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The spin-flip M1 giant resonance is explored in the framework of the random-phase-approximation (RPA)
on the basis of the Skyrme energy functional. A representative set of eight Skyrme parametrizations (SkT6,
SkM*, SLy6, SG2, SkO, SkO’, SkI4, and SV-bas) is used. Light and heavy, spherical and deformed nuclei (48Ca,
158Gd, 208Pb, and 238U) are considered. The calculations show that spin densities play a crucial role in forming
the collective shift in the spectrum. The interplay of the collective shift and spin-orbit splitting determines the
quality of the description. None of the considered Skyrme parametrizations is able to describe simultaneously
the M1 strength distribution in closed-shell and open-shell nuclei. It is found that the problem lies in the relative
positions of proton and neutron spin-orbit splitting. This calls for a better modeling of the tensor and isovector
spin-orbit interaction.
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Nuclear density functional theory (DFT), with the most
prominent representatives being Skyrme–Hartree-Fock (SHF),
the Gogny forces, and the relativistic mean-field model,
achieved a high level of quality in the description of ground
state and dynamics of atomic nuclei [1–3]. Most applications
for nuclear dynamics up to now have been concerned with
electric excitation modes (natural parity). The description
works generally well, except for some persistent problems with
the isovector giant resonance (GR) in light nuclei [4,5]. Much
less investigation exists for magnetic excitations (unnatural
parity). At the same time, magnetic modes are sensitive to a
different class of force parameters, namely, those related to
spin. An exploration of magnetic resonances, such as spin-flip
M1, could essentially probe the spin-orbit interaction, in
particular the still vaguely known tensor interaction [6]. Also,
the spin-flip M1 resonance is a counterpart of the spin-isospin
Gamow-Teller resonance, which is of great current interest
in connection with astrophysical problems [2,3,7–9]. An
investigation of the M1 resonance could be useful in this
connection as well.

There are many studies of the spin-flip M1 mode within
simple models; see, e.g., reviews [10–12]. At the same time, as
far as we know, a DFT treatment is limited to a few publications
using SHF [13,14] and even that is not carried through fully
self-consistently. The work [13] uses a hybrid model with
partial inclusion of SHF in the Landau-Migdal formulation.
The other study [14] uses the early Skyrme forces and omits
the crucial spin density. These studies, although being a useful
first step, are not satisfactory for today’s demands.

The present study aims at a fully self-consistent description
of the spin-flip M1 mode in the framework of SHF. Previous
investigations for Gamow-Teller [7–9] and spin-flip M1 modes
[13] hint that the spin-density response could be decisive
to obtain a sizable collective shift. So all the Skyrme terms
with spin density (usually omitted in calculations for electric
modes) have to be implemented and scrutinized. Furthermore,

because of the obvious importance of spin-orbit splitting, the
responses delivered by spin-orbit and tensor interactions have
to be inspected as well. Since the quality of the description may
depend on the particular Skyrme parametrization as well as on
nuclear shape and mass region, a variety of parametrizations
will be checked for light and heavy, spherical and deformed
nuclei. Note that the M1 mode in heavy open-shell nuclei
(rare-earth and actinides) exhibits a pronounced double-peak
structure [15,16], whereas closed-shell nuclei (48Ca, 208Pb,
etc.) show only one peak [17–19]. All these demands are met
in the present study which, to the best of our knowledge,
is the first systematic and self-consistent SHF exploration of
spin-flip M1.

We will consider the M1 resonance in doubly magic nuclei
48Ca and 208Pb and axially deformed nuclei 158Gd and 238U. A
representative set of eight SHF parametrizations is used: SkT6
[20], SkO [21], SkO’ [21], SG2 [22], SkM* [23], SLy6 [24],
SkI4 [25], and SV-bas [5]. They exhibit a variety of effective
masses (from m∗/m = 1 in SkT6 down to 0.65 in SkI4) and
other nuclear matter characteristics. Some of the forces (SLy6)
were found favorable in the description of E1(T = 1) GR
[26–29]. Others were used in studies of Gamow-Teller strength
(SG2, SkO’) [7–9,22] or peculiarities of spin-orbit splitting
(SkI4) [25]. The forces SkT6, SG2, and SkO’ involve the
tensor spin-orbit term. The parametrization SV-bas represents
one of the latest SHF parametrizations.

The calculations are performed within the self-consistent
separable random-phase-approximation (SRPA) approach,
which expands the Skyrme residual interaction into a sum
of separable terms in a systematic manner [26,30,31]. The
model formalism is partly based on the earlier studies [32,33].
The self-consistent factorization considerably reduces the
computational expense of RPA while maintaining a high
accuracy. This allows one to perform systematic studies in
both spherical and deformed (heavy and super-heavy) nuclei
[26–30]. The residual interaction includes all contributions
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arising from the SHF functional as well as the Coulomb (direct
and exchange) and pairing (at BCS level) terms [26,31].

The Skyrme and pairing energy densities read [1,3]
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where bi , b′
i , b̃i , b̃′

i are the force parameters. This functional
involves time-even (nucleon ρq , kinetic energy τq , spin orbit
Jq) and time-odd (current jq , spin sq , vector kinetic energy
Tq) densities, and the pairing density χq . The index q labels
protons and neutrons. Densities without index are total, e.g.,
ρ = ρp + ρn. The contributions with bi (i = 0, 1, 2, 3, 4) and
b′

i (i = 0, 1, 2, 3) are the standard terms responsible for ground
state properties and electric excitations of even-even nuclei
[1,3]. In the standard SHF, the isovector spin-orbit interaction
is linked to the isoscalar one by b′

4 = b4. The tensor spin-
orbit terms ∝ b̃1, b̃

′
1 are often skipped. In Eq. (1) they can

be switched by the parameter γT. The spin terms with b̃i , b̃
′
i

become relevant only for odd nuclei and magnetic modes in
even-even nuclei. Though b̃i , b̃

′
i may be uniquely determined

as functions of bi, b
′
i [3], their values were not yet well tested

by nuclear data. Moreover, following a strict DFT, they can be
considered as free parameters. Just these spin terms may be of
paramount importance to the spin-flip M1. Hence all them are
taken into account in SRPA.

In addition to second functional derivatives entering the
SRPA residual interaction for electric modes,
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Only the particle-hole channel is considered. SRPA generators
include spin and orbital input operators P̂ s

q = R(r)ŝq
+ and

P̂ l
q = R(r)l̂q+ with R(r) being 1 or r2. In deformed nuclei,

the quadrupole generator Q̂q = r2Y21(�) is added to take into
account the coupling between spin and quadrupole Kπ = 1+
states. The pairing is employed through the quasiparticle
energies and Bogoliubov coefficients. The convergence of

the results with including more generators was checked. See
details in Ref. [34].

The SHF calculations employ a coordinate-space grid
with the mesh size 0.7 fm. For deformed nuclei, cylindrical
coordinates are used, and the equilibrium quadrupole defor-
mation is found by minimization of the total energy [26,29].
Depending on the force, the calculated quadrupole moments
are Q2 = 5.3–5.7 b in 158Gd and Q2 = 8.5–9.4 b in 238U,
i.e., in acceptable agreement with the experimental values
Q

exp
2 = 7.08 and 11.13 b, respectively. The single-particle

spectrum involves all levels from the bottom of the mean
field well up to +20 MeV. In the heaviest nucleus under
consideration, 238U, this results in ∼17 000 two-quasiparticle
Kπ = 1+ states with excitation energies up to 50–70 MeV.
Note that for electric E1(T = 1) and E2(T = 0) excitations,
such single-particle space provides a satisfying exhaustion of
the energy-weighted sum rules [28].

The spectral distribution of the spin-flip M1 mode with
Kπ = 1+ is presented as the strength function

S(M1; ω) =
∑
ν �=0

|〈�ν |M̂|�0〉|2ζ (ω − ων), (4)

where ζ (ω − ων) = �/[2π ((ω − ων)2 + �2

4 )] is a Lorentz
weight with the averaging parameter � = 1 MeV. Such an
averaging width is found to be optimal for the comparison
with experiment and simulation of broadening effects beyond
SRPA (escape widths, coupling with complex configurations).
Further, �0 is the ground state, ν runs over the RPA Kπ = 1+
states with energies ων and wave functions �ν . The operator
of spin-flip M1 transition reads in standard notation M̂ =
µB

√
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q
+ + g

q

l l̂
q
+] with spin g factors g

p
s = 5.58ςp

and gn
s = −3.82ςn quenched by ςp = 0.68 and ςn = 0.64.

As we are interested in the spin-flip M1, the orbital response
is omitted; i.e., we put g

q

l = 0. Note that in the experimental
data [15–19] used for the comparison, the orbital contribution
is strongly suppressed. The strength function (4) is computed
directly, i.e., without calculation of RPA states ν, which
additionally reduces the computation effort [26,30,31,34].

Figure 1 shows the collective shifts of the main resonance
peak in 48Ca, 208Pb, 158Gd, and 238U, obtained with different
Skyrme parametrizations. The shifts are defined as Eshift =
ESRPA − Eunper, i.e., as the difference in the energies of SRPA
and unperturbed (without residual interaction) M1 peaks. The
unperturbed strength is calculated by using Eq. (4) without
the residual interaction. In addition to the total shift, the
contributions from different spin-density dependent terms as
well as from the tensor force (for SkT6, SG2 and SkO’) are
shown. The total collective shifts are generally modest and
vary from 1–2 MeV in 48Ca to 0.5–2 MeV in 208Pb and
0.5–1.5 MeV in 158Gd and 238U. These low values emerge from
contributions pulling in different directions. This holds for the
separate shifts from b̃0 and b̃3 (not disentangled here). The b̃2

term gives a negative shift in contrast to the positive one from
b̃0, b̃3. Anyway the contribution from b̃0, b̃3 usually dominates,
thus giving the total upshift in accordance with the isovector
character of the resonance. All the forces give generally similar
results. Note the sizable contribution of the tensor interaction
for SkT6 and SG2. For SkO’ this contribution is negligible,
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FIG. 1. Collective shifts of the M1 peak for different Skyrme
parametrizations (as indicated along the x axis) in 48Ca, 208Pb, 158Gd,
and 238U. The plots exhibit the total (black boxes) shifts as well as
the partial ones with b̃0 and b̃3 (open circles), b̃2 (open triangles), and
b̃1 (stars). The b̃1 contribution exists only for SkT6, SG2, and SkO’.
For better viewing, the symbols are connected by lines.

except for 48Ca, where it is so strong that it gives a negative total
Eshift. It should be emphasized that the non-spin contributions
(with bi, b

′
i) alone do not provide any collective shift and leave

the M1 strength unperturbed. The whole shift is produced by
the spin-dependent terms ∝ b̃i , b̃

′
i .

The calculations give reasonable values for the summed
B(M1) strength. In the interval 0–45 MeV, the unperturbed
strength is 3.2 and 18.4–18.6 µ2

N in 48Ca and 208Pb. The
residual interaction changes these values, and we have
2.5–4.8 µ2

N in 48Ca and 14.8–17.3 µ2
N in 208Pb, as compared

with experimental values ∼5.3 µ2
N [17] and ∼17.9 µ2

N [18],
respectively. Note a strong collective effect in 48Ca.

It is well known that proton and neutron spin-orbit splittings
E

q
so represent a crucial ingredient in the description of the

spin-flip M1 mode [10–12]. Usually E
p
so < En

so, which leads
in rare-earth and actinide nuclei to a two-peak structure of the
resonance with dominant proton (neutron) origin of the lower
(upper) peak. This is demonstrated for 238U in Fig. 2(a) where
the proton and neutron components of the M1 mode, obtained
with ςp = 0.68, ςn = 0 and ςp = 0, ςn = 0.64, respectively,
are shown. Figures 2(b)–2(d) exhibit proton and neutron
splittings E

q
so for different Skyrme forces. The splittings are

evaluated from centroids of the proton and neutron peaks of
the unperturbed M1 strength. The results strongly depend on
the parametrization. In most cases, we have E

p
so < En

so with
E

np
so = |Ep

so − En
so| ∼ 1–2 MeV, but SkI4, SkO, and SkO’ give

very close splittings with even E
p
so > En

so for SkI4 and SkO.
The latter is related with a low value of b4 and nonzero value of
b′

4 in SkI4. Note that the experimental proton-neutron splitting
in the M1 strength is ∼2 MeV in 158Gd and 238U [15,16] and
zero in 208Pb [18,19].

Figure 3 shows the SRPA M1 strength function (4) in
spherical doubly magic nuclei 48Ca and 208Pb. In 48Ca, the
resonance is produced only by the neutron spin-flip transition
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FIG. 2. (a) Spin-flip M1 resonance in 238U calculated with SG2
force: total (bold solid line), proton (dotted line), and neutron (solid
line) strengths. The experimental data [15] are given by black boxes
with bars. (b)–(d) Proton and neutron unperturbed spin-orbit splittings
for different Skyrme forces in 158Gd, 238U, and 208Pb.

ν(1f −1
7/2, 1f5/2) yielding a one-peak structure. This feature is

correctly reproduced by all parametrizations. However, most
of them underestimate the resonance energy (worst is SkO’
because of a strong and possibly wrong tensor contribution)
and only SLy6, SkI4, and SkM* (with maximal En

so) give the
M1 energy close to experiment. The success of these forces is
obviously determined by a suitable neutron spin-orbit splitting.

However, the same figure shows that in 208Pb, the forces
SLy6, SkI4, and SkM* considerably overestimate the M1
energy, while the best result is achieved by SkO. Note that only
SkO, SkO’, and SkI4, all having a small E

np
so , give a one-peak

resonance structure in accordance with experiment [18]. This is
because only for these parametrizations the interaction energy
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FIG. 3. Spin-flip M1 resonance in 48Ca (left) and 208Pb (right)
calculated within SRPA for eight Skyrme forces as indicated. For
better distinction, the strength in 208Pb for SG2, SLy6, SkT6 and
SkM* is depicted by the bold line. The experimental energies in
48Ca [17] and 208Pb [18] are marked by vertical arrows.
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FIG. 4. Spin-flip M1 resonance in 158Gd described with eight
Skyrme parametrizations as indicated. The experimental data are from
Refs. [15,16].

(≈collective shift) is larger than E
np
so , and so a significant

mixture of proton and neutron components with formation
of a one-peak resonance becomes possible. The other forces
have a too large E

np
so and produce a two-peak structure. This

demonstrates the great importance of the interplay between the
residual interaction and relative proton and neutron spin-orbit
splitting E

np
so for the description of spin-flip M1.

Figures 4 and 5 present SRPA results for deformed 158Gd
and 238U. Here, in contrast to 208Pb, the experiment yields a
double-peak structure, and so the one-peak picture from SkO,
SkO’, and SkI4 fails. The description is generally quite poor,
with the exception of SV-bas in 158Gd and SG2 in 238U. Thus
we see that every Skyrme parametrization fails to describe
simultaneously the one-peak structure in closed-shell nuclei
and two-peak structure in open-shell nuclei. The reason is
yet unclear. However, the relative spin-orbit splitting E

np
so is

evidently one of the key factors in this problem.
Figure 6 explores the influence of the spin-orbit contribu-

tions by systematic variation of tensor spin-orbit [Fig. 6(a)]
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FIG. 6. Dependence of unperturbed spin-orbit splitting for proton
π (h−1

11/2, h9/2) and neutron ν(i−1
13/2, i11/2) configurations in 208Pb on (a)

the attenuation 0 � γT � 1 for tensor interaction and (b) the param-
eter b′

4 of isovector spin-orbit interaction. Skyrme parametrizations
with varied γT or b′

4 are used [5]. The proton (neutron) splittings
are marked by circles (boxes). Filled symbols mark results for
parametrizations refitted for given γT or b′

4. Open symbols stand
for SV-bas, where only γT or b′

4 are varied, i.e., without refitting.

and isovector spin-orbit terms [Fig. 6(b)]. Variation of the
tensor spin-orbit strength shifts significantly both En

so and
E

p
so, but leaves the relative order unchanged. The variation

of the isovector spin-orbit strength b′
4 has a strong effect on

the relative positions. So by simultaneously monitoring tensor
and isovector spin-orbit interactions, one may control better
the spin-orbit splittings. Besides the strong effect on single-
particle energies, these interactions also affect the collective
shifts (see Fig. 1). Altogether, they represent a promising tool
to improve the description of spin-flip M1 modes.

In summary, we have studied the ability of Skyrme forces
to describe the spin-flip M1 resonance using RPA with self-
consistent factorized residual interaction. The results show that
the terms with spin and spin-orbit densities are responsible for
a sizable collective shift of the resonance peak. The spin-orbit
splitting of the underlying single-particle states is of crucial
importance for the final pattern of the spectrum (single-peak
versus double-peak structure). The residual interaction mixes
proton and neutron spin-orbit partners and so works toward
a one-peak structure, as in 208Pb. A large difference between
neutron and proton spin-orbit splitting inhibits this mixing
and produces two distinct proton and neutron peaks, as seen
experimentally in rare-earth and actinide nuclei.

None of the eight Skyrme parametrizations used in the
present study is able to describe simultaneously the one-peak
and two-peak structures in closed-shell and open-shell nuclei.
In most of the cases, the resonance energies are badly repro-
duced as well. A first exploration indicates that fine-tuning
of tensor and isovector spin-orbit interactions could improve
the description, as they affect both the spin-orbit splittings
and collective shifts. Work in this direction is in progress. A
corresponding improvement of the Skyrme parametrizations
would be important not only for the description of spin-flip
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M1 resonance (which is a challenge itself) but also for better
treatment of the spin-orbit interaction in nuclei.
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[14] R. R. Hilton, W. Höbenberger, and P. Ring, Eur. Phys. J. A 1,
257 (1998).
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