)
#208Pb reaction are displayed in Fig. 34. It is seen that the centroid of the two-phonon dipole
excitation falls at 30.6MeV, about twice that of the one-phonon states, while the width is
C+6MeV, the ratio to that of the one-phonon excitation being 1.5.

The associated integrated values are displayed in Table 14, in comparison with the experimental
"ndings. The cross sections depend strongly on the choice of the value of b

.*/
"r

o
(A1@3

p
#A1@3

t
).
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In keeping with the standard `safe distancea, that is, the distance beyond which nuclear excita-
tion can be safely neglected, we have used r

o
"1.5 fm. Because their values essentially do not

depend on the width of the GDR, we view the calculated cross section of 1650 mb as a rather
accurate value and if anything an upper limit for the one-phonon Coulomb excitation cross
section. It is satisfactory that the measured cross section is rather close to this value. Also shown
in Table 14 are the predictions associated with the sequential excitation of the DGDR. This result
is essentially not modi"ed evaluating the direct Coulomb excitation of the double GDR. In fact,
the cross section associated with this process is a factor 10~3 smaller than that associated with
the two-step process. The calculated value of 50 mb is a factor of 0.25 smaller than that observed
experimentally.

Two other processes are possible within the sequential excitation of the giant modes which
can lead to an excitation energy similar to that of the two-phonon GDR. They are the excitation
of the isoscalar GQR mode followed by a GDR mode and vice versa. The resulting cross section
is estimated to be an order of magnitude smaller, cf. Table 14, and does not change qualita-
tively this result. In order to make clearer the seriousness of this discrepancy, we have recalcul-
ated all the cross sections using r

o
"1.2 fm, namely with a much smaller radius than that

prescribed in order to respect the safe Coulomb excitation distance of closest approach. The
calculated value of 130 mb is still a factor of 0.6 smaller than the reported experimental cross
section. At the same time the cross section of the one-phonon states has become a factor 1.7
larger than the empirical value. This factor becomes 1.5 when the coupling to higher multi-
phonon states is included according to the standard Poisson distribution for the excitation
probabilities [17].

The main shortcoming of the above discussed theoretical scheme to treat the DGDR,
when the DGDR states are obtained by folding of the "ne structure of two GDRs, is the fact that
the DGDR states obtained this way are not eigenstates of the used microscopic Hamiltonian. To
overcome this shortcoming other calculations have been performed in which two-phonon
[1~?1~] DGDR states are coupled directly to more complex ones [107}109]. From rather
general arguments [60], the most important couplings leading to real transitions of the double-
giant resonances and thus to a damping width of these modes are to con"gurations built out by
promoting three nucleon across the Fermi surface. That is, con"gurations containing three holes in
the Fermi sea and three particles above the Fermi surface (3p3h con"gurations). We use the wave
function (238) to describe the DGDR states and their coupling to 1p1h and to 3p3h doorway
con"gurations.

The spectrum of excited states which form the DGDR is obtained by solving the secular
equation (253) and the wave function coe$cient S,D and ¹ are calculated from Eq. (254). Pauli
principle corrections, the coe$cients KI

J
(b

2
a
2
Da@

2
b@
2
) and anharmonicity shifts *uJa2b2

, were omitted
in calculations presented in Ref. [107] and accounted for in Ref. [108]. While they are small, they
produce shifts in the energy centroid of the double-giant resonance. Similar coe$cients appear
also in connection with the term arising from the `doorway statesa containing three phonons in
Eq. (238). We have neglected them because they again are small and furthermore act only in higher
order as compared to the previous term, in de"ning the properties of the double-giant dipole
resonance. Finally, the corresponding KI -coe$cient associated with the "rst term in Eq. (238) is
proportional to the number of quasiparticles present in the ground state of the system, a quantity
which is assumed to be zero within linear response theory.
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In keeping with the fact that the Q-value dependence of the Coulomb excitation amplitude is
rather weak at relativistic energies [14], the cross section associated with the two-step excitation of
the double-giant dipole resonance is proportional to

[B(E1)]B(E1)]"D+
l1

SWl
0`(2`)

DM(E1)DWl1
1~T ) SWl1

1~DM(E1)DW
'.4.

TD2

"K2 +
a2b2

Dla2b2
(J) )C

Ma2Mb2

J1#da2,b2

# +
a@
2b@

2

Ma@2Mb@
2
J1#da@2,b@

2
KI

J
(b

2
a
2
Da@

2
b@
2
)DK

2
,

(269)

where Ma"SQaDDM(E1)DD0`
'.4.

T is the reduced matrix element of the E1-operator which acting on
the ground state DT

ph
excites the one-phonon state with quantum numbers a"(1~, i).

Making use of the elements discussed above we calculated the distribution of the quantity
Eq. (269) over the states Eq. (238) in 136Xe. We considered only Jn"0` and 2` components of the
two-phonon giant dipole resonance. As already discussed above its Jn"1` component cannot be
excited in the second-order perturbation theory and is su$ciently quenched in coupled-channels
calculation. The 15 con"gurations M1~i, 1~i@N"Ma

2
, b

2
N displaying the largest [B(E1)]B(E1)]

values were used in the calculation. They are built up out of the "ve most collective RPA roots
associated with the one-phonon giant dipole resonance carrying the largest B(E1) values and
exhausting 77% of energy weighted sum rule (EWSR). Two-phonon states of collective character
and with quantum numbers di!erent from 1~ lie, as a rule, at energies few MeV away from the
double-giant dipole states and were not included in the calculations. The three-phonon states
Ma

3
b
3
c
3
N were built out of phonons with angular momentum and parity 1~, 2`, 3~ and 4`. Only

those con"gurations where either a
3
, b

3
or c

3
were equal to a

2
or b

2
were chosen. This is because

other con"gurations lead to matrix elements ;a2b2a3b3c3(J) of the interaction, which are orders of
magnitude smaller than those associated with the above-mentioned three-phonon con"gurations,
and which contain in the present calculation 5742 states up to an excitation energy 38MeV. The
single-particle continuum has been approximated in the present calculation by quasibound states.
This approximation provides rather good description of the single GDR properties in 136Xe. This
means that our (2p2h)

*1~
C1~+

spectrum is also rather complete for the description of the DGDR
properties although it is located at higher energies.

If one assumes a pure boson picture to describe the phonons, without taking into account their
fermion structure, the three-phonon con"gurations omitted in the present calculation do not
couple to two-phonon states under consideration. Furthermore, although the density of 3p3h
con"gurations is quite high in the energy region corresponding to the DGDR, a selection of the
important doorway con"gurations in terms of the e$ciency with which con"gurations couple to
the DGDR, can be done rather easily. The above considerations testify to the advantage of
employing a microscopic phonon picture in describing the nuclear excitation spectrum, instead of
a particle}hole representation. One can more readily identify the regularities typical of the
collective picture of the vibrational spectrum, and still deal with the fermion structure of these
excitations. As far as the one-phonon term appearing in Eq. (238) is concerned, essentially all
phonons with angular momentum and parity 0` and 2` were taken into account within the energy
interval 20}40MeV.
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Fig. 35. Fragmentation of the most collective (a) one-phonon 1~ and (b) two-phonon [1~?1~] con"gurations in 136Xe
due to the coupling to more complex con"gurations. The results are presented with a smearing parameter D"0.2MeV.

A rather general feature displayed by the results of the present calculation is that all two-phonon
con"gurations of the type M1~i, 1~i@N building the DGDR in the `harmonica picture are fragmented
over a few MeV due to the coupling to 3p3h `doorway statesa. Fragmentation of the most
collective one is presented in the bottom part of Fig. 35. For a comparison the fragmentation of the
most collective one-phonon 1~ con"guration due to the coupling to 2p2h `doorway statesa is
plotted in the top part of the same "gure. The results have been averaged with the aid of
a Breit}Wigner distribution of width 0.2MeV. The maximum amplitude with which each two-
phonon con"guration enters in the wave function (238) does not exceed a few percent. Two-phonon
con"gurations made out of two di!erent 1~ phonons are fragmented stronger than two-phonon
con"gurations made out of two identical 1~ phonons. This in keeping with the fact that, as a rule,
states of the type M1~i, 1~i@N with iOi@ are less harmonic than states with i"i@ and consequently
are coupled to a larger number of three-phonon con"gurations.

In Figs. 36b and c, the [B(E1)]B(E1)] quantity of Eq. (269) associated with Coulomb excitation
of the almost degenerate Jn"0` and Jn"2` components of double-giant dipole resonance are
shown. For comparison, the B(E1) quantity associated with the Coulomb excitation of the
one-phonon giant dipole resonance is also shown in Fig. 36a. The reason why the two angular
momentum components of the DGDR are almost degenerate can be traced back to the fact that
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Fig. 36. (a) B(E1) values for the GDR and (b, c) [B(E1)]B(E1)] values Eq. (269) for the DGDR associated with Coulomb
excitation in 136Xe in relativistic heavy ion collision. (b) and (c) correspond to J"0` and J"2` components of the
DGDR, respectively. A smooth curve is a result of averaging over all states with a smearing parameter D"0.5MeV. See
text for details.

the density of one-phonon con"gurations to which the DGDR couple and which are di!erent for
Jn"0` and Jn"2` type states is much lower than the density of states associated with 3p3h
`doorway statesa, density of states which is the same in the present calculation for the two di!erent
angular momentum and parity. E!ects associated with the J-dependence of the KI

J
and D

J
coe$-

cients are not able to remove the mentioned degeneracy, because of the small size of these
coe$cients. These coe$cients can also a!ect the excitation probability with which the Jn"0` and
Jn"2` states are excited (cf. Eq. (269)). The e!ect however is rather small, leading to a decrease of
the order of 2}3% in both cases. The J-degeneracy would be probably somehow broken if one goes
beyond a one-boson exchange picture in the present approach of interaction between di!erent
nuclear modes. The next order term of interaction would couple the DGDR states to many other
3p3h con"gurations, not included in the present studies, some of these 3p3h con"gurations would
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Table 15
Position, width and the ratio values R, Eq. (270), for of J"0` and J"2` components of the DGDR with respect to the
ones of the single GDR in 136Xe. The third row corresponds to pure harmonic picture

J SE
DGDR

T!2 )SE
GDR

T (keV) C
DGDR

/C
GDR

R

0` !120 1.44 1.94
2` !90 1.45 1.96

0 J2 2

be di!erent for di!erent Jn values. Unfortunately, such calculation is not possible at the present
moment.

The calculated excitation functions displayed in Figs. 36b and c yield the following values for the
centroid and width of the DGDR in 136Xe: SE

0`T"30.68MeV and C
0`"6.82MeV for the

0` component of the DGDR and SE
2`T"30.71MeV and C

2`"6.84MeV for the 2` component.
These values have to be compared to SE

1~T"15.40MeV and C
1~"4.72MeV for the single GDR

in this nucleus from our calculation. The correspondence between these values is presented in Table
15 in comparison with the prediction of the harmonic model. Also shown is the ratio

R"

+l+l1
SWl

0`(2`)
DM(E1)DWl1

1
~T ) SWl1

1
~DM(E1)DW

'.4.
TD2

D+l1
SWl1

1
~DM(E1)DW

'.4.
TD4

(270)

between the two-step excitation probability of the DGDR normalized to the summed excitation
probability of the one-phonon GDR. The numerical results lie quite close to the predictions of the
harmonical model (see also a discussion of this problem in Ref. [110]). While the on-the-energy-
shell transitions are easier to identify and calculate properly, o!-the-energy shell corrections are
considerably more elusive. In fact, it may be argued that the calculated shift of the energy centroid
of the DGDR with respect to that expected in the harmonic picture is somewhat underestimated,
because of the limitations used in selecting two-phonon basis states used in the calculation. Our
calculated value *E"2SE

GDR
T!SE

DGDR
T shown in Table 15 can be compared to the ones in

40Ca [111] and 208Pb [74] in calculations with Skyrme forces. One of the purposes of the last
calculations was to consider the anharmonic properties of the DGDR with the wave function
which includes collective 1p1h and 2p2h states. Thus, an interaction not only between the
two-phonon DGDR states, [1~]1~] among themselves, but with other two-phonon states made
up of collective 2` and 3~ phonons was taken into account. The reported value of *E in these
studies is of the order of !200 keV in consistency with our results. It should be pointed out that
the calculation with Skyrme forces also yield somewhat larger anharmonicity shifts for low-lying
two-phonon states as compared to the QPM calculations [112]. The most complete basis of the
2p2h con"gurations has been used in the second-RPA calculations of the DGDR properties in
40Ca [97] and 208Pb [98] which includes not only `collective phononsa but non-collective as well.
The authors of Refs. [97,98] obtained the values of *E equal to !670 (!40) and !960
(!470) keV for 0` and 2` components of the DGDR, respectively, in 40Ca (208Pb). Recently, the
problem of anharmonicity for the DGDR has been also studied within macroscopic approaches in
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Fig. 37. (a) B(E1) values for the GDR and (b) [B(E1)]B(E1)] values, Eq. (269), for the DGDR (J"0`#2`) associated
with Coulomb excitation in 208Pb in relativistic heavy ion collision. A smooth curve is a result of averaging over all states
with a smearing parameter D"0.5MeV.

Refs. [76,113]. In Ref. [76] it has been concluded that the A-dependence of it should be as
A~4@3 while in Ref. [113] it is A~2@3 in consistency with Ref. [55].

The fragmentation of the DGDR due to the coupling to three-phonon con"gurations has been
also calculated in 208Pb [109]. The "ne structure of the GDR as a result of interaction with
two-phonon 1~ con"gurations in this nucleus is presented in Fig. 37a. The [B(E1)]B(E1)] values
for the DGDR states described by the wave function which includes two- and three-phonon
con"gurations are plotted in Fig. 37b. In this calculation we have used the same basis of six the
most collective one-phonon 1~ states for the GDR and 21 the most collective two-phonon
[1~]1~] states for 0` and 2` components of the DGDR as in the coupled-channels calculation in
the previous subsection (see Fig. 33). For a description of the GDR width a coupling to 1161
two-phonon 1~ con"gurations was taken into account. In calculation of the DGDR strength
distribution we have neglected the interaction with one-phonon con"gurations and Pauli principle
corrections since these e!ects are weaker in double-magic nucleus 208Pb as compared to the ones
in 136Xe. As a result, the 0` and 2` components of the DGDR are completely degenerated in this
calculation. The DGDR width is determined by the coupling of the selected 21 two-phonon
con"gurations with 6972 three-phonon ones and is very close to J2 times the width of the GDR.
This is a natural result for a folding of two independent phonons in microscopic treatment of the
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Fig. 38. The contribution for the excitation of two-phonon 1~ states (long-dashed curve) in "rst-order perturbation
theory, and for two-phonon 0` and 2` DGDR states in second order (short-dashed curve). The total cross section (for
208Pb (640AMeV)#208Pb) is shown by the solid curve.

problem. As already discussed in Section 3.3, when damping width of giant resonances is described
phenomenologically by Breit}Wigner strength distribution one obtains the value 2 for the quantity
r"C

DGDR
/C

GDR
. On the other hand, when the Gaussian strength distribution is used, it yields the

value r"J2. This is due to the di!erent behavior of the wings of the above-mentioned strength
functions at in"nity. In a microscopic picture, collective resonance state(s) couples to some "nite
number of doorway con"gurations and the strength distribution, as a result of this coupling, is
always concentrated in a de"nite energy region. It results in r"J2.

The square of the amplitude a(1)
Jf,Mf_Ji,Mi

(E) of the Coulomb excitation of one-phonon resonances
in RHIC in the "rst-order perturbation theory has a smooth exponential energy dependence. This
rather simpli"es a calculation of the excitation cross section in RHIC of the states of Eq. (238)
which form single-giant resonances. Although a large number of the states of Eq. (238), the giant
resonance excitation cross section in this reaction can be easily calculated as a product of the B(E1)
values of each state, presented in Figs. 36a and 37a, and an interpolated value of the tabulated
function Da(1)

Jf,Mf_Ji,Mi
(E)D2 at E"EJfl . The cross sections of the GDR and GQR excitation in 136Xe

(see Fig. 34) have been calculated this way. A similar procedure may be applied for calculation of
the cross section of the DGDR(l

0`,2`) states excitation via the GDR(l
1~) states. In the second-order

perturbation theory it equals to

pl0`,2`
"D+

l1~
A(El1~,El0`,2`

)S1~(l
1~)DDE1DD0`

'.4.
TS[1~?1~](l

0`,2`)DDE1DD1~(l
1~)TD2 , (271)

where A(E
1
,E

2
) is the reaction amplitude which has a very smooth dependence on both arguments.

This function was tabulated and used in the "nal calculation of the DGDR Coulomb excitation
cross section in relativistic heavy ion collisions.

Let us consider the excitation of the DGDR in the projectile for a 208Pb (640AMeV)#208Pb
collision, according to the experiment in Ref. [54], and use the minimum value of the impact
parameter, b"15.54 fm, corresponding to the parameterization of Ref. [43]. The cross section for
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Coulomb excitation of the DGDR is presented in Fig. 38 by the short-dashed curve as a strength
function calculated with an averaging parameter equal to 1 MeV. The contribution of the back-
ground of the two-phonon 1~ states to the total cross section is shown by a long-dashed curve in
the same "gure. It was calculated in "rst-order perturbation theory. The role of the background in
this reaction is much less important than in photoexcitation studies. First, it is because in heavy ion
collisions we have a special mechanism to excite selected two-phonon states in the two-step
process. Second, the Coulomb excitation amplitude is exponentially decreasing with the excitation
energy, while the E1-photoexcitation amplitude is linearly increasing. Nonetheless, Fig. 38 shows
that the direct excitation of two-phonon 1~ states cannot be completely excluded from considera-
tion of this reaction. Integrated over the energy interval from 20 to 35MeV these states give a cross
section of 50.3 mb which should be compared with the experimental cross section in the DGDR
region for the 208Pb (640AMeV)#208Pb reaction which is equal to 380mb [54].

The solid line in Fig. 38 is the sum of DGDR and two-phonon background excitations in
relativistic heavy ion collisions. The "rst and second moments of excitation functions, displayed by
the short-dashed and solid curves in Fig. 38, indicate that the centroid of the total strength is
200keV lower and the width is 16% larger than the same quantities for the pure DGDR. We point
out that this 200 keV shift is even somewhat larger than the one due to the anharmonicities studied
in 208Pb [74].

Direct excitation of the two-phonon 1~ states in 208Pb (640AMeV)#208Pb reaction was also
investigated in Ref. [74] in calculation with Skyrme forces. The reported e!ect (a di!erence between
5.07 and 3.55mb for 22(E

x
(28MeV) is much weaker than in our calculation because of a rather

limited two-phonon space. Another source of the DGDR enhancement in [74] is due to anhar-
monicity e!ects. We also checked the last by coupling one-phonon GDR states to (the most
important) 1200 two-phonon 1~ states in the DGDR region. Due to the constructive interference
between one- and two-phonon states at DGDR energies we got an additional enhancement of
24mb, which is again larger than the di!erence between 6.42 and 3.55mb obtained in Ref. [74] for
the same reason.

The absolute value of the total cross section of the DGDR excitation in RHIC in 208Pb is
somewhat small in our calculation (cf. Table 13) as compared with the experimental "ndings. For
example, the experimental value of the total DGDR excitation in the reaction 208Pb (640AMeV)
#208Pb, for which the calculations have been performed, equals to 0,38(4) b. As mentioned above,
our chosen six 1~ states exhaust only 90.6% of EWSR while the photo-neutron data [32] indicate
that this value equals to 122%. Due to this underestimate of exhaust of the EWSR the cross section
for the DGDR excitation reduces more strongly than the one for the single GDR. This is because
the GDR cross section is roughly proportional to the total B(E1) value while for the DGDR it is
proportional to the square of it.

If we apply a primitive scaling to obtain the experimental value 122% of EWSR the ratio
R"p

(DGDR)
/p

(GDR)
, the last line of Table 13, changes into 0.096 and 0.101 for the coupled-channels

calculation and for the perturbation theory, respectively. The experimental "ndings [54] yield the
value R

%91
"0.116$0.014. The reported [54] disagreement R

%91
/R

#!-#
"1.33$0.16 is the result

of a comparison with R
#!-#

obtained within a folding model, assuming 122% of the EWSR. We get
a somewhat larger value of R

#!-#
(taking into account our scaling procedure) because the B(E1)

strength distribution over our six 1~ states is not symmetrical with respect to the centroid energy,
E
GDR

: the lower part is enhanced. A weak energy dependence in the excitation amplitude, which is
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also squared for the DGDR, enhances the DGDR cross section for a non-symmetrical distribution
with respect to the symmetrical one, or when the GDR is treated as a single state. The e!ect of the
energy dependence is demonstrated for a single GDR in the top part of Fig. 33 where the excitation
cross sections are compared to the B(E1) strength distribution. It produces a shift to lower energies
of the centroid of the GDR and the DGDR cross sections with respect to the centroid of the B(E1)
and the [B(E1)]B(E1)] strength distribution, respectively. In our calculation this shift equals to
0.26MeV for the GDR and to 0.33, 0.28MeV for the DGDR within coupled channels and
perturbation theory, respectively. Of course, this scaling procedure has no deep physical meaning
but we have included this discussion to indicate that the disagreement between experiment and
theory for the DGDR excitation cross sections in 208Pb reached the stage when theoretical
calculations have to provide a very precise description of both the GDR and the DGDR to draw up
"nal conclusions.

The situation with the absolute values of cross sections of the DGDR excitation in 136Xe in
RHIC is much less clear than in 208Pb. The experimental value for the reaction 136Xe (700AMeV)
#208Pb is reported to be equal to 215$50 mb [40]. This value is su$ciently larger as compared
to any theoretical predictions available (cf. Table 14). But it should be pointed out that a
comparison between experimental data for xenon [40] and lead [54] reveal some essential
contradiction. While for 208Pb the above discussed quantity of the ratio between the total cross
sections of the DGDR and GDR excitation R

%91
( 208Pb)"0.116$0.014, its value for 136Xe:

R
%91

( 136Xe)"0.21$0.05 [40]. Taking into account that experiments for both nuclei have been
performed at close projectile energies (per nucleon) and the cross section of the GDR excitation in
136Xe is about three times less as compared to the one in 208Pb, the ratio R

%91
( 136Xe) should be

su$ciently smaller than R
%91

( 208Pb) and not vice versa. Probably, the problem with the absolute
value of the DGDR excitation in 136Xe is related to uncertainties in separating of the contribution
of single resonances, the characteristics of which are unknown experimentally for this nucleus and
the results of interpolation have been used in evaluating the experimental data. Recently, the
experiment for 136Xe has been repeated by LAND collaboration [114]. The analysis of the new
data in the nearest future should clear up the situation.

5.4. The role of transitions between complex conxgurations of the GDR and the DGDR

In the previous subsection considering the excitation properties of the DGDR, [B(E1)]B(E1)]
values or excitation cross sections in RHIC in second-order perturbation theory, we have taken
into account only the transition matrix elements between simple one-phonon 1~ GDR and
two-phonon 0` or 2` DGDR con"gurations for the second step of the excitation process
g.s.PGDRPDGDR. In fact, as already discussed above these con"gurations couple to more
complex ones to produce the widths of single and double resonances and, in principle, additional
transitions between complex con"gurations of the GDR and the DGDR, together with interference
e!ects, may alter the predicted values of excitation probabilities. This problem will be considered in
the present subsection (see, also Ref. [115]). It will be concluded that their role is marginal in the
process under consideration although a huge amount of the E1-strength is hidden in the
GDRPDGDR transition. This negative result ensures that calculations, in which only transitions
between simple components of the GDR and DGDR are taken into account and which are much
easier to carry out, require no further corrections.
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In microscopic approaches the strength of the GDR is split among several one-phonon 1~a states
(due to the Landau damping). The wave function D1~a T couples to complex con"gurations D1~b T
yielding the GDR width. We use the index a for simple con"gurations and the index b for complex
ones, respectively. Thus, the wave function of the ith 1~ state in the GDR energy region can be
schematically written as

D1~
i
T"+

a
SGDR
i

(a)D1~a T#+
b

CGDR
i

(b)D1~b T , (272)

where the coe$cients SGDR
i

(a) and CGDR
i

(b) may be obtained by diagonalizing the nuclear model
Hamiltonian on the set of wave functions (272).

The total E1-strength of the GDR excitation from the ground state,

B
GDR

(E1)"+
i

DS1~
i

DDE1DD0`
'.4.

TD2 ,

remains practically the same as in the one-phonon RPA calculation because the direct excitation of
complex con"gurations from the ground state is a few orders of magnitude weaker as compared to
excitation of one-phonon states. However these complex con"gurations play a fundamental role
for the width of the GDR.

The wave function of the 2` component of the DGDR states can be written in the similar
fashion:

D2`
f
T" +

a8 /Ma1Ca2N
SDGDR
f

(a8 )D[1~a1
]1~a2]2`T#+

aA
SI DGDR
f

(aA)D2`aAT#+
b{

CDGDR
f

(b@)D2`b{T . (273)

In this equation, we have separated in the "rst term the [1~]1~] DGDR con"gurations from
other two-phonon con"gurations (second term) and complex con"gurations (the last term). The
same equation as (273) is valid for the 0` DGDR states.

The total E1-transition strength between the GDR and DGDR,

+
f

+
i

DS2`(0`)
f
DDE1DD1~

i
TD2 ,

is much larger as compared to that for the GDR excitation, +
i
DS1~

i
DDE1DD0`

'.4.
TD2, from the ground

state. This is because the former includes transitions not only between simple GDR and DGDR
states but also between complex con"gurations as well. The enhancement factor should be the ratio
between the density of simple and complex con"guration in the GDR energy region. But in the
two-step excitation process the sum over intermediate GDR states in Eq. (274) reduces the total
transition strength for g.s.PGDRPDGDR to &2 ) DB

GDR
(E1)D2 (the factor 2 appears due to the

bosonic character of the two phonons which also holds if Landau damping is taken into account).
To prove this let us consider the excitation probability of the DGDR

P
DGDR

(E
f
, b)"

1
4
+
Mf
K+
i,Mi

aE1(k)
0(0)?1~

i (Mi)
(E

i
, b)]aE1(k{)

1~
i (Mi)?*1~

C1~+f(Mf)
(E

f
!E

i
, b)K

2
, (274)

where the index i labels intermediate states belonging to the GDR, and aE1(k)
J1(M1)?J2(M2)

is the
"rst-order E1 excitation amplitude for the transition J

1
(M

1
)PJ

2
(M

2
) in a collision with impact

C.A. Bertulani, V.Yu. Ponomarev / Physics Reports 321 (1999) 139}251 239



parameter b. For each state, J and M denote the total angular momentum and the magnetic
projection, respectively.

The amplitude aE1(k)
J1(M1)?J2(M2)

is given by

aE1(k)
J1(M1)?J2(M2)

(E, b)"(J
1
M

1
1kDJ

2
M

2
)]SJ

2
DDE1DDJ

1
Tf

E1(k)(E, b) . (275)

It is a product of the reduced matrix element SJ
2
DDE1DDJ

1
T for the E1-transition between the states

J
1
(M

1
) and J

2
(M

2
) which carries nuclear structure information and the reaction function

f
E1(k)(E, b). The latter depends on the excitation energy, charge of the target, beam energy, and is
calculated according to Ref. [18]. Except for the dependence on the excitation energy, it does not
carry any nuclear structure information. The cross section for the DGDR is obtained from Eq.
(274) by integration over impact parameters, starting from a minimal value b

.*/
to in"nity. This

minimal value is chosen according to Ref. [19]. Now we substitute the wave functions of the GDR
and DGDR states given by Eqs. (272) and (273) in expression (274). We obtain two terms. The "rst
one corresponds to transitions between simple GDR and DGDR states (after the GDR is excited
from the ground state through its simple component):

Akk{"+
i

+
aa{a8

SGDR
i

(a) f
E1(k)(Ei

, b)S1~a DDE1DD0`
'.4.

T

]SGDR
i

(a@)SDGDR
f

(a8 ) f
E1(k{)(Ef

!E
i
, b)S[1~a1]1~a2

]
f
DDE1DD1~a{Tda2,a{ (276)

and the second one accounts transitions between complex con"gurations in the wave functions of
Eqs. (272) and (273):

Bkk{"+
i

+
aa{bb{

SGDR
i

(a) f
E1(k)(Ei

, b)S1~a DDE1DD0`
'.4.

T

]CGDR
i

(b)CDGDR
f

(b@) f
E1(k{)(Ef

!E
i
, b)S[1~a{]1~b ]

f
DDE1DD1~b Tdb{,*a{Cb+ . (277)

The second reduced matrix element in the above equations is proportional to the reduced matrix
element between the ground state and the simple one-phonon con"guration (see Eq. (261)).

For a given impact parameter b, the function f
E1(k)(E, b) can be approximated by a constant value

f 0
E1(k) [6] for the relevant values of the excitation energies. Then the energy dependence can be taken

out of summations and orthogonality relations between di!erent components of the GDR wave
functions can be applied [107]. The orthogonality relations between the wave functions imply that

+
i

SGDR
i

(a)CGDR
i

(b),0 . (278)

This means that the term Bkk{ vanishes. The term Akk{ summed over projections and all "nal states
yields a transition probability to the DGDR, P

DGDR
(E

f
, b), which is proportional to 2 ) DB

GDR
(E1)D2

in second-order perturbation theory. This argument was the reason for neglecting the term Bkk{ in
previous calculations of DGDR excitation where the coupling of simple GDR and DGDR states to
complex con"gurations was taken into account.

In Fig. 39 we plot the value of s
E1

(E)"2p:dbb+k D f
E1(k)(E, b)D2 as a function of energy calculated

for the 208Pb (640AMeV)#208Pb reaction. This value corresponds to pGDR if BGDR(E1)"1. The
square in this "gure indicates the location of the GDR in 208Pb. This "gure demonstrates that the
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Fig. 39. The energy dependence of the 208Pb (640AMeV)#208Pb reaction function calculated within "rst-order
perturbation theory. The square indicates the location of the GDR in 208Pb.

function s
E1(E) changes by 60% in the GDR energy region. The role of this energy dependence for

other e!ects has been considered in Refs. [19,74]. Taking into account that one-phonon 1~a con"g-
urations are fragmented over a few MeV [108], when a su$ciently large two-phonon basis is
included in the wave function given by Eq. (272), the role of the Bkk{ term in the excitation of the
DGDR should be studied in more detail.

To accomplish this task we have performed "rstly a simpli"ed calculation in which we used the
boson-type Hamiltonian:

H"+
a

uaQsaQa#+
b

u8 bQI sbQI b#+
a,b
;ab(QsaQI b#h.c.) , (279)

where Qsa is the phonon creation operator and ua is the energy of this one-phonon con"guration;
QI sb is the operator for creation of a complex con"guration with energy u8 b and ;ab is the matrix
element for the interaction between these con"gurations. We have assumed that the energy
di!erence between two neighboring one-phonon con"gurations is constant and equals to *u. An
equidistant spacing with the energy *u8 was assumed for the complex con"gurations. We also have
used a constant value ; for the matrix elements of the interaction. The BGDR(E1) value was
distributed symmetrically over one-phonon con"gurations. Thus, the free parameters of this model
are: *u, *u8 ,;, the number of one-phonon and complex con"gurations, and the distribution of the
BGDR(E1) value over the simple con"gurations. The only condition we want to be satis"ed is that
the energy spectrum for the GDR photoexcitation is the same as the one known from experiment.

After all parameters are "xed we diagonalize the model Hamiltonian of Eq. (279) on the set
of wave functions of Eq. (272) for the GDR and on the set of Eq. (273) for the DGDR. The
diagonalization procedure yields the information on eigenenergies of the 1~

i
GDR states and on

the coe$cients SGDR
i

(a) and CGDR
i

(b), respectively. One also obtains information on eigenenergies
of the 2`

f
or 0`

f
DGDR states and the coe$cients SDGDR

f
(a8 ) and CDGDR

f
(b@), respectively. With this
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Fig. 40. The cross section for the excitation of the 2` component of the DGDR in the reaction 208Pb
(640AMeV)# 208Pb, calculated within second-order perturbation theory. The dashed curve shows the contribution of
the E1-transition between simple GDR and DGDR con"gurations only. The solid curve is a sum of the above result and
the contribution of the E1-transitions between complex GDR and DGDR con"gurations. See text for details.

information we are able to study the role of the Bkk{ term in the excitation of the DGDR in
RHIC.

The big number of free parameters allows an in"nite number of suitable choices. In fact, not all of
the parameters are really independent. For example, the increase in the number of simple or
complex con"gurations goes together with the decreasing of the value of ;. This is necessary for
a correct description of the GDR photoabsorption cross section. This makes it possible to
investigate the role of the Bkk{ term in di!erent conditions of weak and strong Landau damping and
for di!erent density of complex con"gurations. In our calculations we vary the number of collective
simple states from one to seven and the number of complex con"gurations from 50 to 500. The
value of ; then changes from about 100}500 keV. The results of one of these calculations for
the excitation of the 2` component of the DGDR in 208Pb (640AMeV)# 208Pb collisions are
presented in Fig. 40. For a better visual appearance the results are averaged with a smearing
parameter equal to 1 MeV. The dashed curve shows the results of a calculation in which
pADGDR(E),pDGDR(E)&:db bDAkk{D2 and the results of another one in which pA`BDGDR(E),
pDGDR(E)&:db bDAkk{#Bkk{D2 are represented by a solid curve.

Our calculation within this simple model indicates that the role of the Bkk{ term in second-order
perturbation theory is negligibly small, although the total B(E1) strength for transitions between
complex GDR and DGDR con"gurations, considered separately, is more than two orders of
magnitude larger than the ones between simple GDR and DGDR con"gurations. The value
*p"(pA`BDGDR!pADGDR)/pADGDR, where pA(A`B)DGDR ":pA(A`B)DGDR (E) dE, changes in these calculations from
1% to 2.5%. The results practically do not depend on the number of complex con"gurations
accounted for. The maximum value of *p is achieved in a calculation with a single one-phonon
GDR state (no Landau damping). This is because the value of ; is larger in this case and the
fragmentation of the one-phonon state is stronger. Thus, in such a situation, the energy dependence
of the reaction amplitude modi"es appreciably the orthogonality relations. But in general the e!ect
is marginal.

We also performed a calculation with more realistic wave functions for the GDR and DGDR
states taken from our studies presented in the previous subsection. These wave functions include
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6 and 21 simple states for the GDR and DGDR, respectively. The complex con"gurations are
two-phonon states for the GDR and three-phonon states for the DGDR. The value *p equals in
this realistic calculation to 0.5%. This result is not surprising because realistic calculations with
only two-phonon complex con"gurations, and a limited number of them, somewhat underestimate
the GDR width which is crucial for the modi"cation of the orthogonality relations.

We have proved that the transitions between complex GDR and DGDR con"gurations within
second-order perturbation theory for the DGDR excitation in RHI collisions play a marginal role
in the process under consideration and it is su$cient to take into account only transitions between
the ground-state and one-phonon GDR and two-phonon DGDR con"gurations.

5.5. The DGDR in deformed nuclei

The possibility to observe two-phonon giant resonances in deformed nuclei with the present
state-of-art experimental techniques is still questionable. This is mainly due to the fact that one has
to expect a larger width of these resonances as compared to spherical nuclei. Also, the situation
with the low-lying two-phonon states in deformed nuclei is much less clear than in spherical ones.

The "rst experiment with the aim to observe the double-giant dipole resonance (DGDR) in
238U in relativistic heavy ion collisions (RHIC) was performed recently at the GSI/SIS facility
by the LAND collaboration [114]. It will take some time to analyze the experimental data and
to present the "rst experimental evidence of the DGDR in deformed nuclei, if any. Thus, we
present here the "rst theoretical predictions of the properties of the DGDR in deformed nuclei
based on microscopic study [116]. The main attention will be paid to the width of the DGDR and
its shape.

In a phenomenological approach the GDR is considered as a collective vibration of protons
against neutrons. In spherical nuclei this state is degenerate in energy for di!erent values of the spin
J"1~ projection M"0,$1. The same is true for the 2` component of the DGDR with
projection M"0,$1,$2. In deformed nuclei with an axial symmetry like 238U, the GDR is spit
into two components Ip(K)"1~(0) and Ip(K)"1~($1) corresponding to vibrations against two
di!erent axes. In this approach one expects a three-bump structure for the DGDR with the value
K"0, K"$1 and K"0,$2, respectively (see Fig. 41). Actually, the GDR possesses a width
and the main mechanism responsible for it in deformed nuclei is the Landau damping. Thus, the
conclusion on how three bumps overlap and what is the real shape of the DGDR in these nuclei,
i.e., either a three-bump or a #at broad structure, can be drawn out only from some consistent
microscopic studies.

We use in our calculations for 238U the parameters of Woods}Saxon potential for the average
"eld and monopole pairing from Ref. [117]. They were adjusted to reproduce the properties of the
ground-state and low-lying excited states. The average "eld has a static deformation with the
deformation parameters b2"0.22 and b4"0.08. To construct the phonon basis for the K"0 and
K"$1 components of the GDR we use the dipole-dipole residual interaction (for more details of
the QPM application to deformed nuclei, see e.g. Ref. [84]). The strength parameters of this
interaction are taken from Ref. [118] where they have been "tted to obtain the centroid of the
B(E1, 0`

'.4.P1~(K"0,$1)) strength distribution at the value known from experiment [119]
and to exclude the center of mass motion. In this approach, the information on the phonon basis
(i.e. the excitation energies of phonons and their internal fermion structure) is obtained by solving
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Fig. 41. The possible paths to the excitation of a given magnetic substate of the 0` and 2` components of the DGDR in
spherical and deformed nuclei. The notations are the same as in Fig. 32.

Fig. 42. The B(E1) strength distribution over K"0 (short-dashed curve) and K"$1 (long-dashed curve) 1~ states in
238U. The solid curve is their sum. The strongest one-phonon 1~ states are shown by vertical lines, the ones with K"0
are marked by a triangle on top. Experimental data are from Ref. [119].

the RPA equations. For electromagnetic E1-transitions we use the values of the e!ective charges,
eZ(N)
%&&

"eN(!Z)/A to separate the center of mass motion.
The results of our calculation of the B(E1) strength distribution over D1~

K/0(i)T and D1~
K/B1(i@)T

GDR states are presented in Fig. 42, together with experimental data. The index i in the wave
function stands for the di!erent RPA states. All one-phonon states with the energy lower than
20MeV and with the B(E1) value larger than 10~4 e2 fm 2 are accounted for. Their total number
equals to 447 and 835 for the K"0 and K"$1 components, respectively. Only the strongest of
them with B(E1)50.2 e2 fm 2 are shown in the "gure by vertical lines. Our phonon basis exhausts
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32.6% and 76.3% of the energy weighted sum rules, 14.8 )NZ/A e2 fm 2MeV, by the K"0 and
K"$1 components, respectively. For a better visual appearance we also present in the same
"gure the strength functions averaged with a smearing parameter, which we take as 1 MeV. The
short (long) dashed-curve represent the K"0 (K"$1) components of the GDR. The solid curve
is their sum. The calculation reproduces well the two-bump structure of the GDR and the larger
width of its K"$1 component. The last is consistent with the experiment [119] which is best
"tted by two Lorentzians with widths equal to C

1
"2.99MeV and C

2
"5.10MeV, respectively.

The amplitudes of both maxima in the calculation are somewhat overestimated as compared to the
experimental data. This happens because the coupling of one-phonon states to complex con"gura-
tions is not taken into account which can be more relevant for the K"$1 peak at higher
energies. But in general the coupling matrix elements are much weaker in deformed nuclei as
compared to spherical ones and the Landau damping describes the GDR width on a reasonable
level.

The wave functions of the 0` and 2` states belonging to the DGDR are constructed by the
folding of two 1~ phonons from the previous calculation. When a two-phonon state is constructed
as the product of two identical phonons its wave function gets an additional factor 1/J2. The
1` component of the DGDR is not considered here for the same reasons as in spherical nuclei. The
anharmonicity e!ects which arise from interactions between di!erent two-phonon states are also
not included in the present study.

The folding procedure yields three groups of the DGDR states:

D[1~
K/0

(i
1
)?1~

K/0
(i
2
)]

0`
K/0,2`

K/0
T , (280a)

D[1~
K/0

(i)?1~
K/B1

(i@)]
2`

K/B1
T , (280b)

D[1~
K/B1

(i@
1
)?1~

K/B1
(i@
2
)]

0`
K/0,2`

K/0,B2
T . (280c)

The total number of non-degenerate two-phonon states equals to about 1.5]106. The energy
centroid of the "rst group is the lowest and of the last group is the highest among them. So, we also
obtain the three-bump structure of the DGDR. But the total strength of each bump is fragmented
over a wide energy region and they strongly overlap.

Making use of the nuclear structure elements discussed above, we have calculated the excitation
of the DGDR in 238U projectiles (0.5 GeV )A) incident on 120Sn and 208Pb targets, following the
conditions of the experiment in Ref. [114]. These calculations have been performed in second-
order perturbation theory [6], in which the DGDR states of Eqs. (280a), (280b) and (280c) are
excited within a two-step process: g.s.PGDRPDGDR. As intermediate states, the full set of
one-phonon D1~

K/0
(i)T and D1~

K/B1
(i@)T states was used. We have also calculated the GDR excitation

to "rst order for the same systems. The minimal value of the impact parameter, which is very
essential for the absolute values of excitation cross section has been taken according to
b
.*/

"1.28 ) (A1@3
t

#A1@3
p

).
The results of our calculations are summarized in Fig. 43 and Table 16. In Fig. 43 we present

the cross sections of the GDR (part a) and the DGDR (part b) excitation in the
238U (0.5GeV )A)#208Pb reaction. We plot only the smeared strength functions of the energy
distributions because the number of two-phonon states involved is numerous. The results for
238U (0.5 GeV )A)#120Sn reaction look very similar and di!er only by the absolute value of cross
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Fig. 43. The strength functions for the excitation: (a) of the GDR, and (b) of the DGDR in 238U in the
238U (0.5AGeV)#208Pb reaction. In (a), the short-dashed curve corresponds to the GDR (K"0) and the long-dashed
curve to the GDR (K"$1). In (b) the dashed curve corresponds to the DGDR

0` (K"0), the curve with circles to the
DGDR

2`(K"0), the curve with squares to the DGDR
2` (K"$1), and the curve with triangles to the DGDR

2`

(K"$2). The solid curve is the sum of all components. The strength functions are calculated with the smearing
parameter equal to 1MeV.

Table 16
The properties of the di!erent components of the GDR and the DGDR in 238U. The energy centroid E

#
, the second

moment of the strength distribution m
2
in RHIC, and the cross sections p for the excitation of the projectile are presented

for: (a) 238U (0.5A GeV)#120Sn, and (b) 238U (0.5A GeV)#208Pb

E
#

m
2

p (mb)

(MeV) (MeV) (a) (b)

GDR(K"0) 11.0 2.1 431.2 1035.4
GDR(K"$1) 12.3 2.6 1560.2 3579.1
GDR(total) 12.0 2.6 1991.4 4614.5

DGDR
0`(K"0) 25.0 3.4 18.3 88.9

DGDR
2`(K"0) 24.4 3.5 11.8 58.7

DGDR
2`(K"$1) 23.9 3.2 22.7 115.4

DGDR
2`(K"$2) 25.3 3.4 49.7 238.3

DGDR(total) 24.8 3.4 102.5 501.3
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sections. In Table 16 the properties of the GDR and the DGDR, and their di!erent K components
are given. The energy centroid E

#
and the second moment, m

2
"J+

k
p
k
(E

k
!E

#
)2/+

k
p
k
, of the

distributions are averaged values for the two reactions under consideration.
The two-bump structure can still be seen in the curve representing the cross section of the GDR

excitation in 238U in RHIC as a function of the excitation energy. But its shape di!ers appreciably
from the B(E1) strength distribution (see Fig. 43a in comparison with Fig. 42). The reason for this is
the role of the virtual photon spectra. First, for the given value of the excitation energy and impact
parameter it is larger for the K"$1 component than that for the K"0 one (see also the "rst two
lines in Table 16). Second, for both components it has a decreasing tendency with an increase of the
excitation energy [6]. As a result, the energy centroid of the GDR excitation in RHIC shifts by the
value 0.7MeV to lower energies as compared to the same value for the B(E1) strength distribution.
The second moment m

2
increases by 0.2MeV.

The curves representing the cross sections of the excitation of the K"$1 and K"$2
components of the DGDR in 238U in RHIC have typically a one-bump structure (see the curves
with squares and triangles in Fig. 43b, respectively). It is because they are made of two-phonon
2` states of one type: the states of Eqs. (280b) and (280c), respectively. Their centroids should be
separated by an energy approximately equal to the di!erence between the energy centroids of the
K"0 and K"$1 components of the GDR. They correspond to the second and the third bumps
in a phenomenological treatment of the DGDR. The K"0 components of the DGDR include two
group of states: the states represented by Eq. (280a) and those of Eq. (280c). Its strength distribution
has two bumps (see the curve with circles for the 2`(K"0) and the dashed curve for the 0`(K"0)
components of the DGDR, respectively). The excitation of the states given by Eq. (280a) in RHIC is
enhanced due to their lower energies, while the enhancement of the excitation of the states given by
Eq. (280c) is related to the strongest response of the K"$1 components to the external E1
Coulomb "eld in both stages of the two-step process.

Summing together all components of the DGDR yields a broad one-bump distribution for the
cross section for the excitation of the DGDR in 238U, as a function of excitation energy. It is
presented by the solid curve in Fig. 43b. Another interesting result of our calculations is related to
the position of the DGDR energy centroid and to the second moment of the DGDR cross section.
The centroid of the DGDR in RHIC is shifted to the higher energies by about 0.8MeV from the
expected value of two times the energy of the GDR centroid. The origin for this shift is in the energy
dependence of the virtual photon spectra and it has nothing to do with anharmonicities
of the two-phonon DGDR states. In fact, the energy centroid of the B(E1, g.s.P1~

i
)]

B(E1, 1~
i
PDGDR

f
) strength function appears exactly at twice the energy of the centroid of the

B(E1, g.s.PGDR) strength distribution because the coupling between di!erent two-phonon
DGDR states are not accounted for in the present calculation. The same shift of the DGDR from
twice the energy position of the GDR in RHIC also takes place in spherical nuclei. But the value of
the shift is smaller there because in spherical nuclei the GDR and the DGDR strength is less
fragmented over their simple con"gurations due to the Landau damping. But the larger value of the
shift under consideration in deformed nuclei should somehow simplify the separation of the
DGDR from the total cross section in RHIC.

Another e!ect which also works in favor of the extraction of the DGDR from RHIC excitation
studies with deformed nuclei is its smaller width than J2 times the width of the GDR, as observed
with spherical nuclei. Our calculation yields the value 1.33 for the ratio C

DGDR
/C

GDR
in this
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reaction. The origin for this e!ect is in the di!erent contributions of the GDR K"0 and
K"$1 components to the total cross section, due to the reaction mechanism. It should
be remembered that only the Landau damping is accounted for the width of both the GDR and
the DGDR. But since the e!ect of narrowing of the DGDR width is due to the selectivity of
the reaction mechanism it will still hold if the coupling to complex con"gurations is included in the
calculation.

It may be argued that the procedure of independent excitations of two RPA phonons applied
here is not su$cient for a consistent description of the properties of the two-phonon giant
resonances. This is true for the case of spherical nuclei where only the coupling of two GDR
phonons to more complex, 3p3h, con"gurations allows one to describe the DGDR width as
discussed above. But the typical matrix element of this coupling in deformed nuclei does not exceed
the value of 200keV [120] while in spherical nuclei it is an order of magnitude larger. It means that
due to the coupling, the strength of each GDR RPA-phonon will fragment within the energy
interval of 100}200 keV in deformed nuclei. The last value should be compared to the second
moment, m

2
, presented in Table 16 which is the result of the Landau damping accounted for in

our calculation. Taking into account that the reaction amplitude has very weak energy dependence
and that mixing of di!erent RPA phonons in the GDR wave function does not change the total
strength [115], the total cross sections of the GDR and DGDR excitation in RHIC will be also
conserved.
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