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The coupling of the giant quadrupole resonance to valence-space configurations is shown to be the

origin of the formation of low-lying quadrupole-collective structures in vibrational nuclei with symmetric

and mixed-symmetric character with respect to the proton-neutron degree of freedom. For the first time

experimental evidence for this picture is obtained from electron- and proton scattering experiments on the

nucleus 92Zr that are sensitive to the relative phase of valence-space amplitudes by quantum interference.
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A general phenomenon of the low-energy structure in
heavy atomic nuclei are collective quantum states, in par-
ticular, of quadrupole nature. In the context of nuclear
structure physics the interacting boson model (IBM) [1]
is an example of an effective field theory (EFT), formu-
lated consistently with the symmetries of the intrinsic
shapes of the nucleus. It describes the dynamics of collec-
tive low-energy nuclear excitations. Effective field theories
for relevant low-energy degrees of freedom of complex
systems are a concept of fundamental importance in phys-
ics with broad applications in many different areas like the
Fermi theory of nuclear � decay, Chiral Perturbation the-
ory in strong-interaction physics [2,3], or the BCS theory
of superconductivity in condensed matter [4]. The under-
lying principle is a separation of energy (respectively
momentum) scales such that the high-energy degrees of
freedom are integrated out leading to a low-energy theory
consistent with the symmetries and their breaking pattern.
The high-energy sector manifests itself in a set of parame-
ters in the low-energy EFT which have to be determined
from experiment. Each EFT is only capable to describe
phenomena at a specific (sufficiently low) energy scale.

In the IBM the relevant low-energy degrees of freedom
for the description of quadrupole-collectivity are bosons
with intrinsic angular momentum L ¼ 0 (s bosons) or L ¼
2 (d bosons). These lead to an effective Hamiltonian whose
parameters are adjusted to data. However, a microscopic
and quantitative theory for the derivation of these parame-
ters is still missing. Attempts have been made within the
valence-shell model [5] with partial success. Such an ap-
proach could only be hoped to be successful if the domi-
nant part of the quadrupole collectivity would indeed
originate from the valence shell. It is the purpose of this
Letter to report new experimental evidence on how the
coupling to cross-shell transitions forming the giant
quadrupole resonance (GQR) contributes to the formation
of low-energy nuclear collectivity. This is achieved by an
analysis of transition densities in electromagnetic and

hadronic scattering reactions that enable us for the first
time to observe and understand the interference of the
valence-shell components of the quadrupole phonon
wave functions with those stemming from cross-shell
excitations.
To keep the discussion transparent, we study the forma-

tion of quadrupole collectivity in the particularly simple
case of a nucleus with a low-energy structure that is
dominated by one pair of valence particles each for protons
and neutrons. An example is the nucleus 92Zr with 2
neutrons beyond the N ¼ 50 shell closure and 2 protons
beyond the Z ¼ 38 subshell closure. The lowest 2-
quasiparticle (2QP) states will therefore have �ð1g9=2Þ2
and �ð2d5=2Þ2 configurations. Because of the residual

proton-neutron interaction two different classes of
collective excitations appear at low energy in which the
amplitudes of the two most important 2QP configurations
are coupled in a symmetric or antisymmetric way,
respectively. This has been formalized in the proton-
neutron version of the IBM [1] where the former are
referred to as fully symmetric (FS) and the latter as
mixed-symmetry (MS) states [6,7]. In 92Zr, experimentally
identified candidates are the 2þ1 and 2þ2 states [8,9], albeit,

with some degree of configurational isospin polariza-
tion [9–11].

Experimental evidence for different types of mixed-
symmetry states exists like the 1þms scissors mode in de-
formed nuclei [12,13] and the 2þms one-phonon state in
vibrational nuclei [14]. Signatures of a 2þms state are a
strong M1 transition to the 2þfs state with matrix elements

jh2þfs k M1 k 2þmsij � 1�N and a weakly collective E2 tran-
sition to the ground state due to its one-phonon character.
The importance of the 2þfs and 2

þ
ms phonons as fundamental

degrees of freedom of low-energy nuclear structure in
vibrational nuclei is highlighted by their capability
of forming multiphonon-coupled structures, such as,
e.g., the ½2þfs � 2þms� two-phonon states discovered in the
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N ¼ 52 isotone 94Mo [15–18], and confirmed in other
nuclides, (see, e.g., [9,19,20]).

In a phenomenological valence-space approach to quad-
rupole collectivity like the IBM-2 a simplified Hamiltonian
can be written as

H ¼ ��nd� þ ��nd� þ 2�Q
��
� Q

��
� ; (1)

where �� and nd� (� ¼ �, �) are the d boson energies and

number operators. The dominant part of the crucial proton-

neutron interaction is codified in the third term with Q
��
�

being the boson quadrupole operators. An increase of the
interaction strength � will strengthen the mixing of the
unpertubed proton and neutron boson states and will finally
cause the formation of the collective 2þfs and 2þms states

connected by a strongM1 transition as seen in experiment.
This parameter needs to be fixed empirically to data.
Likewise, the low-energy structure of 92Zr can be de-
scribed well within the shell model [8,10], but again pa-
rameters (effective charges) have to be introduced as to
reproduce quadrupole collectivity.

To shed light on the microscopic origin of the effective
coupling strength in the valence shell we consider a differ-
ent theoretical approach, viz., the quasiparticle-phonon
model (QPM) [21]. The QPM starts with interacting
particle-hole excitations from which ‘‘phonons’’ are gen-
erated by the random-phase approximation (RPA) ap-
proach. These form elementary degrees of freedom from
which a more general Hamiltonian can be derived which
allows for multiphonon states. The QPM covers a suffi-
ciently large single-particle space to satisfy the energy-
weighted sum-rules. The QPM approach has proven to
account very successfully for the low-energy properties
in a large number of vibrational nuclei [22–24]. In the
spirit of an interpretation of IBM-2 and shell model as
EFTs, the QPM can be viewed as ‘‘complete theory’’
including the high-energy degrees of freedom.

The main properties of the 2þfs and 2
þ
ms states of

92Zr and
their transitions are compared in Table I with the QPM
results [23], that describe the data remarkably well. The
QPM wave functions are dominated by the lowest � and �
2QP components, that show the expected in-phase and
out-of-phase behavior for the 2þfs and 2þms states. The mag-

netic moments of these states and the strong M1 transition

between them originate almost entirely from the valence-
shell configurations as it is shown in Fig. 1. However, the
BðE2Þ strengths are generated to about 80% from many
components beyond the valence shell although their total
contribution to the wave function norm is of the order
of 1%, only.
The role of the GQR is demonstrated in Fig. 1, which

shows the running sums of the BðM1Þ and BðE2Þ transition
strengths as a function of the maximum 2QP energy in-
cluded in the calculation. The M1 strength saturates at
about 6 MeV, i.e., only valence-shell configurations are
relevant, while the largest part of the E2 strengths exciting
the 2þfs and 2

þ
ms phonons is generated by states in the energy

region of the GQR around 15–20 MeV.
Apparently, three ingredients are needed to describe the

quadrupole-collective one-phonon excitations: the domi-
nant proton and neutron valence-shell components and
the GQR. To obtain a qualitative understanding of the
mechanism dominating the formation of the quadrupole-
collective states within a full-space calculation like the
QPM, we thus consider a simple three-state model
(TSM) taking into account the lowest neutron and proton
2QP states at energies of 1.917 and 3.172 MeV, respec-
tively, and in addition the GQR located at 11 MeV. As in
Landau-Migdal theory [25] the interaction between the
GQR and the quasiparticle states can be approximated by a
	 function

V
 ¼gh
j	ð ~r� ~r0ÞjGQRi¼g
Z
drr2�
ðrÞ�GQRðrÞ; (2)

where 
 refers to the � or � 2QP state, respectively. The
parameter g is the interaction strength and �
, �GQR stand

for the transition densities taken from the QPM calculation.
The value for g is adjusted to reproduce the experimental
energy of the 2þ1 state of 92Zr. Finally, the following
Hamiltonian,

HTSM ¼
EGQR �V� �V�

�V� �� 0
�V� 0 ��

0
@

1
A ; (3)

TABLE I. Comparison of the QPM results for wave function
amplitudes (top) and selected observables of the 2þfs and 2þms

states in 92Zr with the TSM and experiment [9,11].

Full QPM TSM Exp.

2þfs 2þms 2þfs 2þms

�ð2d5=2Þ2 0.85 �0:54 0.70 �0:70 � � �
�ð1g9=2Þ2 0.36 0.57 0.63 0.70 � � �
BðE2: 2þfs ! 0þ1 Þ (e2 fm4) 145 181 158(15)

BðE2: 2þms ! 0þ1 Þ (e2 fm4) 65 60 84(10)

BðM1: 2þms ! 2þfs Þ (�2
N) 0.64 0.86 0.37(4)

�ð2þfs Þ (�N) �0:22 0.33 �0:18ð1Þ
�ð2þmsÞ (�N) 0.75 0.47 0.76(50)
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FIG. 1 (color online). Transition strengths as a function of the
maximum 2QP energy included in the QPM calculation for
(a) ground state excitation of the 2þfs and 2þms states, and

(b) M1 transition between both states.
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is diagonalized. Here, EGQR, �� and �� stand for the

unperturbed energies. The interaction matrix elements in
the valence space are a factor 4 to 8 smaller than those for
the GQR and are neglected for simplicity. The results of
this simple scheme are confronted with the QPM calcula-
tion in Table I. The main properties, i.e., formation of
predominantly symmetric and antisymmetric (with nega-
tive neutron amplitude due to its lower 2QP energy) one-
quadrupole phonon states and BðE2Þ and BðM1Þ values
are well reproduced in this simplified approach except that
the model somewhat overestimates the contribution of the
proton component to the 2þfs state.

Our first result is that the collectivity of the 2þfs and 2þms

states results predominantly from their coupling to the
GQR. The amplitudes of the states forming the GQR in
their wave functions are small, but the E2 matrix element
h0þ1 k E2 k GQRi is roughly 6 times larger than that of the

proton 2QP state, and the BðE2Þ strength is mainly pro-
duced by the GQR. This effect has previously been recog-
nized [26]. Secondly, the interaction with the GQR not
only produces the quadrupole collectivity of the low-lying
states but also causes a mixing of the two 2QP states in the
valence shell resulting in the formation of symmetric and
mixed-symmetric states at low excitation energies.

Can we find experimental evidence for this simple
scheme, i.e., is it possible to find a signature for the differ-
ent interference of the dominant valence-shell components
with the high-energy mode as predicted in the TSM?
Figure 2 displays the proton and neutron transition den-
sities of the 2þfs (top) and 2þms (bottom) states calculated in

the full QPM approach. The full transition densities (solid
curves) are decomposed in a collective part stemming from
the GQR (dotted curves) and the predominant 2QP
�ð2d5=2Þ2 or �ð1g9=2Þ2 contributions (dashed curves). An

out-of-phase coupling between the neutron valence-shell
contribution and the contribution from the GQR leads to a
destructive quantum interference that reduces the neutron
transition density at large radii (due to the larger radius of

the �ð2d5=2Þ2 orbital) and consequently shifts the maxi-

mum of the full neutron transition density to the interior
with respect to that one of the 2þfs state, as indicated by the

arrows in the left-hand side of Fig. 2. This effect reduces
the neutron transition radius of the 2þms with respect to the
2þfs state. In contrast, the proton transition radius remains

essentially unchanged since the �ð1g29=2Þ part couples

in phase to the GQR contribution in both states.
Apparently, two probes with different sensitivity to pro-

tons and neutrons are needed to study this quantum inter-
ference experimentally which has not been done so far.
Electron scattering at low momentum transfer provides a
measure of the charge transition radius. An (e, e0) experi-
ment was performed at the high-energy-resolution spec-
trometer [27] of the Darmstadt superconducting electron
linear accelerator (S-DALINAC). An enriched (94.6%)
self-supporting 92Zr target of 9:8 mg=cm2 areal density
was used. Data were taken covering a momentum-transfer
range q ’ 0:3–0:6 fm�1 indicating no difference between
the charge transition radii of the 2þfs and 2þms states within

experimental uncertainties (Fig. 3, top). Information about
the neutron transition radii can be derived from the proton
scattering data of Ref. [28]. At an incident energy of
800 MeV protons interact predominantly via the isoscalar
central piece of the effective projectile-nucleus interaction
[29]. Clearly, the refraction pattern of the (p, p0) cross
section for the 2þms state are shifted to higher q values as
compared to those to the 2þfs state (Fig. 3, bottom) corre-

sponding to a smaller transition radius. The combination of
both data sets unambiguously demonstrates that the phase
of the neutron valence-shell configurations changes its
sign between the 2þfs and the 2þms state for the first time.

Using the transition densities from Fig. 2, cross sections
were calculated in distorted wave Born approximation with
the codes DWBA07 [30] for proton scattering and the one
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(bottom) states in 92Zr from QPM calculations. The full tran-
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described in Ref. [31] for electron scattering. The T-matrix
parametrization of Franey and Love [29] was used to
describe the effective proton-nucleus interaction. The
QPM calculation reproduces well both the absolute values
of cross sections for both probes and the shift of the
refraction pattern to higher q values for the 2þms state in
the (p, p0) reaction as displayed in Fig. 3.

This phenomenon is not limited to the nucleus 92Zr. A
smaller transition radius of the 2þms state in comparison
to the 2þfs state (and other low-lying 2þ states) is also

observed in data sets [18] taken at iThembaLabs and at
the S-DALINAC on the isotone 94Mo (see Fig. 4).

In summary, we presented a simple mechanism to
explain the formation of the collective symmetric and
mixed-symmetric 2þ states in vibrational nuclei. The
proton-neutron quadrupole interaction responsible for the
mixing of the valence-space configurations is mediated by
their coupling to the GQR, whose contribution dominates
the E2 strengths of these states. In contrast, magnetic
properties can be understood to a large extent within the
scope of effective valence-space models. A combination of
proton and electron scattering data provides direct evi-
dence for the interference of high-energy configurations
from the GQR with leading valence-space configurations.
The data are sensitive to the relative signs of the leading
valence-shell configurations with respect to the GQR-
contribution and confirm the symmetric and mixed-
symmetric nature of the low-energy 2þ one-phonon states.
In particular, a flip of phase of the neutron valence con-
figuration between the 2þfs and the 2þms state was observed

and is understood as a consequence of the lower neutron
than proton 2QP energy at Z ¼ 40.

Since typical excitation energies of the low-lying
collective states are 1–2 MeV and that of the GQR
10–20 MeV, a clean separation of scales is given, leading
to an interpretation of valence-space approaches like the
IBM-2 and shell model as EFTs of microscopic models
capable to consistently treat valence-shell excitations and
giant resonances. While RPA-type models cover sufficient
single-particle spaces, they have to truncate on the contri-
bution of many-particle many-hole states to the wave
functions. Thus, the construction of effective interactions

in valence-space models remains relevant for a description
of low-energy nuclear structure. The present findings high-
light the peculiar role played by mixed-symmetry states in
such efforts (see, e.g., Ref. [32]) and in our understanding
of the formation of nuclear collectivity and of collective
phenomena in any strongly coupled multicomponent quan-
tum system.
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