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Anharmonic Properties of the Double Giant Dipole Resonance
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A systematic microscopic study of the anharmonic properties of the double giant dipole resonance
(DGDR) has been carried out, for the first time, for nuclei with mass number A spanning the whole mass
table. It is concluded that the corrections of the energy centroid of the Jp � 01 and 21 components of
the DGDR from its harmonic limit are negative, have a value of the order of a few hundred keV, and
follow an A21 dependence.
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Many-fermion systems, from metals in bulk to atomic
nuclei, display collective degrees of freedom known as
plasmons in the language of solid state physics [1] and as
giant resonances within the framework of nuclear physics
[2]. A very successful description of these modes is
provided by the time-dependent mean-field theory [3], in
the variety of versions known as quasiboson approxima-
tion, random phase approximation, linear response theory
[4–6], time-dependent Hartree-Fock theory [7], time-
dependent local density approximation [8], etc. At the
basis of all these, to a large extent, equivalent theoretical
descriptions of the sloshing back and forth of electrons
against ions, of protons against neutrons, etc., one finds
the small amplitude approximation which identifies these
modes with the one-phonon state of an harmonic oscilla-
tor. While it is true that a couple of fermions (particle-
hole excitation) has integer spin, its behavior cannot be
identified for all relative energies and momenta with that
of a real boson, the range of validity of this identification
depending on the correlation energy of the pair. On the
other hand, close to the ground state, fermion particle-hole
excitations do behave as (quasi)bosons. In fact, the terms
which, in the equations of motion, are related to the non-
bosonic contributions of the commutation relations of
pairs of fermions have random phases leading to cancella-
tions which reduce conspicuously the contribution of the
corresponding terms, eventually justifying the harmonic
approximation [4–6,9]. In any case, all degrees of freedom
of a many-fermion system are exhausted by the degrees
of freedom of the particles. Consequently, although col-
lective vibrations display small overlaps with each of the
(particle-hole) components of the wave function describing
the mode, a certain amount of overcounting is unavoidable.

With the advent of high fluency lasers and of high lu-
minosity heavy ion beams at relativistic energies, it is
now possible to study multiplasmon states in bulk mat-
ter and in clusters [10], as well as states of multiple ex-
cited giant dipole resonances in atomic nuclei [11], and
thus test the limits of validity of the harmonic paradigm
in many-fermion systems [12]. In particular, the discov-
ery of the double giant dipole resonance (DGDR) in nuclei
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[11,18–21] and the observation of small deviations from
the harmonic picture concerning the excitation energy and
the spreading width, combined with the large (up to a factor
2–3 enhancement) deviations of the associated Coulomb
excitation cross sections measured in relativistic heavy
ion collisions [11], call for a better understanding of the
role anharmonicities play in the spectrum of the DGDR.
In fact, anharmonicities influence electromagnetic DGDR
cross sections in several ways: (a) the energy shifts of the
DGDR states from the harmonic values can affect in an im-
portant way the electromagnetic cross section, in keeping
with the exponential dependence of these quantities with
the Q value of the process [22], (b) anharmonicities lead
to changes in the E1 transition matrix elements to preserve
the energy weighted sum rule (EWSR) [23] which eventu-
ally reinforce these effects, (c) anharmonicities which are a
consequence of the mixing of states with different number
of phonons give rise to many paths, other than the (har-
monic) two-step one, to excite the DGDR in electromag-
netic processes. While all these questions inspired much
theoretical work [24–34], no clear picture has emerged of
the DGDR anharmonicity question, let alone an explana-
tion of the “Coulomb excitation anomaly.” In particular, no
consensus exists concerning the mass-number dependence
of the energy shifts from the harmonic values.

In this Letter we present the results of the first, system-
atic calculation of the spectrum of the DGDR, carried out
in a complete one- and two-phonon basis (the effect of the
three phonon states on the anharmonicity being arguably
small [28]) for nuclei with mass number A spanning the
whole mass table. It will be concluded that the energy
shift (lowering) of the energy centroid of the Jp � 01

and 21 components of the DGDR from the harmonic limit
is rather modest (few hundreds of keV) and display a clear
A21 dependence. The solution of the Coulomb excitation
anomaly is thus likely to be found elsewhere [35].

The Hamiltonian used in describing the system contains,
aside from a mean-field term which determines the single-
particle motion of protons and neutrons, a monopole pair-
ing interaction and a separable multipole-multipole force
with strengths adjusted so as to reproduce the odd-even
© 2000 The American Physical Society
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mass differences and the spectrum of low-lying vibrations
and of giant resonances, respectively [2,7,15,17]. In par-
ticular, the strength of the isovector dipole-dipole term was
fixed by fitting the observed energy centroid of the GDR in
each nucleus or, lacking this information, the value emerg-
ing from the energy systematics (80A21�3 MeV).

The basis of one-phonon states was obtained by diago-
nalizing the Hamiltonian in the quasiparticle random phase
approximation. The basis of two-phonon states was con-
structed by coupling two one-phonon states to total angu-
lar momentum and parity Jp � 01 and 21, in keeping
with the quantum numbers of the DGDR states. The two-
phonon basis thus includes, aside from the states �12

i 3

12
i0 �01�21�, where the subindex i is used to distinguish be-

tween the different one-phonon dipole states arising from
the shell structure of the system, also two-phonon states
made up of 01, 12, 21, 32, and 41 phonons. All one-
phonon states, up to 40–50 MeV of excitation energy and
contributing with more than 1.0% to the EWSR (0.2% in
the case of dipole modes) have been included in the calcu-
lations. This choice leads, for the Jp � 21 component of
the DGDR in heavy nuclei, to a two-phonon basis contain-
ing of the order of 103 states.

The Hamiltonian written in terms of quasiparticles and
phonons [17] is diagonal in the space of one- and two-
phonon states separately, but contains terms coupling one-
to two-phonon states. Diagonalizing this Hamiltonian, we
obtain the total wave functions C

n
J and the corresponding

eigenvalues from which the results displayed in Table I
have been obtained. In the second column of this table,
the percentage of the Thomas-Reiche-Kuhn EWSR ex-
hausted by the selected one-phonon dipole states is dis-
played, while the third column contains the percentage
of the EWSR for the DGDR (calculated in Ref. [23]) ex-
hausted relatively to the sum of the 01 and 21 components.
The small differences observed between the percentage of
the EWSR exhausted by the DGDR and the GDR is mainly
due to the fact that the ground state is considered in the cal-
culations as the one-phonon vacuum, the ground state cor-
relations arising from the interaction between multiphonon
configurations not being taken into account. In columns
four and five the energy shifts DEc�Jp � of the centroids

TABLE I. Percentage of the EWSR exhausted by the GDR and
DGDR of the atomic nuclei indicated in the first column. In
columns 4 and 5 is displayed the anharmonicity shift DEc�Jp �
of the energy centroid of the Jp � 01 and 21 components of
the DGDR from its harmonic limit.

A EWSR, % DEc�Jp �, keV
Nucl. GDR DGDR Jp � 01 Jp � 21

40Ca 104 103 2643 2740
58Ni 104 103 2476 2495
86Kr 106 105 2309 2271
120Sn 106 105 2199 2194
136Xe 103 102 2203 2179
208Pb 94 94 2108 2158
of the Jp � 01 and 21 members of the DGDR with re-
spect to the harmonic predictions are reported. In Fig. 1
we show the quantity

Bn��E1 3 E1�J� �

É X
i

�Cn
J jE1jCi

12� �Ci
12 jE1jCg.s.�

É2

for the different (two-phonon) states n, eigenstates of the
total Hamiltonian with angular momentum and parity 01

and 21 of the nucleus 136Xe. The same calculations have
been repeated in a basis containing a single two-phonon
state �12

i0
3 12

i0
�01�21�, where 12

i0
is the GDR mode carrying

the largest fraction of the EWSR, and all one-phonon states
so as to reproduce as far as possible the harmonic scenario
within the framework of the present microscopic calcula-
tion. We shall discuss these results before discussing those
of the full calculation.

The diagonalization in the reduced space leads to a
breaking of the �12

i0
3 12

i0
�01�21�, and thus to a set of states

with Jp � 01 and 21, one of which carries about 95%
of the two-phonon configuration oscillator strength. The
energy shift of this state from the energy of the (noninter-
acting) two-phonon configuration is shown in Table II in
the columns labeled “Sum.” There are two mechanisms
contributing to this shift: the first one is associated with the
Pauli principle corrections. Excluding four-quasiparticle
configurations which violate Pauli principle reduces some-
how the collectivity of two-phonon configurations. One
thus expects a downward shift for isovector phonons such
as, e.g., the DGDR (cf. column I of Table II displaying

FIG. 1. Energy distributions of the B�E1 3 E1� values asso-
ciated with the excitation of the 01 and 21 components of the
DGDR in 136Xe, in comparison with the same quantity for the
21 component in the harmonic limit. Scales are chosen propor-
tionally to �2J 1 1�.
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TABLE II. Energy shift of the two states �12
i0 3 12

i0 �Jp (Jp �
01 and 21) with respect to the harmonic value 2h̄v�12

i0 �. The
label i0 indicates the component of the GDR carrying the largest
fraction of the EWSR. The calculations have been carried out
in a basis which includes only the two-phonon configuration
�12

i0 3 12
i0 �Jp and a complete set of 01 (21) one-phonon states.

The contributions to the energy shift arising from Pauli principle
corrections and due to the interaction of the two-phonon configu-
ration with one-phonon configurations are shown separately in
I and II, respectively.

A 01 21

Nucl. I II Sum I II Sum
40Ca 2577 1274 2302 2740 1534 2206
58Ni 2387 1667 1280 2486 1507 121
86Kr 2240 1103 2137 2291 1227 264
120Sn 2163 1181 118 2223 1204 219
136Xe 2142 187 255 2186 1171 215
208Pb 2104 1129 124 2137 193 244

the results obtained including only Pauli principle like
processes). This shift is found to scale with A21 as
expected from general arguments [36] and simple models
[15,33,34,39]. The second mechanism arises from the
interaction of the �12

i0
3 12

i0
�Jp configuration with all

one-phonon states. The energy shifts arising from this
interaction are given in columns II of Table II. A strong
cancellation with the first contribution is found, although
not as complete as that reported in Ref. [33], where
estimates of the two contributions to the total energy shift
under discussion have been carried out within a schematic
model. This (second) contribution arising from the in-
teraction of two-phonon configurations with one-phonon
states is found, in the present simplified calculations, not
to have any simple dependence with A, as it arises from the
coupling of the single two-phonon configuration chosen,
to relatively few one-phonon configurations lying close in
energy and displaying a moderate value of the coupling
matrix elements.

Carrying the diagonalization in the full two- and one-
phonon space, the contribution to the DGDR energy
centroid associated with the second mechanism vanishes
because the trace of the matrices is conserved indepen-
dently on the values of nondiagonal matrix elements.
Consequently, the centroid of each of the DGDR configu-
rations (diagonal elements) remains at the noninteractive
value, eventually modified by the Pauli principle for two-
phonon corrections. The corresponding energy shifts
DEc�Jp � for the double magic nuclei 40Ca and 208Pb ob-
tained in the present calculation (cf. Table I columns four
and five) are of the same order of magnitude as those ob-
tained in microscopic calculations in Refs. [24,26,32]. On
the other hand, the mixing between one- and two-phonon
states obtained for the other nuclei (cf. Table II) are larger
than for 40Ca and 208Pb. This is in keeping with the fact
that doubly magic nuclei are much more rigid than the
semimagic ones. The most collective �12

i 3 12
i �01�21� con-
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FIG. 2. Shift of the DGDR energy centroid (01 stars and 21

triangles) from the harmonic limit. The continuous and dashed
curves represent fits, assuming an A21 and an A25�3 dependence,
respectively, of the results of the microscopic calculations.

figuration in general prefers to mix with either [LEOR 3

HEOR] or other �12
i 3 12

i0 �01�21� configurations where
L(H)EOR is the low (high) energy octupole resonance.

From the systematic calculations one can extract the
A dependence of the energy shifts of the centroids from
the harmonic limits. For this purpose, the values of the
energy shifts of the DGDR are shown in Fig. 2 as func-
tions of A. The continuous curve represents an A21 fit-
ting to the data, while the dashed line shows the A25�3

dependence obtained in the variational time-dependent ap-
proach of Ref. [31]. The results of our calculations fol-
low quite accurately the A21 behavior, even if both doubly
and semimagic nuclei have been included in the systemat-
ics. Weighting equally the 01 and 21 components of the
DGDR we obtain from a x2 analysis of the results dis-
played in Fig. 2, DE � b ? A2a with a � 1.08 6 0.06
and b � 237 6 8 MeV.

Although our conclusion on the A21 dependence is
based on calculations within a specific model, general ar-
guments [36] and estimates [15,33,34,39] support it. Dif-
ferent A dependence of the energy shift is discussed in [34],
in terms of the number of active nucleons. The present
results indicate that in the case of the GDR this number
is indeed of the order of A2�3, as for the V factor in [36].

We conclude that the deviation of the energy centroid
of the double giant dipole resonance from the harmonic
limit displays a behavior with mass number A typical of
that associated with the global properties characterizing
the system, such as, e.g., the energy centroid of the giant
dipole resonance.

Discussions with G. F. Bertsch, K. Hagino, I. Hama-
moto, and B. Mottelson are gratefully acknowledged. We
thank J. Bryssinck for help. V. Yu. P. acknowledges support
from INFN and NATO.
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