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We propose a new method to calculate stellar weak-interaction rates. It is based on the thermofield dynamics
formalism and allows calculation of the weak-interaction response of nuclei at finite temperatures. The thermal
evolution of the GT+ distributions is presented for the sample nuclei 54,56Fe and 76,78,80Ge. For Ge we also calculate
the strength distribution of first-forbidden transitions. We show that thermal effects shift the GT+ centroid to
lower excitation energies and make possible negative- and low-energy transitions. In our model we demonstrate
that the unblocking effect for GT+ transitions in neutron-rich nuclei is sensitive to increasing temperature. The
results are used to calculate electron capture rates and are compared to those obtained from the shell model.

DOI: 10.1103/PhysRevC.81.015804 PACS number(s): 26.50.+x, 23.40.−s, 21.60.Jz, 24.10.Pa

I. INTRODUCTION

The properties of nuclei at finite temperatures have attracted
attention for a long time. Because of the considerable amount
of experimental data the main subject of study has been the
thermal properties of giant dipole resonance (see, e.g., Refs. [1]
and [2] and references therein). In the astrophysical context the
thermal properties of Gamow-Teller (GT) transitions are of
special interest, as they play a crucial role in weak-interaction-
mediated reactions [electron capture (EC), β decay, neutrino
scattering, etc.] [3]. For example, EC on iron-group nuclei
initiates the gravitational collapse of the core of a massive
star, triggering a supernova explosion. Moreover, EC rates
largely determine the mass of the core and thus the fate of
the shock wave formed by the supernova explosion. Because
the strong phase-space dependence makes the relevant stellar
weak-interaction rates at the early stage of the collapse—when
the electron chemical potential µe is of the same order as
the nuclear Q values—very sensitive to the GT distributions,
these need to be calculated very accurately in this regime.
With proceeding collapse and hence increasing density, µe

grows more rapidly than the Q values of the nuclei present
in the matter composition, and the capture rates become less
sensitive to the details of the GT distribution and are mainly
determined by the total GT strength and its centroid energy.
However, forbidden transitions can no longer be neglected
when µe reaches values of the order of 30 MeV at core densities
ρ > 1011 g/cm3 [3,4] The situation is further complicated by
the fact that weak-interaction processes in stellar environments
take place at temperatures of the order of a few hundred kilo–
electron volts to a few mega–electron volts and GT transitions
occur not only from the nuclear ground state, but also from
excited states.

*dzhioev@theor.jinr.ru

From a microscopic point of view, there are two routes for
handling GT strength distributions and weak-interaction rates
at finite temperatures. One is a state-by-state evaluation of
the rate by summing over Boltzmann-weighted, individually
determined GT strengths for the various states. The second is
based on an equilibrium statistical formulation of the nuclear
many-body problem. In this approach, the thermal response of
a nucleus to an external perturbing field is given by the canoni-
cal (or grand canonical) expectation value of the corresponding
transition operator. When applied to charge-exchange pro-
cesses this method yields the temperature-dependent GT and
first-forbidden (FF) strength function, which can be then used
to calculate weak-interaction rates.

For sd- and pf -shell nuclei the first approach was originally
used by Fuller et al. [5], who calculated stellar weak-
interaction rates using the independent-particle shell model,
supplemented by experimental data whenever available. To
allow for GT transitions from nuclear excited states these
authors employed the Brink hypothesis. This assumes that the
GT strength distribution for excited states is the same as for the
ground state, only shifted by the excitation energy of the state.
These rates were subsequently updated, taking into account
the quenching of the axial coupling constant [6]. Modern high-
performance computing capabilities combined with state-of-
the-art diagonalization approaches make possible shell-model
calculations of the GT strength distribution not only for the
nuclear ground state, but also for the few lowest excited states.
It was demonstrated [7,8] that even for the lowest excited states
in the parent nucleus the Brink hypothesis is valid only for the
bulk of the GT strength, and is not applicable for the individual
transitions to states at a low excitation energy in the daughter
nucleus. Taking this into account, weak-interaction rates based
on the shell-model diagonalization approach [9,10] were
derived from the individual GT distributions from the lowest
excited states and from “back-resonant contributions,” that is,
from transitions determined from the inverse GT distributions
connecting excited states in the daughter spectrum to the
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lowest states in the parent spectrum. However, the compilation
of Refs. [9]and [10] applied Brink’s hypothesis when taking
into account GT transitions from highly excited states. Weak-
interaction rates have also been computed using the spectral
distribution theory [11] and the proton-neutron quasiparticle
random-phase approximation (RPA) model [12]. The first
method is also based on the Brink hypothesis. The latter does
not use this hypothesis, but some uncertainties arise owing
to the approximate treatment of the parent excited states as
multiquasiparticle states as well as the insufficient knowledge
of the quantum numbers of the states involved. Recently,
stellar EC rates were calculated within the framework of the
finite-temperature RPA using a set of Skyrme interactions [13].
This method has the advantage of consistency, however, it
misses relevant correlations that, as we demonstrate here, are
crucial for deriving stellar EC rates for neutron-rich nuclei.

The statistical way to calculate temperature-dependent GT
and FF strength functions was first applied in Ref. [4] to study
EC on neutron-rich nuclei. The most advanced realization of
this procedure is presently performed in the framework of the
shell-model Monte Carlo (SMMC) method [14]. It was found
[15] that, with increasing temperature, the GT centroids shift
to lower excitation energies and the widths of the distributions
increase with the appearance of low-lying strength. Both
effects arise from thermally excited states, that is, the Brink
hypothesis is not supported by SMMC calculations. Despite
its advantages, the SMMC method yields only the lowest
moments of the GT strength distributions, which introduce
some inaccuracies into the rate calculations. Moreover, the
SMMC method has restrictions in its applicability to odd-odd
and odd-A nuclei at low temperatures.

Thus, the problem of an accurate description of the
GT strength distribution at finite temperatures and reliable
estimates of stellar weak-interaction rates is not solved com-
pletely yet: The shell-model diagonalization approach allows
for detailed spectroscopy but partially employs the Brink
hypothesis. The SMMC method is free of this disadvantage
but cannot provide a detailed strength distribution. Moreover,
present computer capabilities allow application of the shell-
model diagonalization method only to nuclei in the iron region
(A = 45–65), whereas the SMMC approach can be applied, in
principle, to all nuclei. However, such calculations are rather
time-consuming and have therefore been limited to about
200 nuclei with mass numbers A = 65–120 [3,16], although
weak processes in more massive and neutron-rich nuclei also
play an important role in various astrophysical scenarios.
Therefore, alternative methods for dealing with GT strength
distributions and weak-interaction rates at finite temperatures
are desirable.

In this paper we study the temperature dependence of
the GT strength by applying the proton-neutron quasiparticle
RPA [17] extended to finite temperature by the thermofield
dynamics (TFD) formalism [18,19]. This technique does
not rely on Brink’s hypothesis. The energies of the GT
transitions and corresponding transition strengths are calcu-
lated as functions of the nuclear temperature. We apply this
method to calculate rates of weak-interaction processes on
iron-group nuclei and neutron-rich nuclei beyond the pf

shell. However, the method is not restricted to these nuclei

but can be applied to heavier nuclei as well. It also allows
calculation of the strength distributions of forbidden transitions
that contribute significantly to weak-interaction rates at high
densities. Although, in the present paper, we restrict our study
to the one-phonon, that is, RPA, approach, the method can be
extended to take into account multiphonon admixtures, thus
yielding more detailed strength distributions.

The paper is organized as follows. In Sec. II, some
important features of the TFD formalism with application
to the nuclear structure problem at finite temperatures are
presented. The thermal quasiparticle RPA (TQRPA) equations,
which describe the strength distributions of charge-exchange
transitions in hot nuclei, are given in Sec. II as well. In
Sec. III the necessary formulas to calculate EC rates in
a stellar environment are introduced. Results for the GT
strength distributions and EC rates in 54,56Fe are presented in
Sec. IV. There we also compare the results with those from the
shell-model diagonalization approach. In Sec. V, we study the
temperature dependence of GT and FF strength distributions
in the neutron-rich isotope 76Ge. The corresponding EC
cross sections and rates are calculated and compared with
those obtained within the hybrid SMMC + RPA model [20].
Conclusions are drawn in Sec. VI.

II. FORMALISM

For study of the thermal behavior of quantum many-
body systems, the TFD method has two attractive features:
(a) temperature effects arise explicitly as T -dependent vertices,
providing a convenient starting point for various approxima-
tions; and (b) temperature and time are independent variables.
The first feature allows for straightforward extensions of
well-established zero-temperature approximations. It has been
employed previously in Refs. [21–25], where selected nuclear
structure problems at finite temperatures were considered.

The standard TFD formalism treats a many-particle system
in thermal equilibrium with a heat bath and a particle reservoir
in the grand canonical ensemble. The thermal average of a
given operator A is calculated as the expectation value in
a specially constructed, temperature-dependent state |0(T )〉,
which is termed the thermal vacuum. This expectation value
is equal to the usual grand canonical average of A.

To construct the state |0(T )〉, a formal doubling of the
system degrees of freedom is introduced. In TFD, a tilde
conjugate operator Ã—acting in the independent Hilbert
space—is associated with A, in accordance with properly
formulated tilde conjugation rules [18,19,26]. For a system
governed by the Hamiltonian H the whole Hilbert space is
now spanned by the direct product of the eigenstates of H

(H |n〉 = En|n〉) and those of the tilde Hamiltonian H̃ , both
having the same eigenvalues (H̃ |̃n〉 = En |̃n〉). In the doubled
Hilbert space, the thermal vacuum is defined as the zero-energy
eigenstate of the so-called thermal Hamiltonian H = H − H̃

and it satisfies the thermal-state condition [18,19,26]

A|0(T )〉 = σeH/2T Ã†|0(T )〉, (1)

where σ = 1 for bosonic A and σ = i for fermionic A.
The important point is that in the doubled Hilbert space the

time-translation operator is not the initial Hamiltonian H , but
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the thermal Hamiltonian H. This means that the excitations
of the thermal system are obtained by the diagonalization of
H. As follows from the definition of H, each of its eigenstates
with positive energy has a counterpart—the tilde-conjugate
eigenstate—with negative energy but the same absolute value.
This is a way to treat excitation- and de-excitation processes
at finite temperatures within TFD.

Obviously, in most practical cases one cannot diagonalize
H exactly. Usually, one resorts to certain approximations such
as the Hartree-Fock Bogoliubov mean field theory and the
RPA (see, e.g., Ref. [22]). In what follows the formal part of
the TFD studies for charge-exchange excitations in hot nuclei
is based in part on the results of Refs. [27] and [28].

In the present study we use a phenomenological nuclear
Hamiltonian consisting of a static mean field, Bardeen-
Cooper-Schrieffer (BCS) pairing interactions, and separable
multipole and spin-multipole particle-hole interactions, in-
cluding isoscalar and isovector parts. This is usually referred
to as the quasiparticle-phonon model (QPM) [29]. It was used
to study the charge-exchange excitations in nuclei at zero
temperature in Refs. [30] and [31]. In principle, the QPM
formalism enables one to go beyond the QRPA and take
into account the coupling of quasiparticles and phonons. At
finite temperatures this coupling was considered in Refs. [24]
and [27]. However, in the present study we restrict ourselves
to the TQRPA.

The main line of the present discussion is very similar to the
QPM at T = 0 [29]. We begin with the thermal Hamiltonian,
which reads as

HQPM = HQPM − H̃QPM = Hsp + Hpair + Hph. (2)

The first step in the approximate diagonalization of HQPM

is the treatment of the pairing correlations. This is done by
two successive unitary transformations. The first is the usual
Bogoliubov u, v transformation from the original particle
operators a

†
jm, ajm to the quasiarticle ones α

†
jm, αjm. The

same transformation is applied to tilde operators ã
†
jm, ãjm,

thus producing the tilde quasiparticle operators α̃
†
jm, α̃jm.

The second transformation is the so-called thermal Bo-
goliubov transformation [18,19]. It mixes the quasiparticle
and tilde quasiparticle operators, thus producing thermal
quasiparticle operators and their tilde partners: β

†
jm, βjm, β̃

†
jm,

and β̃jm. We use Ojima’s [26] complex form of the thermal
Bogoliubov transformation:

β
†
jm = xjα

†
jm − iyj α̃jm,

(3)
β̃
†
jm = xj α̃

†
jm + iyjαjm

(
x2

j + y2
j = 1

)
.

The reasons for this are given in Ref. [27].
The coefficients uj , vj , xj , and yj are found by diagonal-

izing Hsp + Hpair and demanding that the vacuum of thermal
quasiparticles obeys the thermal-state condition (1). This is
equivalent to the minimization of the thermodynamic potential
for Bogoliubov quasiparticles. As a result one obtains the

following equations for uj , vj and xj , yj :

vj = 1√
2

(
1 − Ej − λτ

εj

)1/2

, uj = (
1 − v2

j

)1/2
, (4)

yj =
[
1 + exp

(εj

T

)]−1/2
, xj = (

1 − y2
j

)1/2
, (5)

where εj = √
(Ej − λτ )2 + �2

τ and τ is the isospin quantum
number τ = n, p.

The pairing gap �τ and the chemical potential λτ are the
solutions to the finite-temperature BCS equations,

�τ (T ) = Gτ

2

τ∑
j

(2j + 1)
(
1 − 2y2

j

)
ujvj ,

(6)

Nτ =
τ∑
j

(2j + 1)
(
v2

j x
2
j + u2

j y
2
j

)
,

where Nτ is the number of neutrons or protons in a nucleus
and

∑τ implies a summation over neutron or proton single-
particle states only. From the numerical solution of Eqs. (6) it
is found that the (pseudo-)critical temperature is Tcr ≈ 1

2�τ (0)
(see, e.g., Refs. [32] and [33]), in accordance with the BCS
theory.

With the coefficients uj , vj , xj , and yj , defined by Eqs. (4)
and (5), the one-body part of Hsp + Hpair reads

Hsp + Hpair �
∑

τ

τ∑
jm

εj (β†
jmβjm − β̃

†
jmβ̃jm) (7)

and corresponds to a system of noninteracting thermal quasi-
particles. The vacuum for thermal quasiparticles (hereafter
denoted |0(T ); qp〉) is the thermal vacuum in the BCS
approximation. The states β

†
jm|0(T ); qp〉 have positive ex-

citation energies, whereas the corresponding tilde states
β̃
†
jm|0(T ); qp〉 have negative energies.

The coefficients y2
j defined through Eq. (5) determine the

average number of thermally excited Bogoliubov quasiparti-
cles in the BCS thermal vacuum,

〈0(T ); qp|α†
jmαjm|0(T ); qp〉 = y2

j (8)

and, thus, coincide with the thermal occupation factors of the
Fermi-Dirac statistics. Because the thermal vacuum |0(T ); qp〉
contains a certain number of Bogoliubov quasiparticles,
excited states can be built on |0(T ); qp〉 by either adding or
removing a Bogoliubov quasiparticle. Because

α
†
jm|0(T ); qp〉 = xjβ

†
jm|0(T ); qp〉,

αjm|0(T ); qp〉 = −iyj β̃
†
jm

|0(T ); qp〉 (9)

[αjm = (−1)j−mαj−m],

the first process corresponds to the creation of a nontilde
thermal quasiparticle with positive energy, whereas the second
process creates a tilde quasiparticle with negative energy.

In the next step of the approximate diagonalization of
HQPM, long-range correlations owing to the particle-hole
interaction are taken into account within the proton-neutron
TQRPA. The part of Hph in Eq. (2) responsible for charge-
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exchange excitations reads

Hch
ph = −2

∑
λµ

κ
(λ)
1 (M†

λµMλµ − M̃
†
λµM̃λµ)

− 2
∑
Lλµ

κ
(Lλ)
1 (S†

LλµSLλµ − S̃
†
LλµS̃Lλµ), (10)

where M
†
λµ and S

†
Lλµ are single-particle multipole and spin-

multipole operators:

M
†
λµ =

∑
jpmp
jnmn

〈jpmp|iλrλYλµ(θ, φ)t (−)|jnmn〉a†
jpmp

ajnmn
,

S
†
Lλµ =

∑
jpmp
jnmn

〈jpmp|iLrL[YLσ ]λµt (−)|jnmn〉a†
jpmp

ajnmn
,

[YLσ ]λµ =
∑
M,m

〈LM1m|λµ〉YLM (θ, φ)σm. (11)

The parameters κ
(λ)
1 and κ

(Lλ)
1 denote the strength parameters of

the isovector multipole and spin-multipole forces, respectively.
The states of natural parity are generated by the multipole and
spin-multipole L = λ interactions, whereas the spin-multipole
interactions with L = λ ± 1 are responsible for the states of
unnatural parity.

Within the TFD formalism the TQRPA equations are
derived in the following way. First, Hch

ph is written in terms
of the thermal quasiparticle operators. Then the sum of
Eq. (7) and Hch

ph is diagonalized with respect to charge-
exchange thermal phonons.

The thermal phonon creation operator Q
†
λµi is defined as

a linear superposition of the proton-neutron thermal two-
quasiparticle operators,

Q
†
λµi =

∑
jpjn

(
ψλi

jpjn

[
β
†
jp

β
†
jn

]λ

µ
+ ψ̃λi

jpjn

[
β̃
†
jp

β̃
†
jn

]λ

µ

+ iηλi
jpjn

[
β
†
jp

β̃
†
jn

]λ

µ
+ iη̃λi

jpjn

[
β̃
†
jp

β
†
jn

]λ

µ

+φλi
jpjn

[
βjp

βjn

]λ

µ
+ φ̃λi

jpjn

[
β̃jp

β̃jn

]λ

µ

+ iξλi
jpjn

[
βjp

β̃jn

]λ

µ
+ iξ̃ λi

jpjn

[
β̃jp

βjn

]λ

µ

)
, (12)

where [ ]λµ denotes the coupling of single-particle angular
momenta jn, jp to the total angular momentum λ. Now the
thermal equilibrium state is treated as the vacuum |0(T ); ph〉
for thermal phonon annihilation operators.

The thermal phonon operators are assumed to commute as
bosonic operators, that is, [Qλµi,Q

†
λ′µ′i ′ ] = δλλ′δµµ′δii ′ . This

assumption imposes the following constraint on the phonon
amplitudes:∑

jpjn

(
ψλi

jpjn
ψλi ′

jpjn
+ ψ̃λi

jpjn
ψ̃λi ′

jpjn
+ ηλi

jpjn
ηλi ′

jpjn

+ η̃λi
jpjn

η̃λi ′
jpjn

− φλi
jpjn

φλi ′
jpjn

− φ̃λi
jpjn

φ̃λi ′
jpjn

− ξλi
jpjn

ξλi ′
jpjn

− ξ̃ λi
jpjn

ξ̃ λi ′
jpjn

) = δii ′ . (13)

Furthermore, the phonon amplitudes obey the closure relation.
Demanding that the vacuum of thermal phonons obeys the

thermal-state condition (1) and applying the variational prin-

ciple to the average value of the thermal Hamiltonian with re-
spect to one-phonon states Q

†
λµi |0(T ); ph〉 or Q̃

†
λµi

|0(T ); ph〉1

under the constraints (13), one gets a system of linear equations
for the amplitudes ψλi

jpjn
, ψ̃λi

jpjn
, ηλi

jpjn
, η̃λi

jpjn
, etc. The system

has a nontrivial solution if the energy ωλi of the thermal
one-phonon state obeys the following secular equation:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X(+)
aa − 1

κ
(a)
1

X(+−)
aa X

(+)
ab X

(+−)
ab

X(−+)
aa X(−)

aa − 1

κ
(a)
1

X
(−+)
ab X

(−)
ab

X
(+)
ab X

(+−)
ab X

(+)
bb − 1

κ
(b)
1

X
(+−)
bb

X
(+−)
ab X

(−)
ab X

(−+)
ab X

(−)
bb − 1

κ
(b)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(14)

where a ≡ λ and b ≡ λλ for excitations of natural parity,
whereas a ≡ (λ − 1)λ and b ≡ (λ + 1)λ for unnatural-parity
excitations. The functions X

(±)
cd , X(±∓)

cd (c = a, b and d = a, b)
in Eq. (14) are defined as

X
(±)
cd (ω) = 2

λ̂2

∑
jpjn

f
(c)
jpjn

f
(d)
jpjn

{
ε

(+)
jpjn

[
u

(±)
jpjn

]2[
ε

(+)
jpjn

]2 − ω2

× (
1 − y2

jp
− y2

jn

) −
ε

(−)
jpjn

[
v

(∓)
jpjn

]2[
ε

(−)
jpjn

]2 − ω2

(
y2

jp
− y2

jn

)}
,

X
(±∓)
cd (ω) = 2ω

λ̂2

∑
jpjn

f
(c)
jpjn

f
(d)
jpjn

{
u

(±)
jpjn

u
(∓)
jpjn[

ε
(+)
jpjn

]2 − ω2

× (
1 − y2

jp
− y2

jn

) −
v

(±)
jpjn

v
(∓)
jpjn[

ε
(−)
jpjn

]2 − ω2

(
y2

jp
− y2

jn

)}
.

(15)

Here f
(λ)
jpjn

and f
(Lλ)
jpjn

denote the reduced single-particle matrix
elements of the multipole and spin-multipole operators, Eq.
(11); u

(±)
jpjn

= ujp
vjn

± vjp
ujn

and v
(±)
jpjn

= ujp
ujn

± vjp
vjn

;

ε
(±)
jpjn

= εjp
± εjn

; and λ̂ = √
2λ + 1.

Let us consider the secular equation in detail. The poles
ε

(−)
jpjn

, which do not exist in the QRPA equations at zero

temperature, arise from the crossed terms β†β̃† in the thermal
phonon operator definition, Eq. (12). Because of these poles,
new states appear in a low-energy part of the thermal excitation
spectrum. In contrast to the zero-temperature case, the negative
solutions of the secular equation now have a physical meaning.
They correspond to the tilde thermal one-phonon states
and arise from β̃†β̃† terms in the thermal phonon operator.

1We take into account that the operator Q̃
†
λµi

= (−1)λ−µQ̃
†
λ−µi

transforms under spatial rotations like a spherical tensor of rank λ.
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As noted previously, the creation of a tilde thermal quasipar-
ticle corresponds to the annihilation of a thermally excited
Bogoliubov quasiparticle. Consequently, excitations of low-
and negative-energy thermal phonons correspond to transitions
from thermally excited nuclear states. Furthermore, when
the pairing correlations vanish (i.e., T > Tcr), some poles no
longer contribute to the secular equation, as the corresponding
numerators vanish. This is true for particle-particle and hole-
hole ε

(+)
jpjn

poles as well as for particle-hole ε
(−)
jpjn

poles.
The expressions for the thermal charge-exchange phonon

amplitudes are given in Ref. [28]. The amplitudes depend
on both the quasiparticle and the phonon thermal occupation
numbers. Some remarks are in order. TQRPA equations for GT
excitations at finite temperature were also derived in Ref. [34].
They were obtained using the equation of motion method by
replacing vacuum expectation values with thermal averages,
that is, without applying the TFD formalism and doubling the
Hilbert space. Therefore, in contrast with the present study,
negative solutions of the TQRPA equations were neglected in
Ref. [34].

After diagonalization within the TQRPA the thermal
Hamiltonian HQPM becomes

HQPM =
∑
λµi

ωλi(Q
†
λµiQλµi − Q̃

†
λµiQ̃λµi). (16)

The vacuum |0(T ); ph〉 of thermal phonons is the thermal
vacuum in the TQRPA. Because we use the thermal BCS
approximation, which violates the particle number, the charge-
exchange thermal one-phonon states are superpositions of
states, which belong to the daughter nuclei (N − 1,Z + 1)
and (N + 1,Z − 1). They decouple at temperatures T � Tcr,
when the pairing correlations vanish. Then, if the state
Q

†
λµi |0(T ); ph〉 belongs to the (N ± 1,Z ∓ 1) nucleus, the state

Q̃
†
λµi

|0(T ); ph〉 is in the (N ∓ 1,Z ± 1) nucleus.

III. ELECTRON CAPTURE RATES

Considering EC in stellar environments we make the fol-
lowing assumptions. (1) The temperature in the stellar interior
is so high that atoms are fully ionized, and the surrounding
electron gas is described by a Fermi-Dirac distribution, with
temperature T and chemical potential µe. Neutrinos escape
freely from the interior of the star. Hence no Pauli blocking
for neutrinos is considered in the final state. (2) The parent
nucleus is in a thermal equilibrium state treated as the thermal
(phonon) vacuum. (3) EC leads to charge-exchange transitions
from the thermal vacuum to thermal one-phonon states.

In these circumstances the EC rate is the sum of the
transition rates from the thermal vacuum to the ith thermal
one-phonon state of the multipolarity J ,

λec = ln 2

6150 s

∑
J

∑
i

�
(+)
J i F ec

i =
∑

J

∑
i

λec
J i . (17)

Here �
(+)
J i is the squared reduced matrix element of the

transition operator between the thermal phonon vacuum and
a thermal one-phonon state (see the following); F ec

i is a
phase-space factor that depends on the transition energy E

(+)
J i

and can be found elsewhere [9].

Denoting the proton-to-neutron (p → n) transition opera-
tor with multipolarity J as D

(+)
J , one obtains the following

expression for the transition strength �
(+)
J i :

�
(+)
J i = ∣∣〈0(T ); ph‖QJMiD

(+)
J ‖0(T ); ph〉∣∣2

=
⎡⎣∑

jpjn

(−1)jn−jp+J d
(+)
J (jpjn)�(jpjn; J i)

⎤⎦2

, (18)

where d
(+)
J (jpjn) = 〈jn‖D(+)

J ‖jp〉 is a reduced single-particle
matrix element of the transition operator, and the function
�(jpjn; J i) is given by

�(jpjn; J i) = vjp
ujn

(
xjp

xjn
ψJi

jpjn
+ yjp

yjn
φ̃J i

jpjn

)
+ujp

vjn

(
yjp

yjn
ψ̃J i

jpjn
+ xjp

xjn
φJ i

jpjn

)
− vjp

vjn

(
xjp

yjn
ηJ i

jpjn
+ yjp

xjn
ξ̃ J i
jpjn

)
+ujp

ujn

(
yjp

xjn
η̃J i

jpjn
+ xjp

yjn
ξ J i
jpjn

)
. (19)

The transition strength to the tilde one-phonon state can
be easily obtained from Eqs. (18) and (19) by changing
nontilde phonon amplitudes by their tilde counterparts, and
vice versa. (The expressions for the transition strengths �

(−)
J i

corresponding to inverse n → p transitions are given in
Ref. [28]. It has been proved in Ref. [28] that the approach used
here fulfills the Ikeda sum rule for Fermi and GT transitions.)

The transition energy (parent excitation energy) E
(+)
J i can be

obtained from the energy shift between the proton subsystem
of the parent nucleus and the neutron subsystem of the daughter
nucleus including the proton-neutron mass difference. Thus
we have

E
(+)
J i = ωJi + (�µnp + �mnp), (20)

where �µnp = µp − µn is the difference between the neutron
and the proton chemical potentials and �mnp = mn − mp

is the neutron-proton mass splitting. Note that at finite
temperature the energies E

(+)
J i as well as ωJi can be both

positive and negative. Thus, for the capture process thermal
one-phonon states with both positive and negative values of
E

(+)
J i contribute to the rate.
In what follows in Eq. (17) we take into account the

contributions from allowed (GT and Fermi) transitions and FF
transitions. The operators of allowed Fermi and GT transitions
are taken in the standard form,

D
(+)
0+ = gV t (+), D

(+)
1+ = gAσ t (+), (21)

where t (+) is the isospin raising operator. For the operators of
the FF n → p transitions the nonrelativistic form is used:

D
(+)
0− = gA

[σ · p
m

+ αZ

2R
iσ · r

]
t (+),

D
(+)
1− =

[
gV

p
m

− αZ

2R
(gAσ × r − igV r)

]
t (+), (22)

D
(+)
2− = i

gA√
3

[σ · r]2
µ

√
p2

e + q2
ν t

(+).

In Eqs. (21) and (22), r , p, and σ refer to the coordinate,
momentum, and spin operators of a nucleon; gV = 1 and gA =
−1.25 denote the vector and axial coupling constants; α is the
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fine structure constant; Z and R are the charge and the radius
of the nucleus; m is the nucleon mass; and pe and qν denote
the momenta of the incoming electron and outgoing neutrino,
respectively.

IV. IRON ISOTOPES

In this section we discuss the numerical results for the
pf -shell nuclei 54,56Fe. Experimental data are available for
these nuclei to test our calculations at zero temperature.
Moreover, these iron isotopes are among the most essential
nuclei in their importance to the EC process for the early
presupernova collapse [6,35].

The proton and neutron mean fields are described by
spherically symmetric Woods-Saxon potentials with param-
eters from Ref. [36]. We only readjust the potential depths
to fit the proton and neutron binding energies of the
parent nucleus to their experimental values. The single-
particle basis includes all discrete bound states as well as
selected quasibound states with large j in the continuum.
The proton (neutron) pairing strength parameters Gp(n) are
fixed to reproduce the odd-even mass difference through a
four-term formula [37] involving the experimental binding
energies [38]. At T = 0 the obtained proton and neutron
BCS energy gaps are �p(n) = 1.52(0.0) MeV for 54Fe2 and
�p(n) = 1.57(1.36) MeV for 56Fe. The isovector strength
parameters κ

(01)
1 and κ

(21)
1 are adjusted to reproduce the experi-

mental centroid energies of the GT− and GT+ resonances in the
nuclei under consideration [39–41]. The corresponding values
of κ

(01)
1 and k

(21)
1 are in agreement with the rough estimates in

Ref. [42]. The spin-quadrupole interaction weakly affects the
GT strength distributions.

The total GT strengths calculated with the bare GT±
operators σ t (±) are S+ = 6.6 and S− = 12.7 in 54Fe and
S+ = 5.1 and S− = 17.0 in 56Fe, respectively. These S∓ values
obey the Ikeda sum rule (a small deviation is caused by the
incompleteness of our single-particle basis) but noticeably
overestimate experimental data (see, e.g., Refs. [39–41]). This
is common for any RPA [or quasiparticle RPA (QRPA)]
calculation of GT strength and is remedied by an effective
value for the axial weak coupling constant. We use g∗

A =
0.74gA as in shell-model calculations [9].

In Fig. 1, the experimental and theoretical (quenched)
distributions of GT+ strengths are presented. There we
also compare the GT+ running sums corresponding to the
experimental, QRPA, and large-scale shell-model (LSSM) [9]
strength distributions. One can see that the QRPA calculations
reproduce the resonance positions but not the fragmentation
of the strength. It is a well-known fact that RPA calculations
cannot describe the full resonance width (at least in spherical
nuclei) and produce only a part of it, the so-called Landau
width. The latter is quite small for the GT resonance. As
a result, the near-threshold part of the GT+ strength, which
corresponds to transitions to low-lying 1+ states in the daughter

2 54Fe has a closed 1f7/2 neutron subshell in our single-particle
scheme.

FIG. 1. (Color online) Left panels: Comparison of GT+ experi-
mental data [40,41] with the calculated QRPA strength distributions
for 54,56Fe. The QRPA peaks are scaled by 0.5 for convenience. Right
panels: Comparison of the GT+ running sums corresponding to the
experimental, QRPA, and LSSM [9] strength distributions.

nuclei 54,56Mn, is not reproduced in our calculations. In this
respect the shell-model calculations are clearly advantageous.

We now turn to the temperature evolution of the GT+
strength distributions. The strength distributions for 54,56Fe
at several temperatures are shown in Fig. 2. All figures are
plotted as a function of the energy transfer E to the parent
nucleus.

With increasing temperature, in our model, two effects
occur that influence the GT+ strength distribution.

(i) At low temperatures, owing to pairing, GT+ transitions
involve the breaking of a proton Cooper pair associated
with some energy cost. This extra energy is removed
at T > Tcr (Tcr ≈ 0.8 MeV) and the peak in the GT+
distribution moves to lower energies. Some extra energy
has to be paid at low temperatures to add one more
nucleon to the neutron subsystem of 56Fe because of
the nonzero neutron energy gap. Obviously, this energy
is also removed at T > Tcr.

(ii) GT+ transitions, which are Pauli blocked at low tem-
peratures owing to closed neutron subshells (e.g., 1f7/2

orbital), become thermally unblocked with increasing
temperature. Similarly, protons that are thermally ex-
cited to higher orbitals can undergo GT+ transitions. In
TFD such transitions are taken into account by β

†
jp

β̃
†
jn

,

β̃
†
jp

β
†
jn

, and β̃
†
jp

β̃
†
jn

components of the thermal phonon.

Because of thermally unblocked transitions, some GT+
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FIG. 2. (Color online) Temperature evolution of GT+ strength distributions for 54Fe (upper panels) and for 56Fe (lower panels) versus
parent excitation energy. The solid (dashed) lines refer to transitions to nontilde (tilde) thermal one-phonon states. St is the total GT+
strength. The arrows indicate the zero-temperature threshold Q = Mf − Mi , where Mi,f are the masses of the parent and daughter nuclei.
Q(54Fe) = 1.21 MeV and Q(56Fe) = 4.20 MeV.

strength appears well below the zero-temperature
threshold, including negative energies.

Owing to the vanishing of the pairing correlations and
the appearance of negative- and low-energy transitions, the
centroids of the GT+ strength distributions in 54,56Fe are
shifted to lower excitation energies at high temperatures. Our
calculations indicate that a temperature increase to 0.8 MeV
results in GT+ centroid shifts of the order of 1.5 MeV for 54Fe
and 2.5 MeV for 56Fe. Thus the present approach violates
Brink’s hypothesis. Similar results have been obtained in
SMMC calculations of GT centroids at finite temperatures. We
also observe (see Fig. 2) a gradual decrease in the total GT+
strength when the temperature increases from 0 to 0.8 MeV.
Nevertheless, as pointed out previously, the present approach
preserves the Ikeda sum rule at finite temperatures.

The calculated GT+ strength distributions were used to
obtain the stellar EC rates for 54,56Fe. The rates were calculated
for densities between log10(ρYe) = 7 and log10(ρYe) = 10 as a
function of temperature T9 (T9 = 109 K and 1 MeV ≈ 11.6T9).
A comparison between the TQRPA rates and the LSSM results
[10] is presented in Fig. 3.

As must be, the EC rates increase with temperature and
density. Owing to the larger value of the zero-temperature
threshold Q for 56Fe, both approaches yield a higher rate for
54Fe than for 56Fe at a given temperature and density. Both
approaches give very similar values for the strength and the
location of the GT+ resonance in 54,56Fe at T = 0. Therefore,

the excellent agreement between the TQRPA and the shell-
model rates at log10(ρYe) = 10 and low temperatures (µe ≈
11 MeV) is not surprising, as the rates are dominated by the
resonance contribution.

The more interesting point is that at high temperatures
the TQRPA rates always surpass the shell-model ones. To
understand this point, which part of the TQRPA GT+ strength
dominates EC at a given temperature and density must be
clarified. To this end we calculate the relative contributions
λec

i /λec of different thermal one-phonon states to the capture
rates for selected values of temperature and density [T9,
log10(ρYe)]. The results are depicted in Fig. 4.

At low temperatures and densities [Figs. 4(a) and 4(b)], that
is, when µe is small and high-energy electrons from the tail
of the Fermi-Dirac distribution are not sufficiently available to
allow for efficient capture on the GT+ resonance, the TQRPA
capture rates are dominated either by the negative-energy
(54Fe) or by the low-energy (56Fe) part of the GT+ strength
that originates from thermally unblocked p → n transitions.
The TQRPA rates are larger than those of the shell model
at low (T , ρ) owing to differences in the strength and the
energy of such transitions. We note that in the shell-model
evaluation, negative-energy transitions were mainly included
by back-resonances, that is, by inverting the Fermi and
GT− strength distribution of 54Mn and 56Mn, respectively.
In contrast to the TQRPA approach, the shell-model GT−
distributions of these nuclei are highly fragmented owing
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FIG. 3. (Color online) Electron capture rates for 54Fe (upper panels) and 56Fe (lower panels) calculated using the TQRPA approach as a
function of temperature (T9 measures the temperature in 109 K) and for selected values of density ρYe (g cm−3). For comparison, the LSSM
rates [10] are also shown. The dashed lines at log10(ρYe) = 9 correspond to the TQRPA rates calculated with the assigned near-threshold
strength (see text).

to correlations and have centroids at rather high excitation
energies in 54Fe and 56Fe, which, at low temperatures, are
strongly suppressed by the Boltzmann factor. In particular,
the differences in energy positions of the transitions are
important because at low (T , ρ) the rates can change drastically
upon a small change in a transition energy. To see whether
the TQRPA reliably predicts the energy and the strength of
negative- and low-energy transitions, one must go beyond the
TQRPA.

At log10(ρYe) = 9 and T9 < 5 (µe ≈ 5.1 MeV), the near-
threshold part of the GT+ strength dominates the capture rates.
Because this part is not reproduced within the TQRPA, the rates
appear to be lower than the LSSM ones. To test this hypothesis,
the capture rates at log10(ρYe) = 9 have been calculated—
guided by the shell-model GT+ distributions [9]—assuming
that the near-threshold GT+ strengths for 54Fe and 56Fe are 0.1
and 0.2, respectively. We therefore assign the value 0.1 (0.2)
to the GT+ strength in 54Fe (56Fe) at the zero-temperature
threshold. (A similar method was used in Refs. [5] and [6]
to include the contribution of low-lying transitions.) This
yields a much better agreement between the TQRPA and the
shell-model rates (see Fig. 3). Thus, to improve the reliability
of the TQRPA for the calculation of stellar EC rates at
intermediate densities and low temperatures, the fragmentation
of the GT+ resonance should be considered to reproduce
the near-threshold GT+ strength. At higher temperatures the
near-threshold strength becomes less important. In Figs. 4(c)
and 4(d) the relative contributions λec

i /λec at [T9, log10(ρYe)] =

(5, 9) with and without the assigned near-threshold strength
are depicted. As can be seen, the contribution from the
near-threshold strength is not dominant.

When the temperature approaches T9 ≈ 10, the rates are
dominated by the strong transitions involving the GT+ reso-
nance at low [Fig. 4(e)] as well as at high [Fig. 4(f)] densities.
[Note that at log10(ρYe) = 7 and high temperatures the con-
tribution of negative-energy transitions is non-negligible.] As
discussed previously, the TQRPA predicts that with increasing
temperature the GT+ resonance shifts to lower excitation
energies. This explains why the TQRPA rates always surpass
the LSSM ones at high temperatures.

Thus, at high densities and low temperatures the TQRPA
and LSSM EC rates for 54,56Fe are in good agreement. As
mentioned previously the disagreement at moderate densities
and low temperatures can be removed by considering the
fragmentation of the GT+ strength. For a separable residual
interaction used here this can be done following the method
developed within the QPM, that is, by taking phonon coupling
into account.

V. NEUTRON-RICH GERMANIUM ISOTOPES

During gravitational collapse the nuclear composition
moves toward a higher mass number and more neutron-rich
nuclei. Eventually nuclei will have all neutron pf -shell orbits
filled, with valence neutrons in the sdg shell (N > 40)
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FIG. 4. (Color online) Relative contribution λec
i /λec of the ith

thermal one-phonon state to the EC rate on 54,56Fe for selected values
of temperature and density [T9, log10(ρYe)]. The electron chemical
potential µe is in units of mega–electron volts; E is the transition
energy to the ith thermal one-phonon state. The arrows in (d) indicate
the relative contributions of the assigned near-threshold strengths
(see text).

and valence protons within the pf shell (Z < 40). The
Pauli principle blocks GT+ transitions in such neutron-rich
nuclei if the independent particle model is used. It has been
demonstrated in Ref. [4] that, at high enough temperatures,
T ∼ 1.5 MeV, GT+ transitions become unblocked by thermal
excitations that either move protons into the 1g9/2 orbital or
remove neutrons from the pf shell. An alternative unblocking
mechanism—configuration mixing induced by the residual
interaction—was considered in Ref. [20]. Based on this
approach it was found that EC on nuclei with N > 40 is
also dominated by GT+ transitions, even at rather low stellar
temperatures, T ∼ 0.5 MeV. Contrary to Ref. [4], it was argued
that unblocking effects owing to mixing are not very sensitive
to increasing temperature.

Consistent calculations of EC rates for neutron-rich nuclei
are not yet feasible in the shell model owing to the large
model space. In Ref. [20], the capture rates were calculated
adopting a hybrid model: The partial occupation numbers
calculated within the SMMC approach at finite temperature
were used in calculations based on the RPA. Here, using
the germanium isotopes 76,78,80Ge as examples, we apply
the TQRPA formalism to calculate EC rates on neutron-
rich nuclei. Particular attention is paid to the temperature
dependence of the unblocking effect.

The parameters of the model Hamiltonian for 76,78,80Ge
are chosen in the same manner as for 54,56Fe. The
sequence of single-particle levels obtained is close to that
used in Ref. [4] for 82Ge. For pairing gaps we obtain
�p(n) = 1.50(1.57) MeV for 76Ge, �p(n) = 1.59(1.42) MeV

FIG. 5. (Color online) Strength distribution (folded) of allowed
(0+ and 1+) p → n transitions in 76Ge at various temperatures T .
E denotes the transition energy. The contribution of 0+ transitions is
shown by the dashed line. St is the total strength. The arrows indicate
the zero-temperature threshold Q(76Ge) = Mf − Mi = 7.52 MeV. A
and B label the transitions: A ≡ 1f

p

7/2 → 1f n
5/2, B ≡ 1g

p

9/2 → 1gn
7/2.

for 78Ge, and �p(n) = 1.39(1.35) MeV for 80Ge. We take
into account both the allowed (GT and Fermi) and the FF
transitions with J � 2. To generate one-phonon states of
natural and unnatural parity we use the isovector multipole and
spin-multipole strength parameters κ

(λ)
1 and κ

(Lλ)
1 (λ = 0, 1, 2)

according to Refs. [42] and [43].
As a representative example, the strength distribution of

allowed p → n transitions from 76Ge for different values of
temperature is displayed in Fig. 5. The distributions have
been folded with a Breit-Wigner function of 1-MeV width. As
follows from our study as well as from Refs. [4] and [20], two
single-particle transitions mainly contribute to the total GT+
strength in neutron-rich germanium isotopes. These are the
1g

p

9/2 → 1gn
7/2 particle-particle and 1f

p

7/2 → 1f n
5/2 hole-hole

transitions. In an independent particle model both transitions
are blocked at zero temperature. However, in the present model
they become unblocked owing to pairing correlations and
thermal excitations. Referring to Fig. 5 it is shown that, with
increasing temperature, the peaks in the GT+ distribution shift
to lower excitation energies and the total strength decreases in
the vicinity of the critical temperature (Tcr ∼ 0.8 MeV).3 The
shift is about 8 MeV and, hence, cannot be explained solely by
the removal of the extra energy needed to break a proton pair.

To explain both the effects we neglect the residual particle-
hole interaction and consider the pairing interaction only.

3The same effects were found in Ref. [28] for 80Ge.

015804-9



ALAN A. DZHIOEV et al. PHYSICAL REVIEW C 81, 015804 (2010)

(As follows from our study, the position of the GT+ peaks
in 76,78,80Ge is little affected by the inclusion of QRPA
correlations and thermal one-phonon states can be considered
as thermal two-quasiparticle states.) At finite temperature the
GT+ operator can excite configurations of four different types,
namely, [β†

jp
β
†
jn

]1
µ, [β̃†

jp
β̃
†
jn

]1
µ, [β̃†

jp
β
†
jn

]1
µ, and [β̃†

jp
β
†
jn

]1
µ. The

respective transition energies and transition strengths are

E1(jp → jn) = εjp
+ εjn

+ Q∗,

�1(jp → jn) = (
f 1

jpjn

)2
v2

jp
u2

jn
x2

jp
x2

jn
;

E2(jp → jn) = −(εjp
+ εjn

) + Q∗,

�2(jp → jn) = (
f 1

jpjn

)2
u2

jp
v2

jn
y2

jp
y2

jn
;

(23)
E3(jp → jn) = εjp

− εjn
+ Q∗,

�3(jp → jn) = (
f 1

jpjn

)2
v2

jp
v2

jn
x2

jp
y2

jn
;

E4(jp → jn) = −(εjp
− εjn

) + Q∗,

�4(jp → jn) = (
f 1

jpjn

)2
u2

jp
u2

jn
y2

jp
x2

jn
.

Here Q∗ = �µnp + �mnp [see Eq. (20)]. In the follow-
ing jp → jn refers to either the 1g

p

9/2 → 1gn
7/2 or the

1f
p

7/2 → 1f n
5/2 transition.

At T < Tcr the excitation of the [β†
jp

β
†
jn

]1
µ configuration

dominates the strength distribution because of the factor
x2

jp
x2

jn
∼ 1 in �1(jp → jn). Therefore, at relatively low

temperatures, when configuration mixing induced by pairing
correlations in the ground state is the main unblocking
mechanism, the position of the GT+ peaks is given by
E1(1g

p

9/2 → 1gn
7/2) and E1(1f

p

7/2 → 1f n
5/2) [Figs. 5(a) and

5(b)]. With increasing temperature states having internal
configurations other than those of the nuclear ground state gain
statistical weight, and in particular, the pairing correlations in
these excited states decrease. When the pairing correlations
disappear and the factors v2

jp
u2

jn
in �1(jp → jn) become zero,

the peaks considered completely vanish [Fig. 5(c)]. The value
of �2(jp → jn) becomes zero as well. At T � Tcr the poles
ε1g

p

9/2
+ ε1gn

7/2
and ε1f

p

7/2
+ ε1f n

5/2
no longer contribute to the

secular equation (14).
At T > Tcr GT+ transitions from (to) thermally oc-

cupied (unblocked) orbitals dominate the strength distri-
bution. These transitions correspond to excitation of the
[β̃†

1g
p

9/2
β
†
1gn

7/2
]1
µ and [β†

1f
p

7/2
β̃
†
1f n

5/2
]1
µ configurations and their en-

ergies are E4(1g
p

9/2 → 1gn
7/2) and E3(1f

p

7/2 → 1f n
5/2), respec-

tively. Neglecting �mnp, these energies are the energy dif-
ference between the final and the initial single-particle states,
that is, E4(1g

p

9/2 → 1gn
7/2) ≈ E1gn

7/2
− E1g

p

9/2
and E3(1f

p

7/2 →
1f n

5/2) ≈ E1f n
5/2

− E1f
p

7/2
. Because of the thermally unblocked

transitions the GT+ peaks appear near the zero-temperature
threshold [Fig. 5(d)].

Thus, in contrast to Ref. [20], we find that the unblocking
effect for GT+ transitions in neutron-rich nuclei is sensitive to
increasing temperature. No shift to lower excitation energies
for the GT+ peaks or decrease in the total GT+ strength
in the vicinity of the critical temperature were observed
in Ref. [20]. To understand these differences we compare

again the approximations underlying the present model and
the hybrid approach used in Ref. [20]. The TQRPA has
the virtue of consistency. It describes correlations by con-
figuration mixing derived from a pairing interaction up to
the 2p2h level. In the hybrid model, occupation numbers at
finite temperature are calculated within the SMMC approach,
accounting for all many-body npnh correlations induced by
a pairing + quadrupole residual interaction. These occupation
numbers have then been used to define a thermal ground state
that is the basis of an RPA approach to calculate the capture
cross sections, considering only 1p1h excitations on the top of
this ground state. Therefore the hybrid model does not include
explicitly 2p2h pairing correlations when calculating strength
distributions.

Repeating our previous observation, the TQRPA has two
distinct transitions to overcome Pauli blocking. Using, for
the sake of simplicity, the language of the independent-
particle model in the TQRPA, GT transitions can occur from
configuration-mixed states with 0p0h and 2p2h components.
These transitions lead to excited states in which centroids
are shifted by the excitation energy of two particles raised
across the pf -sdg shell gap, which corresponds to about
8 MeV for 76Ge. The two peaks shown in the TQRPA GT
strength distribution in Figs. 5(a) and 5(b) correspond to these
two transitions. As the 2p2h component has two neutron holes,
GT transitions into these holes are not Pauli blocked. Hence
these transitions are relatively strong within the TQRPA model
at low temperatures. On the other hand, GT transitions between
pure 0p0h components are Pauli blocked. Transitions to final
states corresponding to the lower centroid are only possible
owing to the small mixing of 2p2h configurations into the final
states. Hence the GT strength corresponding to the lower peak
is rather weak at low temperatures [Fig. 5(b)]. The relative
weight of the transition strength between these two peaks
changes with increasing temperature owing to the increasing
thermal excitations and the decreasing correlations induced by
pairing. The latter effect dominates at modest temperatures.
As a consequence, the strength in the upper peak decreases,
whereas that of the lower peak increases and, at temperatures
beyond the critical temperature Tcr, dominates the GT strength
distribution in the TQRPA model [Fig. 5(d)].

It is found that in the SMMC approach many-body correla-
tions lead to much stronger excitation of particles (mainly
neutrons) across the pf -sdg shell gap than found in the
TQRPA model. This is demonstrated in Figs. 6(a)–6(d), which
compare the SMMC and thermal BCS occupation numbers
for various orbitals as a function of temperature. Whereas
the BCS predicts only 0.3 neutron to be excited out of the
pf shell at T = 0 for 76Ge, this number is about 1.2 for
the SMMC, which is actually also smaller than the number
of neutron excitations across the shell gap, recently derived
experimentally (2.48 ± 0.30) [44]. Obviously, the differences
in occupation numbers lead to the larger Pauli unblocking
in the SMMC approach than found in the TQRPA model.
Correspondingly, the RPA calculation on top of the SMMC
occupation numbers predicts more GT strength in the energy
range around 10 MeV (corresponding to the 0p0h centroid
in the TQRPA calculation), which, as we show later, also
results in higher capture cross sections at low temperatures.
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FIG. 6. (Color online) (a, b) Occupation numbers for the 1f7/2

and 1g9/2 proton orbitals in 76Ge as a function of temperature. (c, d)
Occupation numbers for the 1f5/2 and 1g7/2 neutron orbitals. (e, f) The
unblocking probabilities for the 1f

p

7/2 → 1f n
5/2 and 1g

p

9/2 → 1gn
7/2

transitions.

In passing we note that, at low temperatures, the SMMC
predicts a larger number of neutron excitations, but a smaller
number of proton excitations, across the pf -sdg shell gap
than the TQRPA model does. This highlights the impor-
tance of pn correlations, induced by isovector pairing and
quadrupole interactions, in the SMMC approach. These types
of pn correlations are not considered in the present TQRPA
calculations.

In the SMMC, the many-body correlations induced by
the “pairing+quadrupole” interaction also yield a significantly
smaller temperature dependence in the occupation numbers
than observed in the TQRPA approach. In this model, the
energies of the unblocked GT+ transitions essentially depend
on temperature: at T > Tcr, when the unblocking is caused by
thermal excitations (the thermal unblocking), they are smaller
than the ones at T < Tcr, when the unblocking is caused by
configuration mixing. Obviously, the significant shift of the
GT+ peaks to lower excitation energies favors EC. One can
conclude that at T > Tcr GT+ transitions in neutron-rich nuclei
are more unblocked than at T < Tcr.

To explain the second effect, we consider the total strength
for the jp → jn transition,

St (jp → jn) =
∑

i

�i(jp → jn) = (
f 1

jpjn

)2
njp

(1−njn
), (24)

where njτ
is the proton (τ = p) or neutron (τ = n) occupation

factor,

nj = 〈0(T ); qp|a†
jmajm|0(T ); qp〉 = u2

j y
2
j + v2

j x
2
j . (25)

The value of njp
(1 − njn

) determines the unblocking proba-
bility for the jp → jn transition. As follows from Eq. (25) the
unblocking probability depends on the temperature through
the coefficients of both the Bogoliubov and the thermal trans-
formation, that is, it is determined by both the configuration

mixing and the thermal excitations. We note again that at 0 <

T < Tcr the total strength St of the unblocked particle-particle
or hole-hole transition is not concentrated in only one peak
but, as follows from Eq. (23), is fragmented into four parts.
Figures 6(e) and 6(f) show the unblocking probabilities for the
1f

p

7/2 → 1f n
5/2 and 1g

p

9/2 → 1gn
7/2 transitions as a function of

temperature.
As shown in Figs. 6(e) and 6(f) the unblocking proba-

bilities for both transitions show a minimum at the critical
temperature. It is apparent that this minimum occurs because
at Tcr, pairing correlations vanish while thermal effects are
not yet sufficiently strong to occupy the 1g9/2 proton orbit
or unblock the 1f5/2 neutron orbit. As a result the total
transition strength St decreases in the vicinity of the critical
temperature. In contrast, this minimum is absent in the
SMMC unblocking probabilities [see Figs. 6(e) and 6(f)].
Here the residual interaction introduces a slight, but gradual
increase in the probability with temperature. At T > 1.5 MeV
the SMMC and TQRPA results converge as is expected in the
high-temperature limit.

The fact that crossing shell gaps by correlations is a rather
slowly converging process that requires the consideration of
multiparticle-multihole configurations has already been ob-
served in large-scale diagonalization shell-model calculations,
for example, studying calcium isotope shifts [45] or the M1
strength in argon isotopes [46].

For neutron-rich nuclei the contribution of the FF p →
n transitions to EC is not negligible [4,20]. The strength
distributions of FF 0−, 1−, and 2− transitions in 76Ge are
shown in Fig. 7 for temperatures T = 0.2 and 1.3 MeV.
The distributions have been folded by the same procedure
used for the allowed transitions. As shown in the figure,
a temperature increase weakly affects the peaks in the 0−
and 2− strength distributions. The reason is that these are
dominated by particle-hole transitions whose energy depends
only weakly on temperature (in contrast to particle-particle
and hole-hole transitions). With increasing temperature the
peaks shift slightly to lower excitation energies owing to
the vanishing of the pairing correlations, and some transition
strength appears below the zero-temperature threshold owing
to thermally unblocked transitions.

A finite temperature induces a significant spread in the
1− transition strength distribution. The spread can be easily
explained. At T = 0.2 MeV the main peak in the distribution is
generated by three single-particle transitions: 1f

p

7/2 → 2dn
5/2,

1f
p

5/2 → 1gn
7/2, and 1f

p

7/2 → 1gn
9/2. The first is a particle-hole

transition and its energy depends only slightly on temperature.
The second and third are particle-particle and hole-hole
transitions, respectively. As discussed above, the energies of
particle-particle and hole-hole transitions are noticeably lower
at T > Tcr than at T < Tcr. Therefore, at T = 1.3 MeV, the
peak is fragmented into three parts, resulting in a broadening
of the 1− strength distribution. The 1− peak at E = 19 MeV
is generated by the particle-hole transition 1f

p

7/2 → 1gn
7/2, and

hence, its position and strength almost do not depend on the
temperature.

To reveal the importance of the thermal unblocking for GT+
transitions in neutron-rich nuclei, we performed EC cross-
section calculations. In the present approach, the total cross
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FIG. 7. Folded strength distributions of first-forbidden 0−, 1−,
and 2− p → n transitions in 76Ge at T = 0.2 MeV (left panels) and
T = 1.3 MeV (right panels); E is the transition energy. The strength
distributions for the 2− multipole correspond to 25-MeV electrons.
St is the total strength. The arrows indicate the zero-temperature
threshold. A–C label the 1− transitions: A ≡ 1f

p

7/2 → 2dn
5/2, B ≡

1f
p

5/2 → 1gn
7/2, C ≡ 1f

p

7/2 → 1gn
9/2.

section for capture of an electron with energy Ee on a nucleus
with charge Z is given by

σ (Ee, T ) = G2
w

2π
F (Z,Ee)

∑
J i

(Ee − E
(+)
J i )2�

(+)
J i , (26)

where Gw is the weak interaction coupling constant, and
F (Z,Ee) is the Fermi function that accounts for the Coulomb
distortion of the electron wave function near the nucleus
(see, e.g., Ref. [9]). Only allowed and FF transitions are
involved in the sum over J in the present study.

In Fig. 8, the EC cross sections for 76,78,80Ge are shown for
three temperatures. The temperature dependence of the cross
sections is most pronounced at moderate electron energies
(Ee � 15 MeV): for Ee = 15 MeV a temperature increase
from 0.5 to 1.3 MeV results in an enhancement of the cross
sections by an order of magnitude. No such enhancement was
found in Ref. [20] (see below). To make clear the reason for this
enhancement, we calculate the relative contribution of allowed

FIG. 8. (Color online) Electron capture cross sections (upper
panels) for 76,80,80Ge calculated within the TQRPA approach for
various temperatures. Relative contributions of allowed transitions
to the electron capture cross sections are shown in the lower panels.

transitions to the EC cross sections. The results are displayed
in the lower panels in Fig. 8.

It is shown that at Ee � 15 MeV EC is mainly mediated
by the allowed transitions. Consequently, the cross-section
enhancement is caused by the thermal unblocking of GT+
transitions (the Fermi contribution to the cross sections is
negligible). Furthermore, because of the thermal unblocking,
the electron energy below which EC is dominated by allowed
transitions shifts to higher values: at T = 0.5 and 0.9 MeV
this energy is 16–18 MeV, whereas at T = 1.3 MeV it is
about 25 MeV. For higher electron energies, the FF transitions
become increasingly important. As the strength of the FF
transitions is less sensitive to temperature, the capture cross
sections at Ee ∼ 30 MeV depend only weakly on temperature.

The strong temperature sensitivity of the cross sections at
low electron energies reflects the temperature dependence of
the TQRPA GT strength distribution, as discussed previously.
This has two main reasons. First, at low temperatures the
dominant GT strength resides at higher excitation energies
than in the hybrid model. Second, in the TQRPA the GT
centroid shifts by several mega–electron volts, which is not
observed in the hybrid model. Both facts, amplified by the
strong phase-space energy dependence, lead to a much stronger
dependence of the cross section in the TQRPA model than in
the hybrid model. As the GT contribution to the cross sections
is larger in the hybrid model than in the present TQRPA
calculation, allowed transitions dominate to higher electron
energies in the former.

Figure 9 compares the capture rates for 76,78,80Ge as
obtained in the hybrid and the TQRPA models. We note
that the hybrid model rates are noticeably higher than the
present rates at low temperatures. This is because of the
increased unblocking probability in the hybrid model caused
by many-body correlations, which lead to a greater GT strength
at lower excitation energies than in the TQRPA approach. With
increasing temperature and density the differences between the
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FIG. 9. (Color online) Electron capture rates for 76,78,80Ge calculated using the TQRPA approach as a function of temperature and for
selected values of density ρYe (g cm−3). For comparison, the rates obtained with the hybrid model (HM) are also shown.

rates in the two models become smaller. This has two causes.
First, with increasing temperature and density the average
electron energy increases and the rates become less sensitive
to details of the GT strength distribution. Second, the GT
strength distributions as calculated in the two models become
more similar with increasing temperature as already discussed.

Note that the EC rates obtained in both models for the
temperature and density regime when neutron-rich nuclei
like those studied here dominate the composition during the
supernova core collapse (T > 1 MeV, ρ > 5 × 1010 g/cm3)
are high enough that EC on nuclei dominates over capture on
free protons as predicted in Ref. [20].

VI. CONCLUSION

In the present work, we have considered the GT+ and FF
transitions in hot nuclei. We have applied the proton-neutron
QRPA extended to finite temperature by the TFD formalism.
The approach allows treatment of charge-exchange transitions
in nuclei at finite temperature, avoiding Brink’s hypothesis.
Moreover, the Ikeda sum rule was proven to be fulfilled at

finite temperature. As an example, the strength distributions of
GT+ transitions in 54,56Fe have been calculated. A downward
shift in the GT+ strength was observed with increasing
temperature. The shift is caused by the disappearance of
pairing correlations and the appearance of negative- and low-
energy transitions. The downward shift results in higher EC
rates at high temperatures compared to those obtained in the
shell-model calculations. We have found that the contribution
of negative- and low-energy transitions, which are treated as
transitions from thermally excited nuclear states, to EC is
non-negligible even at low temperatures.

The GT+ strength distribution in the neutron-rich 76,78,80Ge
nuclei have been calculated as well. It was found that
the temperature increase leads to a considerable (∼8-MeV)
downward shift of the strength distribution peaks and reduces
the total transition strength in the vicinity of the critical
temperature. This makes the unblocking effect for neutron-rich
nuclei in our model quite sensitive to increasing temperature,
which is clearly observed in the EC cross sections and rates
for 76,78,80Ge.
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Our results have been compared with those obtained
within the shell-model diagonalization method for iron iso-
topes and within the hybrid SMMC + RPA model for the
neutron-rich germanium isotopes. The importance of many-
body correlations beyond those induced by pairing in our
TQRPA model become apparent from the comparison. For
the nuclides 54,56Fe the Pauli unblocking is unimportant, as
GT transitions are possible even in the independent-particle
model without correlations. The TQRPA describes the centroid
of the GT strength rather well. However, it misses the
low-lying GT strength, which is induced by multinucleon
correlations. The low-lying GT strength in 54,56Fe that is
observed experimentally and reproduced by the shell model
is important for EC rates at low temperatures. Because of the
lack of this part of the GT strength distribution, the EC rates are
underestimated.

Pauli unblocking is crucial for calculation of the
GT strength and the associated EC rates for the neutron-rich
germanium isotopes. Previous calculations in the shell-model
diagonalization method have shown that such cross-shell
effects are rather slowly converging with increasing corre-
lations across the shell gap and require the consideration of
multinucleon correlations. This is in line with the observation
that the SMMC approach, which accounts for complex config-
uration mixing, recovers significantly more excitations across
the pf -sdg shell gap than found in the TQRPA approach,
which, at low temperatures, derives the Pauli unblocking
mainly from (2p2h) pairing correlations. As a result, the
two approaches predict different GT distributions and capture
rates at low temperatures and densities. On the contrary, both
yield rather similar capture rates for collapse conditions where
Pauli unblocking matters, confirming that capture on nuclei
dominates over that on free protons.

In summary, we have presented an approach that allows
calculation of stellar weak-interaction processes at finite
temperature in a thermodynamically consistent way. This
makes it conceptually superior to the hybrid approach of the
SMMC + RPA, which has been used previously to estimate
EC rates for neutron-rich nuclei. In the present application,
correlations described by the TQRPA have been taken into

account. Whereas much of the essential physics is already
recovered, the detailed comparison to the shell-model results
implies that the approach should be further improved. On
the one hand, the predictive power is limited by the use
of a phenomenological Hamiltonian consisting of a Woods-
Saxon potential with locally readjusted depths as well as
schematic residual interactions. Of particular importance is
the inclusion of the attractive spin-isospin interaction in the
particle-particle channel (see, e.g., Refs. [47] and [48]), which
moves the GT strength to lower excitation energies. It would
therefore be desirable to combine our TFD-based approach
at finite temperature with self-consistent QRPA calculations
based on more realistic effective interactions, including the
particle-particle channel consistently (see, e.g., Ref. [49]).
These improvements would also allow the effects of nuclear
deformation to be properly taken into account [50]. Another
direction is the inclusion of correlations beyond the RPA
(or QRPA) by coupling the RPA phonons to more complex
(e.g., two-phonon) configurations. For charge-exchange ex-
citations in cold nuclei this problem has been considered
within the QPM [30,31] and by approaches that solve the
(second) RPA equations in the space of two-particle/two-
hole excitations [51]. It was found that the coupling with
complex configurations strongly fragments the RPA strength
distribution.

We would like to reiterate that the present study can only be
considered a first step toward reliable predictions of EC rates in
nuclei not accessible to the shell model. Improvements along
the lines discussed here will be made in future extensions of
the model within the TFD framework.
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