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Electric dipole polarizability of 40Ca
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The electric dipole strength distribution in 40Ca between 5 and 25 MeV has been determined at RCNP, Osaka,
from proton inelastic scattering experiments at very forward angles. Combined with total photoabsorption data at
higher excitation energy, this enables an extraction of the electric dipole polarizability αD(40Ca) = 1.92(17) fm3.
Together with the measured αD in 48Ca, it provides a stringent test of modern theoretical approaches, including
coupled-cluster calculations with chiral effective field theory interactions and state-of-the art energy density
functionals. The emerging picture is that for this medium-mass region dipole polarizabilities are well described
theoretically, with important constraints for the neutron skin in 48Ca and related equation of state quantities.
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Introduction. The nuclear equation of state (EOS) not only
determines basic properties of nuclei [1] but also plays a
key role for the properties of neutron stars and the dynamics
of core-collapse supernovae and neutron star mergers [2].
New observations from neutron stars and mergers provides
constraints for the EOS of neutron-rich matter that can be
compared with those derived from nuclear physics (see, e.g.,
Refs. [3–5]). However, while the EOS of symmetric nuclear
matter is well determined around saturation density, the prop-
erties of neutron-rich matter are less explored experimentally.
The latter depends on the symmetry energy, whose properties
are typically encoded in an expansion around saturation den-
sity n0, with the symmetry energy at saturation density J (n0)
and its density dependence L = 3n0∂J (n0)/∂n.

Theoretically, a model-dependent correlation between L
and the neutron-skin thickness rskin in nuclei with neutron
excess has been established [6–9]. This correlation was also
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recently confirmed in ab initio computations of the neutron
skin in 208Pb [10]. Experimental attempts to determine the
neutron skin thickness have been performed with a variety
of probes (see, e.g., Ref. [11] and references therein), but
many of them suffer from systematic uncertainties entering
in the description of the reaction processes. Parity-violating
elastic electron scattering (a weak process mediated by the Z0

boson) can be used for a nearly model-independent extraction
of the neutron distribution in nuclei and, by comparison with
accurately measured charge radii, the neutron skin thickness.
Recently, results with this technique have been reported by the
CREX and PREX collaborations for 48Ca [12] and 208Pb [13],
respectively. The rskin values inferred with selected nuclear
models favor a comparatively small neutron skin in the former
and a large skin in the latter case.

Alternatively, the electric dipole polarizability αD has been
established as a possible measure of the neutron skin, based on
the strong correlation with rskin [8,14]. Data for αD extracted
from proton inelastic scattering experiments at extreme for-
ward angles have been presented for both 48Ca [15] and 208Pb
[16]. In these papers, two theoretical approaches have been
used to describe αD: ab initio coupled-cluster (CC) calcu-
lations [17,18] starting from chiral two- and three-nucleon
interactions [19,20] and energy density functional (EDF)
theory [21].
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Attempts to simultaneously describe αD(208Pb) and the
parity-violating asymmetry from PREX and CREX with EDF
models have shown limited success [22–25]. The values de-
rived for rskin [13] and L [26] from PREX are in tension
with EDFs capable of describing [27] the presently available
results on αD in 48Ca [15], 68Ni [28], 120Sn [29,30], and 208Pb
[16]. While the CREX results is in excellent agreement with
ab initio predictions [18], the PREX result is in mild tension
with the recent ab initio computations of 208Pb [10].

Correlations between experimental observables and sym-
metry energy properties are well explored in EDF theory
[6–8,14], but predictions for isovector observables like αD are
less well constrained. On the other hand, ab initio calculations
provide a direct link to the EOS, as nuclear matter proper-
ties can be calculated based on the same chiral interactions
[10,18,19,31,32]. Results presented here are based on the set
of two- and three-nucleon interactions from Refs. [19,20]
applied to study αD in 48Ca [15,18]. The calculations of the
E1 response are based on merging the Lorentz integral trans-
form approach with CC theory, as described in Refs. [33,34].
Recent work has extended the original two-particle–two-hole
(2p-2h) CC truncation to include correlations up to three-
particle–three-hole (3p-3h), so-called triples corrections, in
the computation of αD [35]. Their inclusion leads to a re-
duction of the predictions for αD(48Ca) of the order of
10%, allowing an improved simultaneous description of the
charge radius [35]. A similar improvement was achieved for
68Ni [36].

In this Letter, we present the measurement of the dipole
polarizability for 40Ca and confront it with CC and EDF calcu-
lations. This tests the emerging picture that nuclear theory can
describe very well the neutron skin in medium-mass nuclei
and related observables.

Experiment. Cross sections for the 40Ca(p, p′) reaction
have been measured at RCNP, Osaka, at an incident proton
energy of 295 MeV. Data were taken with the Grand Raiden
spectrometer [37] in a laboratory scattering angle range
0.4◦–14.0◦ and for excitation energies in the range 5–25 MeV.
Dispersion matching techniques were applied to achieve an
energy resolution of about 30 keV (full width at half maxi-
mum). The experimental techniques and the raw data analysis
are described in Ref. [38].

In the top panel of Fig. 1 we show representative energy
spectra measured at laboratory scattering angles �lab = 0.4◦,
1.74◦, 3.18◦, and 5.15◦. The predominant cross sections lie
in the energy region above 10 MeV. M1 strength in 40Ca is
known to be concentrated in a single prominent transition at
10.32 MeV [39]. The cross sections above 10 MeV show a
broad resonance structure peaking at about 19 MeV increasing
towards 0◦. The angular dependence is consistent with rela-
tivistic Coulomb excitation of E1 transitions. We identify this
resonance structure as the isovector giant dipole resonance.

The various contributions to the spectra were separated
using a multipole decomposition analysis (MDA) as described
in Ref. [40]. Results for the most forward angle measured
are presented in the bottom part of Fig. 1 as example, where
the spectrum was rebinned to 200 keV. Theoretical angu-
lar distributions for the relevant multipoles were obtained
from distorted-wave Born approximation calculations with
transition amplitudes from quasiparticle-phonon-model calcu-

FIG. 1. (a) Spectra of the 40Ca(p, p′) reaction at E0 = 295
MeV and scattering angles �lab = 0.4◦, 1.74◦, 3.18◦, and 5.15◦.
(b) Example of the MDA of the spectrum at �lab = 0.4◦ in 200 keV
bins (blue) and decomposition into contributions of λ �= 1 multipoles
(orange), continuum background (green), and E1 (red).

lations similar to the analysis of 48Ca [15]. Additionally, a
background due to pre-equilibrium multistep scattering was
considered. Its angular dependence was taken from experi-
mental systematics [41,42] while the amplitude was derived
by two means. Initially, an unconstrained fit was done at
each energy bin of the set of spectra. The resulting cross sec-
tions could be well approximated by a simple Fermi function
but showed strong fluctuations for certain excitation energy
bins due to the similarity to some of the E1 theoretical an-
gular distributions. Thus, in the final analysis, the continuum
contribution was determined by fitting a Fermi function to the
unconstrained excitation energy dependence.

Photoabsorption cross sections and dipole polarizability.
The E1 cross sections resulting from the MDA were converted
into equivalent photoabsorption cross sections using the vir-
tual photon method [43]. The virtual photon spectrum was
calculated in an eikonal approach [44] to Coulomb excitation,
integrated over the distribution of scattering angles covered
in the solid angle of each angular bin. The photoabsorption
spectra derived from scattering data at 0.40◦ and 1.00◦ were
essentially identical, and that at 1.74◦ deviated only slightly,
consistent with an estimate of the grazing angle (1.33◦) at
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FIG. 2. (a) Photoabsorption cross section derived at a scattering
angle of 0.40◦ using the virtual photon method. (b) Electric dipole
polarizability αD derived from the photoabsorption cross sections.
The blue curve shows the present data, while the orange and green
curves show the extrapolation to higher energies using the data of
Refs. [45,46]. The open (full) black circles are the CC results for the
NNLOsat interaction including up to doubles (triples) contributions
in the cluster expansion.

which Coulomb-nuclear interference becomes relevant. The
resulting photoabsorption cross section is displayed as blue
histogram in Fig. 2(a).

The electric dipole polarizability αD was obtained
from the photoabsorption cross section over the energy
range 10–25 MeV leading to a contribution 1.60(14)
fm3. The integration was extended to 60 MeV, where
the cumulative sum plotted in Fig. 2(b) shows satura-
tion. The data at higher excitation energies were taken for
25–31 MeV from Ref. [46] and for 31–60 MeV from
Ref. [45] to obtain the total αD(40Ca) = 1.92(17) fm3. The
uncertainty considers systematic errors of (i) the absolute
cross sections, (ii) the MDA (determined as described, e.g.,
in Ref. [47]), and (iii) the parametrization of the continuum
background (evaluated by varying the amplitude of the Fermi
function), added in quadrature. The latter, dominating the total
uncertainty budget, was estimated by the variation needed to
change the χ2 value of the MDA fit by one. Statistical errors
turned out to be negligible. A detailed breakdown of the error
contributions is given in Table I.

TABLE I. Budget of error contributions to αD(40Ca).

Source Value (%)

Trigger efficiency 0.1
Drift chamber efficiency 0.8
Charge collection 0.3
Target thickness 1.0
Determination of solid angle 3.0
MDA 1.2
Background parametrization 8.3
Total 9.0

FIG. 3. Comparison of the experimental dipole polarizabilites
of 40Ca (present work) and 48Ca [15] shown as blue bands with
(a) CC calculations with different interactions, including triples con-
tributions, and (b) EDF calculations with different energy density
functionals [22]. For details see text.

Comparison with coupled-cluster calculations. The ex-
tracted value of αD serves as a benchmark for CC theory
[18,33–35]. Coupled-cluster calculations were recently per-
formed for the dipole polarizability of 48Ca [15] and 68Ni
[36], which led to an improved understanding of the neu-
tron and proton distributions in nuclei, as well as their
difference encoded in the neutron skin. We have performed
CC computations of αD in 40Ca starting from a Hartree-Fock
reference state considering a basis of 15 major harmonic
oscillator shells. To gauge the convergence of our results we
varied the oscillator frequency in the range h̄ω = 12–16 MeV.
Three-nucleon contributions had an additional energy cut of
E3max = 16h̄ω.

Figure 3 explores the correlation between αD for 40Ca
and 48Ca as predicted by theory. Figure 3(a) shows the CC
results including triples contributions, not available for 40Ca
so far. The theoretical uncertainties for the different Hamilto-
nians stem from the truncation of the CC expansion and the
residual dependence on CC convergence parameters, calcu-
lated as described in Ref. [34]. Similarly to 48Ca, we find
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that the inclusion of 3p-3h correlations reduces the value
of αD(40Ca) by an amount varying between 10% and 20%
for different interactions. While the EM and PWA interac-
tions [19] are not simultaneously compatible with both 40Ca
and 48Ca experimental data, the set of employed interac-
tions shows an approximately linear trend between the two
quantities overlapping with both experimental results. A par-
ticular improvement in the reproduction of both αD(48Ca) and
αD(40Ca) is seen for the NNLOsat interaction [20], which is
capable of accurately describing binding energies and radii
of nuclei up to 40Ca as well the saturation point of symmet-
ric nuclear matter. The different interactions predict a range
of symmetry energy parameters J = 27–33 MeV, L = 41–49
MeV [18], with the NNLOsat values at the lower end (J = 27
MeV, L = 41 MeV).

Comparison with EDF approaches. Recently, it was
investigated whether the dipole polarizability and the parity-
violating asymmetry APV for 208Pb and 48Ca can be simul-
taneously accounted for with modern EDFs [24]. We use
the four representative forms of functionals from that study:
nonrelativistic Skyrme functionals SV [48] and RD [49], the
latter with different forms of density dependence, and rela-
tivistic functionals DD [50] with finite-range meson-exchange
coupling and PC [51] with point coupling. All four have
been calibrated to the same set of ground-state data to de-
termine the model parameters. With these sets, it was shown
that PREX and CREX results for APV (and rskin) cannot be
consistently explained within the model uncertainties while
the αD were reproduced. Hence, the present result in 40Ca
provides an important test of the global predictive power of
these EDFs.

Figure 3(b) displays the EDF results for αD with
1σ error ellipses (for their definition see Refs. [22,24]). The
parametrizations as given from the ground-state fits are shown
by filled ellipses. The DD functional performs rather well. The
other predictions tend to slightly overestimate the experimen-
tal mean values of both 40Ca and 48Ca, while their 1σ error
ellipses do overlap with the experimental bands, except for
PC. In all cases, the two αD values are highly correlated. We
note that the same behavior is found for the description of
αD(208Pb) [16] after correction for the quasideuteron contri-
bution [27]. Thus, all the models are capable to account for
the mass dependence of the polarizability.

The dashed ellipses show results from a refit where ad-
ditionally the experimental αD value of 208Pb [16] corrected
for the quasideuteron part [27] was included yielding the
functionals SV-alpha; RD-alpha, PC-alpha, and DD-alpha
[22,24]. This improves the agreement with experiment,

particularly for the PC model, and shrinks most error ellip-
soids. The uncertainty reduction is especially large for the
DD model because this functional has the least isovector
freedom. The linear trend shown by the different theoretical
approaches in Fig. 3 is similar although the CC calculations
tend to underestimate the αD in 40Ca and perform nicely for
48Ca. The bulk symmetry energies range from J = 30 MeV
for DD to 35 MeV for PC and from 32 to 82 MeV for L,
respectively. The fits which include also αD in 208Pb narrow
the prediction to J = 30–32 MeV and L = 35–52 MeV which
correlates nicely to the narrower range of predictions for αD

in 40,48Ca.
Conclusions. We have extracted the dipole polarizability

of 40Ca from a combination of relativistic Coulomb excita-
tion measurement in inelastic proton scattering under very
forward angles with total photoabsorption data at high ex-
citation energies. Together with a similar analysis on 48Ca
the new data serve as a benchmark test of state-of-the art
theoretical approaches. A representative set of EDFs can de-
scribe these data. An improvement is obtained when the EDFs
are optimized by adding the dipole polarizability of 208Pb to
the calibration dataset. Coupled-cluster computations for the
NNLOsat interaction simultaneously describe well the dipole
polarizability of 40Ca and 48Ca, as well as the corresponding
charge radii and the neutron skin thickness [34]. A nearly
linear systematic trend is obtained for other interactions, as in
the case of EDF theory. This analysis supports the robustness
of current theoretical approaches in the description of αD and
their constraints of symmetry energy parameters discussed,
e.g., in Refs. [22,24,52].
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