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Global investigation of the fine structure of the isoscalar giant quadrupole resonance
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Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in 58Ni, 89Y, 90Zr, 120Sn,
166Er, and 208Pb has been observed in high-energy-resolution (�E1/2 � 35–50 keV) inelastic proton scattering
measurements at E0 = 200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation
strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine
structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account.
A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM)
and the extended time-dependent Hartree-Fock (ETDHF) method. For 208Pb, additional theoretical results from
second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet
analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the
fine structure. Although the calculations agree with qualitative features of these scales, considerable differences
are found between the model and experimental results and amongst different models. Within the framework of
the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately
corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from
the collective coupling of the ISGQR to low-energy surface vibrations.
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I. INTRODUCTION

Electric and magnetic nuclear giant resonances are well-
known examples of the striking behavior of an interacting
system of fermions to form collective modes [1]. Over the
years, much experimental work has gone into establishing an
understanding of the global behavior of their gross features,
such as centroid energies and widths. It is generally accepted
that the width � of the resonance mainly derives from two
mechanisms: direct particle emission from one-particle one-
hole (1p1h) configurations, leading to an escape width �↑, and
the evolution of 1p1h configurations into more complicated
two-particle two-hole (2p2h) and finally to npnh states, giving
rise to a spreading width �↓. This latter scheme implies a
hierarchy of widths and time scales (an assumption underlying
all transport theories [2–4]), resulting in a fragmentation of
the giant resonance strength in a hierarchical manner [5].
An important theoretical problem is to explain the nature of
couplings between the levels in this hierarchy and to predict
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the scales of the fragmentation of the strength that thus arise
from it.

Indeed, over twenty years ago it became apparent from
a high-energy-resolution inelastic electron scattering experi-
ment [6] that there was considerable fine structure superim-
posed on the broad bump of the isoscalar giant quadrupole
resonance (ISGQR) in 208Pb. This phenomeon was later con-
firmed in inelastic proton scattering experiments [7]. Recent
high-energy-resolution (p, p′) measurements demonstrated
the fine structure in a wide range of nuclei for the ISGQR [8].
It has also been observed in other types of resonances such
as the isovector giant dipole resonance [9,10], the magnetic
quadrupole resonance [11], and the spin-isospinflip Gamow-
Teller (GT) mode [12], establishing fine structure as a generic
phenomenon of nuclei.

Nevertheless, a serious experimental problem has been the
quantitative extraction of the scales of this fragmentation. A
lower limit on observable scales is set by the experimental
resolution. Experimental studies of giant resonances are
typically performed using particle beams with energies of
several hundred MeV requiring magnetic spectrometers for the
detection of scattered particles. By utilizing beam dispersion-
matching techniques, energy resolutions of the order of a few
tens of keV can be achieved. The problem then is to determine
scales that occur between the limits set by the experimental
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resolution and the broad envelope of the resonances of the
order of several MeV. A variety of methods have been proposed
for their extraction [8,13–17], of which the wavelet analysis
was shown to be most promising [18].

Here, we present a systematic study of the fine structure
of the ISGQR in medium-mass to heavy nuclei. Characteristic
scales are extracted from a wavelet analysis and compared to
different microscopic approaches based on the random-phase
approximation (RPA). A comprehensive analysis reveals that
the observed scales indeed arise from the coupling of 1p1h
to 2p2h states. However, in contrast to the schematic picture
just discussed, multiple scales are observed in this single
mixing step. As demonstrated in the following they can be
induced by the collective coupling to low-energy phonons.
This mechanism contributes significantly to the damping
width of giant resonances in heavy nuclei [5,19]. Successes
and limitations of the microscopic models in describing
the observed characteristic scales of the fine structure are
discussed.

The paper is organized as follows: In Sec. II we describe
the measurement techniques used to obtain the experimental
spectra. In Sec. III we apply the wavelet analysis to these data.
The models and their application to our data are described in
Sec. IV. Conclusions are given in Sec. V.

II. DATA

A. Experimental data

The experimental data were obtained by high-energy-
resolution (p, p′) measurements [8] using the K600 magnetic
spectrometer of the cyclotron facility at iThemba LABS,
Somerset West, South Africa. Data were taken at an incident
proton energy of 200 MeV at scattering angles chosen to
maximize the ISGQR cross section. A number of targets were
used, as detailed in Table I. For 90Zr and 208Pb, extended
angular distributions were measured to investigate the possible
influence of the excitation of other multipoles in the region
of the ISGQR by extracting of characteristic scales with the
analysis described in the next section. Beam currents ranged
from 5 to 25 nA depending on the target and kinematics.

The spectrometer was used in dispersion-matched mode.
Initial settings were made using ion-beam transport programs
taking into account the complete beam line together with the
measured field map of the K600 spectrometer. The faint-

TABLE I. Summary of information on targets and scattering
angles used.

Target Laboratory Angles Density Enrichment
(degrees) (mg/cm2) (%)

208Pb 6, 8, 10, 12.5 0.74, 6.0 >98
166Er 8 1.8 >95
142Nd 9 1.49 >95
120Sn 8 4.5 >95
90Zr 9.2, 11, 13 10.1 97.7
89Y 9.2 1.9 >95
58Ni 10 3.0 >95

beam technique [20] was used to find the optimum beam
setting. A typical resolution of �E = 30 keV (full width at
half maximum, FWHM) was achieved. However, owing to
cyclotron instabilities this could usually not be maintained
for the duration of a typical measurement of the order of 12
hours. By monitoring the fields of the dipole magnets of the
spectrometer using NMR probes, peak drifts were shown not
to contribute to the variation of the energy resolution. The
resolution was monitored using a thin (740 µg/cm2) 208Pb
target. A 1◦ slit collimator was used at the entrance to the
spectrometer, defining a solid angle �� = 1.3 msr. Overall
energy resolutions varying between 35 and 50 keV (FWHM)
were achieved during data taking with the use of a circular 4◦
entrance collimator to the spectrometer.

A 50-mm brass block was placed directly in front of
the focal plane to suppress events from elastic scattering
that otherwise would dominate the total count rates. These
were limited to about 1 kHz by the dead time of the data
acquisition system. The scattered particles then passed through
two plastic scintillator paddles, which provided a trigger signal
to the spectrometer and also allowed for particle identification.
A set of vertical drift chambers (VDCs) served to measure
the focal plane position. It consisted of two chambers in the
dispersive direction with 198 wires each and a chamber in the
nondispersive direction with 16 wires. The latter was used to
monitor the vertical beam position.

B. Data analysis

The spectra used for the data analysis were reconstructed
offline. The data were broken up into shorter sections. Each
section was energy calibrated and then resummed to produce
an excitation energy spectrum. This procedure minimized the
energy drift from cyclotron instabilities and typically improved
the energy resolution by several keV. Particle identification
was performed using both time of flight (TOF) from the target
position to the trigger paddles and energy loss measurements
of the particles in the trigger paddles. As illustrated in
Fig. 1, the correlation between the pulse height signals from
both paddles allows an unambiguous distinction of protons
from background (mainly photons).

FIG. 1. Particle identification spectrum produced by the �E

signals from scintillator paddles 1 and 2. Proton events can be clearly
identified and separated from the background by a two-dimensional
gate defined by the polygon.
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FIG. 2. Distribution of events from the 208Pb(p, p′) reaction in
the focal plane corresponding to excitation energies around the first
excited state in 208Pb at Ex = 2.615 MeV as a function of either the
time of flight (left) or the intersection angle (right) of the particle
before (top) and after (bottom) application of position corrections.

The focal plane position of the scattered particle was
reconstructed from drift times obtained from 3–9 adjacent
wires of the vertical drift chamber. Some dependence of the
focal plane position of spectral lines on the TOF on the
intersection angle remains because of higher order abberations
of the ion optics, as illustrated in the two top panels of Fig. 2.
The example is taken from a 208Pb(p, p′) measurement and the
part of the focal plane shown corresponds to the energy region
around the first excited state in 208Pb at Ex = 2.615 MeV.
Corrections using polynomials of third order were applied,
resulting in the straighter distributions shown in the bottom
panels of Fig. 2. This led to another small gain in the overall
energy resolution of the spectra.

Since the present study focuses on fine structure in the
measured spectra, it is important to rule out significant con-
tributions from artificial fluctuations resulting from variations
of the efficiencies of the vertical drift chambers or specific
features of the data analysis such as drift-time corrections.
These can be excluded for the present data based on a number
of arguments: Artificial structures should appear at the same
position in all spectra measured with an identical setup. This is
not observed. Furthermore, one can show the statistical nature
of fluctuations in the continuum at high excitation energies,
as demonstrated in the next section. Finally, as discussed in
the following wavelet analysis is a sensitive method to locate
regular structures and can be utilized to search for artificial
fluctuations.

C. Spectra

As an example, we consider the 208Pb(p, p′) spectrum
measured at �p = 8◦ in the excitation energy region Ex =
8–12 MeV, where the ISGQR is located. It is presented in
the bottom panel of Fig. 3 together with proton scattering
data from IUCF [7] measured with the same kinematics
(middle panel) and electron scattering data from the DALINAC
[6] (top panel), both obtained with an energy resolution
comparable to that of the present work. The proton scattering
data show excellent agreement between the two spectra on a
peak-by-peak basis. This is also true for the electron scattering
spectrum, at least up to Ex � 10 MeV. At higher Ex larger

FIG. 3. Similarity of the structures observed in the three exper-
iments on 208Pb carried out in Darmstadt (top panel) [6], at IUCF
(middle panel) [7], and recently at iThemba LABS (bottom panel).

differences between the fine structure in the (e, e′) and (p, p′)
spectra are visible owing to the different selectivity of the two
reactions. In the electron scattering data prominent excitation
of E1 transitions from the low-energy tail of the IVGDR is
expected whereas such transitions are only weakly excited
in proton scattering. Nevertheless, the excellent agreement
observed with two different probes already indicates that the
fine structure is of genuine physical origin [7].

The difference between fluctuations from the fine structure
in the giant resonance region and statistical fluctuations is
demonstrated further in Fig. 4. The top panel illustrates
the full range in excitation energy of the data up to Ex ≈
20 MeV. At Ex < 8 MeV, the spectrum is dominated by
strong discrete transitions. The excitation energy range of the
ISGQR (8–12 MeV) is expanded in the lower left plot. At

FIG. 4. Different modes of fluctuations in the 208Pb nucleus
observed at different excitation energy ranges.
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FIG. 5. Comparison of an earlier (p, p′) experiment on the
ISGQR in 90Zr by Bertrand et al. [22] with the recently obtained high-
energy-resolution data at iThemba LABS under similar kinematics.
The broad bump in the upper spectrum around 14 MeV is interpreted
as the ISGQR. The resolution of about 1 MeV is insufficient to observe
any detailed structure. When measured with high energy resolution,
the ISGQR region expanded in the lower part exhibits fine structure
and a double-hump structure deviating from the typical assumption
of a single Lorentzian.

even higher Ex the spectrum is rather structureless, and the
excitation region 18–20 MeV is shown enlarged in the lower
right plot in Fig. 4. There is a striking difference between the
latter two, highlighting the fine structure in the ISGQR region
as compared to the fluctuations in the high-excitation region.
The statistical nature of the latter has been tested by calculating
the autocorrelation function in a fluctuation analysis (see, e.g.,
Ref. [21] and references therein).

As an illustration of the impact of high-energy-resolution
measurements we compare in Fig. 5 an early measurement
of the ISGQR in 90Zr using inelastic proton scattering by
Bertrand et al. [22] with our measurement at iThemba LABS.
In Ref. [22], the ISGQR was observed as a broad, smooth,
roughly Lorentzian hump at about 14 MeV with a FWHM
resolution of about 1 MeV. At high energy resolution (40 keV
FWHM) considerable fine structure is revealed. In addition,
the resonance is shown to have a double-humped structure,
deviating from the typical assumption of a single Lorentzian
made for the decomposition of hadron scattering spectra, as
illustrated in the upper part of Fig. 5.

The experimental energy spectra of the other nuclei
measured in this study are shown in Fig. 6 in an excitation
energy range from 8 to 20 MeV covering the region of the
ISGQR. In all nuclei, the enhancement of the cross sections
in the ISGQR region is clearly visible and considerable fine
structure is observed in all cases, confirming it as a global
feature. This is especially remarkable for the case of the

FIG. 6. Experimental excitation energy spectra of the ISGQR
in several nuclei—166Er (top left), 120Sn (top right), 89Y (bottom
left), and 58Ni (bottom right)—measured at Ep = 200 MeV for
scattering angles corresponding to a maximum of the �L = 2
angular distribution. All cases show the appearance of fine structure,
confirming this phenomenon as a global feature of the ISGQR.

heavy, well-deformed nucleus 166Er, where one might have
expected these fluctuations to vanish because of the very high
level density. Except for 120Sn, all measured targets show a
double-hump structure of the ISGQR. For 166Er, this might
be related to K splitting [23]. For spherical nuclei, a splitting
of the ISGQR is well established in lighter nuclei such as
40Ca [24,25] but the present results indicate that it persists
toward heavier nuclei, at least up to mass A = 90. In the
89Y data, very strong transitions are observed at Ex ≈ 13 and
15 MeV on top of the resonance. These are most probably
isobaric analog states, which are known to be pronounced in
the A � 90 mass region [26].

In the present experimental data it is generally observed
that the magnitude of fine-structure fluctuations decreases
with excitation energy. Another pronounced example of this
phenomenon are the GT resonance data of Ref. [12]. Although
we cannot offer at present a full explanation, it is—at least
partially—due to the increasing level density. Another aspect
may be that at some point one moves from the regime of
fluctuations induced by the incoherent overlap of levels caused
by the finite energy resolution to the regime of coherent Ericson
fluctuations [27].

The dependence of the fine structure on scattering angle
was investigated in more detail for the cases of 208Pb and 90Zr.
As an example, the spectra of 90Zr measured at scattering
angles �p = 9◦, 11◦, and 13◦ are presented in Fig. 7. The
fine structure visible in the different spectra is found to be
largely identical, albeit with decreasing peak-to-background
ratio for increasing scattering angles because one moves away
from the optimum momentum transfer for �L = 2 excitations.
However, contributions from higher multipoles are weak.

III. WAVELET ANALYSIS

The experimental spectra described in Sec. II indicate that
the fine structure of the ISGQR is a phenomenon observed
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FIG. 7. Excitation energy spectra in the 90Zr nucleus for different
proton scattering angles at Ep = 200 MeV. A scattering angle of
�p = 9◦ corresponds to the maximum of the �L = 2 angular
distribution.

over a wide range of nuclei. To study the global nature of this
structure we need to characterize the energy scales that are
involved. The wavelet analysis provides a novel and extremely
effective way to represent and analyze multiscale structures.
Indeed, many physical systems are organized into “levels”
or “scales” of some variable. A multiresolution or scalable
mathematical representation may provide a simpler and more
efficient extraction of the relevant degrees of freedom in
physical systems [28]. Here a wavelet analysis based on the
continuous wavelet transform (CWT) is performed to extract
scales. A detailed discussion of the application of the CWT to
nuclear giant resonances can be found in Ref. [18]; therefore
we restrict ourselves to a brief presentation of the basic features
of the technique.

A. Wavelet transform

A distinct feature of a wavelet analysis is the presence
of a scaling parameter, which—loosely speaking—can be
interpreted as the reciprocal Fourier frequency. The wavelet
transform of some signal given here by a cross section σ (E)
is defined as its convolution with a (generally complex-
conjugated) wavelet function �(Ex, δE),

C(δE,Ex) = 1√
δE

∫
σ (E)�∗

(
Ex − E

δE

)
dE. (1)

The parameter δE scales (i.e., dilates or stretches) the function,
whereas the parameter Ex shifts the wavelet position along the
excitation energy so that the scale localization information
becomes accessible. As a result of such a transformation,

one obtains a two-dimensional (2-D) distribution of wavelet
coefficients C(δE,Ex). These coefficients will be large at
those scales δE and locations Ex where the form of the scaled
and shifted wavelet �(x) has the biggest resemblance to the
analyzed data sample σ (E), and, if the scale of a wavelet
function is very different from characteristic scales in the data
at a given location, the coefficients will be small. Therefore,
by studying this 2-D distribution of wavelet coefficients one
can extract not only the values of the characteristic scales but
also their locations, which are very important for nonstationary
processes.

Another important advantage of the wavelet analysis
is the freedom to use different wavelet functions and to find
the appropriate one for a given problem, thereby extracting
the required features most efficiently. To achieve a sparse
representation of the signal using wavelet analysis, one has to
select a function that best resembles the features of the signal
to be studied. Thus, the shape of the wavelet function should be
similar to that of the signal. However, the scale resolution of
different wavelets must also be taken into account. Results
from the use of the various different wavelets have been
presented in Ref. [18]. It was found that the Morlet wavelet
provides the best localization for the type of data presented in
this paper.

The Morlet function is obtained by taking a periodic wave
and localizing it with a Gaussian envelope,

�Morlet(x) = π−1/4eikx · e−x2/2. (2)

The value of k specifies the number of “significant” sinusoidal
oscillations within a Gaussian window. Formally, the function
of Eq. (2) is not generally applicable as a wavelet. However,
for k � 5 the condition of square integrability,

K� =
∫ ∞

−∞
|�2(x)|dx < ∞, (3)

is satisfied within the accuracy of computations with single-
precision arithmetic. Higher values of k would slightly
improve the scale resolution and in a limiting case one would
end up with a Fourier spectrum. However, at the same time
the scale localization property would be decreasing. For the
analysis of nuclear giant resonance spectra described in the
following, a value of k = 5 was found to provide the best
compromise.

The scaling can be performed in continuous (CWT) or in
discrete steps. The latter method allows for limited resolution
only, but it provides a means to determine background
contributions in the spectra in a model-independent way. This,
in turn, enables the extraction of spin- and parity-resolved level
densities in the energy region of the giant resonances [12,29].

B. Extraction of energy scales

All nuclei studied in the present work show the appearance
of scales in the energy region of the ISGQR, as demonstrated
in Figs. 8 and 9 for 90Zr. Note that the square of the wavelet
coefficients C [Eq. (1)] is plotted, and the blackness serves
as a measure of their magnitude. The specific structure of
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FIG. 8. The continuous wavelet transform of the 90Zr(p, p′)
spectrum for Ep = 200 MeV and �p = 9.2◦ using the Morlet wavelet
[cf. Eq. (2)] for scale values up to 1 MeV.

alternating regions of large and small coefficients as a function
of Ex results from the use of an oscillating function. To extract
scales it is convenient to project onto the scale axis (the wavelet
power spectrum). The maxima of the power spectrum are
considered characteristic scales of the ISGQR in 90Zr. Since
the wavelet power increases with scale value, the scale axis in
Fig. 8 is limited to 1 MeV for better visibility of characteristic
scales at smaller energies.

As in the case of 208Pb shown in Ref. [18], characteristic
scales are also observed at energies larger than 1 MeV, as
demonstrated in Fig. 9. In the present case two prominent
scales with values of about 1.5 and 2.5 MeV are found,
reflecting the double-hump structure of the ISGQR visible in
Fig. 5 and the total width, respectively. At larger Ex (i.e.,
outside the resonance region) the wavelet coefficients are
generally small.

As a second example we present the CWT of the data
on 166Er (see Fig. 10). Again, since the spectrum exhibits
fine structure the CWT power spectrum is expected to show
characteristic scales and this is indeed the case. We remark that
the observation of fine structure in a heavy deformed nucleus
comes somewhat as a surprise because of the very high level

FIG. 9. Same as Fig. 8 but for scale values up to 3.2 MeV.

FIG. 10. The CWT of the 166Er(p, p′) spectrum for Ep =
200 MeV and �p = 8◦ using the Morlet wavelet.

densities of the order 107–1010 MeV−1 expected [30] in the
region of the ISGQR. The corresponding large number of open
channels in the continuum decay should damp the fluctuation
signal. The smallest scale observed in the corresponding power
spectrum is a trivial one: It arises from the experimental energy
resolution. The same is true for all other spectra analyzed.

A summary of all deduced scales is given in Table II. As
already pointed out in Ref. [8], these can be grouped em-
pirically into three categories. In all nuclei one characteristic
scale around 100 keV (I), several scales between 100 keV and
1 MeV (II) varying strongly between the investigated nuclei,
and one or two scales at several MeV (III) are found. The
latter result from the gross structure and the total width of the
ISGQR, as already discussed for the example of 90Zr. The two
smaller scales obtained for 208Pb agree favorably with those
from an earlier analysis [17] based on the entropy index method
(110 keV, 460 keV).

A question remains whether an artificial origin of some of
the scales arising from specific properties of the VDC detectors
can be excluded. Wavelet analysis is in fact a sensitive tool
to test this. For example, the most likely regular structure
expected to be observed in a VDC position spectrum is related
to the wire spacing (4 mm in the present case). Under the
present experimental conditions it corresponds to a spacing
of about 160 keV when converted to an energy spectrum.
In a CWT analysis, such a regular structure should show
up as a prominent scale in all the spectra. No such scale

TABLE II. Summary of the characteristic scales deduced from
the CWT analysis (in keV).

Nucleus I II III

208Pb 110 500 1500 2600
166Er 150 250 880 2260 3260
142Nd 130 420 1200 3200
120Sn 80 220 330 470 1100 3200
90Zr 70 140 260 540 2100 3100
89Y 120 190 320 540 830 2100 3100
58Ni 70 170 360 580 850 2800 4700
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was observed. Furthermore, the continuum region at high
excitation energies, where no physical scales are expected,
indeed contributes negligibly only to the wavelet power
spectrum, as demonstrated in Ref. [18] for the 208Pb spectrum
shown in Fig. 4.

Another question to address is whether the observed fine
structure and characteristic scales really originate from the
ISGQR or whether other resonances also contribute. It is well
known that the strength distributions of the isoscalar giant
monopole resonanace (ISGMR), the isovector giant dipole
resonance (IVGDR), or the isoscalar giant dipole resonance
(ISGDR) partially overlap with that of the ISGQR [1]. We
have estimated their contributions to the spectra with distorted-
wave Born approximation (DWBA) calculations, assuming a
comparable exhaustion of the respective energy-weighted sum
rules (EWSR). The results can be summarized as follows:
Nuclear as well as Coulomb excitation of the IVGDR are
negligble at the “large” angles studied here. The ISGMR has
indeed the same angular distribution as the ISGQR except
at very small angles, but for the same EWSR fractions the
ISGMR (p, p′) cross sections at angles of the first maximum
of the ISGQR are always more than an order of magnitude
smaller. The ISGDR is also expected to be weakly excited
only at these kinematics.

The influence of other multipoles can also be tested by
studying the evolution of power spectra for a given nucleus as
a function of the scattering angle. This is illustrated for the case
of 208Pb, where data were taken for a larger angle range above
and below the maximum of the �L = 2 excitations, thereby
enhancing contributions of other multipoles and suppressing
the ISGQR. The results of the wavelet analysis for the 208Pb
target are shown in Fig. 11 for scattering angles 6◦, 8◦, 10◦,
and 12.5◦, with the spectra on the left-hand side and wavelet
power spectra on the right-hand side. The power spectrum is
normalized so that the smallest scale (experimental resolution)
has unit power. This normalization removes any dependency
on the statistics of the spectra, and the spectra at different

FIG. 11. Power spectra of the 208Pb(p, p′) data from a CWT
analysis at four different scattering angles. The maximum of the
ISGQR cross section lies close to 8◦. The ISGQR gets weaker at
smaller and larger scattering angles.

angles can be compared directly. The 6◦ spectrum contains
considerable instrumental background, which appears at spe-
cific positions of the plane and is therefore not smoothly
distributed over the energy spectrum. Thus, an interpretation
of the scales observed in the corresponding power spectrum
remains doubtful. The 310- and 700-keV scales extracted
from this spectrum disappear at other scattering angles. A
110-keV scale increases in power as one moves to 8◦. The
scales present in the maximum of ISGQR cross section at 8◦
are getting weaker at larger angles, thereby supporting the
hypothesis of their ISGQR origin. At 10◦ a new scale of
230 keV appears, and this becomes even stronger at 12.5◦,
whereas the 110-keV scale, in contrast, almost disappears.
Thus, in the case of the ISGQR in 208Pb, excitations with
�L > 2 may have some impact at larger scattering angles but
do not affect the scaling information at the scattering angle
corresponding to the maximum of �L = 2 cross sections, on
which the scales in Table II are based. This is also confirmed
by a similar analysis of the 90Zr data (Fig. 7).

A comparison of wavelet power distributions of the
quadrupole resonance in the measured nuclei at angles close
to the maximum of ISGQR excitation are shown in Fig. 12.
Here, 166Er is left out because of its intrinsic ground-state
deformation, which leads to modifications of the ISGQR
strength distribution owing to a strong low-energy component
[23]. All the other nuclei studied are either doubly or semi-
magic. The power distributions are all normalized to the
largest individual value. Note that the wavelet power axis
in Fig. 12 is logarithmic. Obviously, the relative weight of
characteristic scales of categories I–III (as introduced earlier)
varies significantly. However, the power at large scale values
generally dominates. It is interesting to compare the odd and
even N = 50 nuclei 89Y and 90Zr, respectively, where one
might hope to learn something about effects from coupling to

FIG. 12. Power spectra of data taken at scattering angles corre-
sponding to the maximum of �L = 2 excitations in the region of the
quadrupole resonance for (top to bottom) 208Pb, 120Sn, 90Zr, 89Y, and
58Ni.
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an unpaired nucleon. For wavelet scales larger than 200 keV the
power spectra are indeed quite similar, but differences are seen
at smaller scale values around 100 keV. This might resemble
the typical splitting of states resulting from the coupling of an
unpaired particle or hole to states in the even-even core.

IV. MODEL CALCULATIONS

A. Origin of the fine structure

An interpretation of the physical nature of the characteristic
energy scales obtained from experiment is possible only via
a comparison with the results from microscopic calculations.
Within the RPA model, where only 1p1h transitions are treated,
the ISGQR strength is concentrated in just a few states. In the
case of 208Pb it is only one state, so that the response function
shows no fine structure. Accordingly, as Fig. 13 demonstrates,
the wavelet analysis does not detect any characteristic scales
except a trivial scale from folding with a Gaussian of width of
50 keV (FWHM), put in to mimic the experimental resolution.

If one goes beyond the mean-field approximation and
includes the coupling to 2p2h configurations the ISGQR
strength in 208Pb shown in the top frame of Fig. 14 fragments
into many states and fine structure appears. By way of
example, a second RPA (SRPA) calculation [17] described
in detail in the following is shown here. The wavelet transform
in the middle of Fig. 14 and the power spectrum on the
left-hand side exhibit several characteristic scales. This fact
is a demonstration of the significance of coupling to 2p2h
configurations for the formation of fine structure and related
characteristic scales, found in the experimental spectra. We
remark that the maximum scale shown in Fig. 14 is restricted
to 1 MeV, as for the experimental data in Figs. 8 and Fig. 10, to
achieve better visibility of the CWT at small scales. A larger
characteristic scale at 2.1 MeV representing the width of the
resonance is also found.

FIG. 13. The CWT analysis of the E2 response in 208Pb predicted
within the RPA. The strength is folded with a Gaussian of a width of
50 keV (FWHM) to mimic the experimental resolution. The strength
is concentrated in one state, and there is no fine structure. The wavelet
analysis also reveals no scales except the trivial one from the folding.

FIG. 14. The CWT analysis of the E2 response in 208Pb predicted
by an SRPA calculation [17].

B. Model dependence: the case of 208Pb

Precise information on the scales present in the excitation
energy spectra of giant resonances is of particular interest since
it may help in understanding which mechanisms dominate the
decay. However, the interpretation of the fine-structure scales
is still far from being straightforward. A proper understanding
of the observed subtle phenomena is impossible to accomplish
without the help of modern sophisticated microscopic models.

For a physical interpretation of the results, one has to
compare them with predictions for the strength functions
of the collective mode studied. Examples are discussed in
the next section where the doubly magic nucleus 208Pb is
investigated as a benchmark case. However, fine structure
with its characteristic scales may serve as a stringent test
for the validity and further improvement of the microscopic
description of collective excitations in atomic nuclei. The
experimental data set presented here on a number of different
closed-shell nuclei provide a real challenge for modern
microscopic nuclear structure calculations.

1. Mean-field approximation

The mean-field approximation can be described theoreti-
cally using a time-dependent Hartree-Fock (TDHF) approach
[31,32]. It is based on the Vlasov equations of the time
evolution of the one-body density matrix. This allows, in
principle, any type of motion in the mean field, even those
with large-amplitude oscillations. The full TDHF is actually
extensively applied to collective vibrations and reactions but
misses important two-body effects [33]. However, some of the
effects can be incorporated in the small-amplitude version,
which reduces the TDHF to the RPA limit.

In the RPA the nucleons move independently in an average
potential. The “quasiparticles” interact via the mean field
only. This excludes damping phenomena related to residual
collisions of quasiparticles in the mean field. Nonetheless,
there exists a damping mechanism, which is of purely
quantum-mechanical origin. The damping effects contained in
this description are usually referred to as one-body dissipation.
One of them is Landau damping. In a finite nucleus it occurs
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as a mixing between the collective state and the nuclear
1p1h excitations. In some cases, for example, in light nuclei,
Landau damping may introduce a fragmentation of initial
1p1h doorway states and produce one or a few typical scales.
A second damping mechanism is induced by direct particle
emission from the initial 1p1h state, leading to an escape
width �↑. However, qualitative agreement with high-energy-
resolution experimental data can only be achieved by including
two-body effects, such as in extended RPA approaches that go
beyond the mean field. It has been shown that the coupling of
1p1h to 2p2h states gives rise to significant effects (see, e.g.,
Refs. [7,34,35]).

2. Models beyond the mean field

One-body dissipation from the nuclear mean field ap-
pears to be insufficient to describe the observed resonance
broadenings. A so-called collisional damping or two-body
dissipation is needed to account for the widths. An extension
for these effects involves complicated parts of the two-body
density matrix. There exist several approaches that have
been proposed for the description of the damping of giant
resonances, including internal mixing. Figure 15 summarizes
microscopic calculations for the E2 response function in

FIG. 15. The experimental spectrum of 208Pb compared to micro-
scopic model calculations for the ISGQR, including coupling to 2p2h
states (top to bottom): SRPA [17], ETDHF [36], ETFFS [7], and
QPM [39]. All models predict slightly different centroid energies,
fragmentations, widths, and fine structure of the ISGQR.

208Pb in comparison with the recent data. Strength functions
calculated within the SRPA [17], extended time-dependent
Hartree-Fock (ETDHF) [36], extended theory of finite Fermi
systems (ETFFS) [7,37], and the quasiparticle-phonon model
(QPM) [38,39] are shown. The predictions differ substantially,
each having a unique fragmentation of the collective strength
over different ranges of excitation energies. A brief discussion
of each approach follows.

3. Second RPA model

The small-amplitude limit of the generalized theory, the
so-called second RPA, involves 1p1h as well as 2p2h ex-
citations of the static ground state. The solutions of the
SRPA equations are obtained numerically, using several
approximation schemes, which separate out the most relevant
degrees of freedom. The SRPA has been successfully used
for the description of damping of giant resonances (see, e.g.,
Refs. [34,40]).

The SRPA calculation shown in Fig. 15 was taken from
Ref. [17] and is based on the M3Y interaction [41] with
an adjusted short-range part to reproduce the experimental
centroids of the low-multipolarity electric giant resonances
in 208Pb. A truncation of the 2p2h configuration space was
made at Ex = 20 MeV. At this limit one includes about
1.5 × 104 2p2h states. Details of the calculation are described
in Ref. [42].

The truncation method used here focuses on diagonal
matrix elements in the 2p2h subspace. Their distribution
can be approximated by a Gaussian, by assuming random
fluctuations. All configurations associated with matrix ele-
ments exceeding this Gaussian fit were included in the further
analysis (about 3000 in the present example). The complex
SRPA self-energy was chosen to attain a finite resolution
similar to the experimental data. At the RPA level, the strength
function consists essentially of a single collective state around
11 MeV as shown in Fig. 13. By introducing 2p2h components,
the FWHM strongly increases and fine structure appears on
top of the global shape. The gross shape of the experimental
strength distribution is reproduced quite well (cf. Fig. 15).

4. Extended time-dependent Hartree-Fock model

A similar approach is realized within the ETDHF model,
again by linearizing the extended TDHF equations so that
one has only the low-amplitude vibrations. One accounts for
the damping from the incoherent 2p2h decay in the form
of a non-Markovian collision term [43,44] and the coherent
coupling to 1p1h ⊗ phonon states, which originates from the
response to a fluctuating one-body term. A review of the
theoretical approach is given in Ref. [45]. The ISGQR strength
distribution in 208Pb shown in the third panel of Fig. 15 is
obtained by employing an effective Skyrme interaction. A
detailed discussion of the model calculations can be found for
example in Refs. [35,36]. The experimental fragmentation is
significantly underpredicted and part of the strength is shifted
to a rather high excitation energy of about 14 MeV.
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5. Extended theory of finite Fermi systems

Another analogous method of describing damping of col-
lective motion in atomic nuclei beyond the mean-field theory
was developed in the framework of an extension of Migdal’s
theory of finite Fermi systems (ETFFS) where, in addition
to the previously discussed damping mechanisms, namely
Landau damping and more complex 1p1h ⊗ phonon or 2qp ⊗
phonon configurations (where qp stands for quasiparticles), the
coupling to the single-particle continuum was included. This
approach is based on a Green’s function method. Here, one
considers in a consistent way more complex 1p1h ⊗ phonon
configurations beyond the RPA correlations. Moreover, these
configurations are not only included in the excited states but
also explicitly in the ground states of nuclei. A review of the
theoretical approach is given in Ref. [37]. The result for the
ISGQR in the 208Pb nucleus [7] is shown in the fourth panel
of Fig. 15. One can see that the coupling to the continuum
leads to an additional broadening of the strength. This effect
is believed, however, to be more significant for a proper
description of resonance damping in light and medium-heavy
nuclei, where the role of the continuum is known to be very
important.

6. Quasiparticle-phonon model

Another approach permitting the inclusion of complex
degrees of freedom equivalent to the SRPA is the QPM
[46], which proved to be very successful in the microscopic
description of collective excitations in 208Pb [39,47,48]. In
the QPM nuclear excitations are described by the creation
of phonons made up from ph pairs. Because of pairing
correlations, fractional occupation probabilities appear for a
single-particle state j . These states are denoted as quasiparticle
(qp) states. Since 1p1h pairs couple to an integer transfer of
the quantum numbers, one can describe the transition as a
creation of a boson, the so-called phonon. Note, however, that
the term “phonon” is not reserved for collective states only but
applies to transitions with rather pure 1p1h character as well.
The model can account not only for one-phonon transitions
but also for multiphonon excitations.

Applications of this model to collective transitions in 208Pb
are described, for example, in Refs. [38,39,47]. A two-step
diagonalization procedure is applied. It allows the huge space
of two-phonon configurations to be truncated by excluding
the ones that have very small matrix elements. The omitted
two-phonon configurations are believed to give almost no
contribution to the damping process of collective one-phonon
states. This leads to a significant reduction in the dimension
of the matrices to be diagonalized. Another advantage of this
calculation scheme is that it allows the disentanglement of
various contributions to the damping of collective response in
heavy nuclei by setting different truncation thresholds.

The resulting ISGQR strength distribution is shown in the
bottom frame of Fig. 15. One can see that the centroid energy
of the resonance and the fragmentation pattern observed
experimentally are well reproduced. However, the width given
by the QPM underestimates the experiment. Possible reasons

FIG. 16. Wavelet power spectra of the ISGQR in 208Pb, from (top
to bottom) experiment, SRPA, QPM, ETDHF, and ETFFS.

for this may lie in the interaction used, the neglect of coupling
to the continuum, or in the truncation scheme.

7. Comparison of extracted scales

The high-energy-resolution data on the ISGQR in 208Pb
provide a remarkable opportunity for an in-depth comparison
of theory and experiment because of the variety of microscopic
calculations, including the coupling to 2p2h configurations
with different truncation schemes and using different effective
interactions, available for this doubly magic nucleus. This
allows a detailed comparison to be made for the characteristic
scales obtained from the experiment versus those from differ-
ent model predictions, as is shown in Fig. 16. Wavelet analysis,
therefore, represents a novel approach, providing a quantitative
measure for the ability of different models to describe fine
structure and characteristic scales.

Table III summarizes the values of characteristic scales
deduced from the fine structure of 208Pb in the region of
ISGQR, as compared to those given by the microscopic model
calculations just discussed. It should be noted that the values
differ slightly from those given in an earlier analysis [8]
because of an optimized treatment of boundary effects, as
discussed in Ref. [18]. Again, results are classified according
to the empirical categories I–III previously introduced. If one

TABLE III. Summary of the scales in 208Pb observed experi-
mentally compared to the different microscopic models that take
into account coupling of 1p1h to 2p2h configurations.

Category of scales I II III

Experiment (keV) 110 500 1500 2600
Theories
SRPA [17] 80 250 800 2100
ETDHF [36] 70 120 230 930
ETFFS [37] 80 130 310 570 2500
QPM [39] 110 770 1400
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FIG. 17. (Left) Experimental spectrum of
the 120Sn(p, p′) reaction at the maximum of the
ISGQR cross section vs QPM and ETDHF pre-
dictions for the ISGQR. (Right) Corresponding
wavelet power spectra.

considers the largest scales (III) characterizing the width of the
resonance, the closest values are given by the SRPA and ETFFS
predictions. As for the other scales, of all the microscopic
models the results of the QPM are the best in reproducing
the experimental observation by reproducing the number of
characteristic scales in categories I and II (one each) and
reproducing the correct value of 110 keV for the smallest
scale. All the other approaches find two scales in category II
in contrast to the data.

The superior description of the fine structure by the QPM
becomes even clearer when analyzing the power spectra in
Fig. 16. In contrast to other models the pronounced minimum
of the wavelet power between 200 and 300 keV in the
experiment is correctly reproduced. Furthermore, the relative
magnitude at small and large wavelet scales follows the
experimental results quite well. The only shortcoming is
observed at very large scales, since the experimental width
is underpredicted. The wavelet power spectrum of the SRPA
calculation provides a reasonable description at large scales
(as one might have expected from good reproduction of gross
features of the strength distribution) but fails for scales less
than 800 keV. The EDTHF and ETFFS power spectra differ
considerably from the QPM and SRPA results, and also from
the data.

C. Other nuclei

Calculations have also been performed within the QPM
and ETDHF for the ISGQR in 120Sn, 90Zr, and 58Ni (QPM
only) experimentally investigated in the present study. Results

for 120Sn and 90Zr are presented in Figs. 17 and 18, respec-
tively, comparing the resulting strength distributions (left) and
wavelet power spectra (right) to the data.

In both cases, QPM reproduces the experimental centroid
energy whereas it is shifted to higher excitation energy by
several MeV in the ETDHF results. However, both models fall
short of describing the experimental widths. Correspondingly,
the spectra contain little wavelet power at scales of several
MeV, in contrast to the data (cf. Fig. 12). Therefore, the wavelet
scale axes in Figs. 17 and 18 are restricted to 1 MeV. Overall,
the QPM power spectra are closer to the data but deviations
are more significant than in the case of 208Pb. The QPM result
for 58Ni (not shown) is rather poor. This may be partly due to
the neglect of direct decay becoming more important in lighter
nuclei. However, it is also clear that the phonon approximation
underlying the QPM approach is best justified in heavy nuclei.

D. Nature of scales: collective versus noncollective damping

Although the quantitative results of the models differ
considerably, the success in reproducing at least the qualitative
features of the experimental characteristic scales motivates
attempts to extract their underlying physical nature from the
model predictions. In the frameworks of the QPM and EDTHF
calculations a decomposition of the full model space into
subspaces, corresponding approximately to different damping
mechanisms, was made. One such important mechanism
contributing to the damping of the single-particle [49] as well
as the collective response [19] in heavy nuclei is the coupling to
low-lying surface vibrations, in the following called collective

FIG. 18. Same as Fig. 17 but for the ISGQR
in 90Zr.
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FIG. 19. Collective vs noncollective damping mechanisms. The
term “collective” corresponds to coupling to low-lying surface
vibrations [19]. The noncollective contribution results from the
mixing of initial 1p1h states with the large background of states
with more complex wave functions.

damping. Another significant contribution may come from
mixing of the initial 1p1h states with the large background of
incoherent 2p2h states, hitherto called noncollective damping.
These two mechanisms are depicted diagrammatically in
Fig. 19.

As discussed in Ref. [8], the two contributions can be
approximately disentangled as shown by considering the
properties of the coupling matrix elements between the 1p1h
and 2p2h configurations. This is discussed by way of example
for the QPM results obtained on 120Sn. The distribution
of the coupling matrix elements V2p2h

1p1h between 1p1h and
2p2h states is shown as a histogram in Fig. 20. The solid
line shows a Gaussian distribution expected for fully chaotic
systems from the Gaussian orthogonal ensemble (GOE) as
predicted by random matrix theory (RMT) [50]. The value
of the Gaussian width is adopted to match the data. One
can see a large overshoot in the number of small matrix
elements and in the wings of the distribution. The latter carry
most of the collectivity of the excitations and are responsible
for the collective damping. Similar features are observed
in the analysis of off-diagonal interaction matrix elements
in shell-model calculations [51]. An approximate separation
of transitions contributing to collective and noncollective
damping can be achieved by assigning subspaces and repeating
the diagonalization within these subspaces. This is indicated in
Fig. 20 as (i) and (ii) for noncollective and collective damping,
respectively. A similar analysis has been performed with the
ETDHF based on a perturbative treatment [45].

Calculations have been performed with the two models
for 208Pb, 120Sn, and 90Zr. Results for 208Pb using the QPM

FIG. 20. Distribution of the coupling matrix elements V2p2h
1p1h

between 1p1h to 2p2h states in the QPM calculation for the E2
response in 120Sn.

have already been presented in Ref. [8] but are included here
(Fig. 21) for completeness and comparison to the correspond-
ing result from ETDHF (Fig. 22). The resulting E2 strength
functions are displayed in the left panel of Figs. 21 and 22. In
both cases it is obvious that the fragmentation is dominated by
the collective mechanism. However, one should be aware that
the full calculation is not just the sum of the two contributions,
and interference terms may play a role.

The corresponding wavelet power spectra are displayed in
the right panels of Figs. 21 and 22, respectively. From the
decomposition it is clear that in the case of 208Pb all scales are
already present in the collective part. The noncollective part
shows wavelet power distributions broadly distributed over
the range of scales. As pointed out in Ref. [8], the observed
distribution can be well explained within a stochastic coupling
approach in which level spacing distributions and coupling
matrix elements are determined by RMT, thus supporting a
generic nature of the noncollective damping.

Figures 23 and 24 present a similar disentanglement for
the case of 120Sn and provide essentially the same picture. All
the scales observed in the full QPM prediction are already
reproduced by including only collective damping with a broad
distribution of wavelet power in the noncollective part, similar
to what was obtained in 208Pb. The same holds for the ETDHF
results, although the noncollective part exhibits more structure
in the power spectrum with a pronounced minimum around
200 keV and a local maximum around 100 keV. Nevertheless,
the conclusion can be drawn that in heavy nuclei what is called
collective damping is responsible for all the scales. In the
noncollective part of 208Pb and 120Sn, a broad distribution of
wavelet power is observed.

Conversely, the decomposition into a collective and a
noncollective part in the medium-heavy nuclei 90Zr and 58Ni
(see Figs. 25–27) shows an increased role of noncollective
damping. The role of collective and noncollective mechanisms
changes dramatically as one moves toward lighter nuclei.

However, the structure in the lighter nuclei is still not so
well described by the models and their predictive power is
therefore limited. The experimentally observed widths are
grossly underestimated and the EDTHF result for 90Zr shows
a shift of the centroid by about 2 MeV. The noncollective
damping mechanism is becoming more nongeneric as one
goes to lighter systems. The results of the ETDHF model
qualitatively confirm the findings from the QPM. However,
the perturbative approach of the ETDHF leads to large shifts
in the strength distributions, which might indicate strong
interference effects of the two damping mechanisms, intrinsic
within the model. This makes the results more difficult to
interpret, as compared to the QPM calculations.

It is worth mentioning that the main peak position in
ETDHF is largely influenced by the effective residual inter-
action used in the incoherent contribution, as illustrated in
Appendix C of Ref. [45]. The discrepancy observed between
the ETDHF results and experiment might eventually be
reduced by modifying the parameters of the regularization
technique of the zero-range interaction used in Refs. [35,36].
Therefore, a comparison with high-resolution experiments
offers the possibility of getting information on the residual
two-body interaction.
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FIG. 21. (Left) Experimental spectrum of
208Pb as compared to the QPM prediction for
E2 strength and its decomposition into the col-
lective and noncollective damping contributions.
(Right) Corresponding wavelet power spectra.

FIG. 22. Same as Fig. 21 but for the ETDHF
calculation.

FIG. 23. Same as Fig. 21 but for 120Sn.

044305-13



A. SHEVCHENKO et al. PHYSICAL REVIEW C 79, 044305 (2009)

FIG. 24. Same as Fig. 23 but for the ETDHF
calculation.

FIG. 25. Same as Fig. 21 but for 90Zr.

FIG. 26. Same as Fig. 25 but for the ETDHF
calculation.
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FIG. 27. Same as Fig. 21 but for 58Ni.

V. CONCLUSIONS

In the present work the phenomenon of fine structure in
the region of the isoscalar giant quadrupole resonance is
systematically investigated for the first time in a number
of heavy and medium-heavy nuclei. High-energy-resolution
inelastic proton scattering experiments were carried out at the
iThemba LABS cyclotron facility in South Africa with an
incident proton energy of 200 MeV. The data obtained with
energy resolutions of �E � 50 keV (FWHM) revealed the
appearance of fine structure in all the nuclei studied (58Ni, 89Y,
90Zr, 120Sn, 142Nd, 166Er, and 208Pb), thereby establishing the
global character of this phenomenon.

The fine structure can be described by using characteristic
energy scales, appearing as a result of the decay of collective
modes toward the compound nucleus through a hierarchy of
couplings to states of increasing complexity. A novel technique
based on wavelet analysis is utilized for the extraction of
the characteristic energy scales from the spectra. The global
analysis of the available data shows the presence of three
groups of scales, according to their values. To the first group
belong the scales with values around and below 100 keV,
which were detected in all the nuclei studied. The second
group contains intermediate scales in the range of 100 keV
to 1 MeV. These scales show large variations depending on
the structure of the nucleus. The largest scales above 1 MeV,
classified as belonging to the third group, describe the gross
structure of the resonance (i.e., the width).

An interpretation of the observed scales is realized via
the comparison with microscopic model calculations that
include the coupling of the initial 1p1h excitations to more
complex ones. A qualitative agreement of the experimentally
observed scales with those obtained from the theoretical
predictions supports the suggestion of the origin of fine
structure to arise from the coupling to 2p2h states. Quan-
titatively, however, significant differences are observed for
the values of scales given by different models for the case
of 208Pb. These differences are yet to be understood. They
might be related to the employed effective interactions and/or
the specific truncation schemes. The neglect of direct decay

seems to be of less importance since the best quantitative
agreement is obtained with the QPM whereas the ETFFS
result, which includes coupling to the continuum, is less
satisfactory.

A more detailed study of the physical nature of the extracted
scales is provided with the help of the quasiparticle-phonon
model and extended time-dependent Hartree-Fock model,
which allow the contributions from different damping mech-
anisms to be separated. The collective damping mechanism,
which arises from the coupling to low-lying surface vibrations,
is identified as the main source of the observed scales. This
conforms with the doorway picture of the damping of giant
resonances. Toward lighter nuclei, noncollective damping
seems to be more relevant in describing the scales. However,
the model predictions of the ISGQR become poorer and the
impact of the approximations necessary for a separation of the
two parts becomes more severe.

Clearly, many open questions remain, calling for future
experimental and theoretical work. Experimentally, one would
like to extend the systematics of the fine structure of the ISGQR
to establish the role of deformation and to investigate the
role of the escape width expected to become more relevant in
lighter nuclei. Work along these lines is under way. In the near
future one can also expect data of similar quality to the present
work and over a broad range of nuclei for the IVGDR from
high-energy-resolution inelastic proton scattering experiments
at 0◦ [10]. Magnetic dipole and quadrupole resonances can
be studied in transverse electron scattering [11,48,52]. Also,
high-resolution studies of the GT− and GT+ resonances are
available [12,53,54].

On the theoretical side a better understanding of the origin
of the large quantitative differences among different models
is needed. This requires systematic studies on the role of
interactions and truncation schemes of the model spaces. So
far, only SRPA-type models have been used, which allow
for large single-particle spaces but limit the complexity of
wave functions to the level of 2p2h states. In medium-mass
(fp shell) nuclei, M1 [52,55] and GT [56] resonances are
well described by large-scale shell-model calculations. With
respect to the question of model spaces this represents a
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complementary approach: The single-particle spectrum is
limited to one oscillator shell but many-particle many-hole
configurations are included in the wave functions. Initial
attempts to analyze the fine structure of M1 resonances with
the CWT are encouraging [57]. Ultimately, as discussed in
Sec. IV D, one may hope to utilize the information embedded
in characteristic scales of the fine structure to pin down parts of
effective interactions relevant to the description of collective
modes.
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