
PHYSICAL REVIEW C 77, 024302 (2008)

Analysis of fine structure in the nuclear continuum
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Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different
multipolarities over a wide mass range. In this article we assess various techniques that have been proposed
to extract quantitative information from the fine structure in terms of characteristic scales. These include the
so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete
wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in 208Pb from
high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are
analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract
the magnitude and localization of characteristic scales.
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I. INTRODUCTION

Electric and magnetic nuclear giant resonances are well-
known examples of the striking behavior of an interacting
system of fermions to form collective modes [1]. Over the
years, much experimental work has gone into establishing an
understanding of the global behavior of the gross features,
such as centroid energies and widths, of these resonances.
It is generally accepted that the width � of the resonances
mainly results from two mechanisms: direct particle emission
from one-particle one-hole (1p-1h) configurations giving rise
to an escape width �↑ and the evolution of these 1p-1h
configurations into more complicated two-particle two-hole
(2p-2h) and finally to np-nh configurations giving rise to a
spreading width �↓. This latter scheme has implicit in it a
hierarchy of widths and time scales resulting in a fragmentation
of the giant resonance strength in a hierarchical manner [2].
An important theoretical problem is to explain the nature of
couplings between the levels in this hierarchy and to predict
the scales of the fragmentation of the strength which thus arise
from it.

Already about 30 years ago it became apparent from high-
energy-resolution inelastic electron-scattering experiments
[3,4] that there was considerable fine structure superimposed
on the broad bump of the isoscalar giant quadrupole resonance
(ISGQR) in 208Pb. Further studies [5] have shown that such
fine structure is physical in nature and also appears in
other reaction channels. Recent high-energy-resolution (p, p′)
measurements demonstrated the fine structure in a wide range
of nuclei for the ISGQR [6]. It has also been observed in
other types of resonances like the isovector giant dipole
resonance [7,8], the magnetic quadrupole resonance [9], or

*vnc@ikp.tu-darmstadt.de
†Permanent address: Bogoliubov Laboratory for Theoretical

Physics, JINR, Dubna, Russia.

the spin-isospinflip Gamow-Teller mode [10], establishing it
as a generic phenomenon of nuclei.

Nevertheless, a serious experimental problem has been the
quantitative extraction of the scales of this fragmentation. A
lower limit on observable scales is placed by the experimental
resolution. The recent experiments have been made possi-
ble by the exploitation of high-energy-resolution magnetic
spectrometers and particle beams with energies of several
hundred MeV allowing for energy resolutions of a few tens
of keV. The problem then is to determine scales that occur in
the range between the experimental resolution and the broad
envelope of the resonances (typically several MeV).

Early on, an attempt was made to analyze the data on the
fine structure of the ISGQR in 208Pb observed in Refs. [3,4]
in terms of a doorway-state model [11]. It could be shown
that in this case the spreading width dominates over the
escape width but the deduced scales depended strongly on
the assumptions about the (unknown) number of doorway
states. In this work, we concentrate on the evaluation of
several new methods proposed for the extraction of such scales,
viz. the local scaling dimension approach [12], the entropy
index method [13], and the use of wavelet techniques [6], and
compare the latter to older techniques such as Fourier analysis.
As a test case, we investigate data on the ISGQR in 208Pb from
high-energy-resolution (p, p′) experiments and a calculation
of the corresponding isoscalar E2 strength function within
the quasiparticle-phonon model (QPM). Although a more
extensive data set and still other calculations are available,
we restrict ourselves to these examples because the focus of
the article is to evaluate the advantages and limitations of the
different techniques for an extraction of characteristic scales.
Possible conclusions on the nature of these scales and their
implications for the decay of giant resonances are subject of a
subsequent article.

The article is organized as follows: in Sec. II we briefly
present the data sets used during the analysis. As pointed out
above, these are an experimental spectrum and a theoretical

0556-2813/2008/77(2)/024302(12) 024302-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.024302


A. SHEVCHENKO et al. PHYSICAL REVIEW C 77, 024302 (2008)

strength function. Both can be analyzed with the same
techniques so that the scales determined can be compared
on the same basis, without first establishing a translation
mechanism between the language of experiment and theory.
We also discuss the relations of scale values deduced from the
different methods and what is meant by scale in this regard. In
the following Secs. III to VI the above-mentioned techniques
are applied to the data and their results are discussed. Finally,
Sec. VII contains some concluding remarks.

II. DATA AND ANALYSIS

A. Data sets

In this article, we focus on the data analysis techniques
used to extract characteristic energy scales of fine structure
in the region of the ISGQR. For this purpose we restrict our
interest to two sets of data: an experimental spectrum measured
in inelastic proton scattering and a theoretical calculation of
the isoscalar giant quadrupole strength, calculated within the
framework of the QPM [14].

Experimental data were obtained by high-energy-resolution
(p, p′) measurements performed [6] using the K600 magnetic
spectrometer of the cyclotron of iThemba LABS, Somerset
West, South Africa. Data were taken at an incident proton
energy of 200 MeV using an isotopically enriched (>95%)
208Pb target of thickness 0.75 mg/cm2. An energy resolution
of about 45 keV (full width at half maximum, FWHM) was
achieved. A measurement of the scattered particle energy
spectrum is shown in the top part of Fig. 1 corresponding
to a scattering angle of 8◦, chosen at the first maximum of
the �L = 2 angular distribution. An extended view of the
excitation energy region Ex = 8–13 MeV shows pronounced
fine structure in the region of the ISGQR, which peaks at about
10.5 MeV in 208Pb.

Also shown in Fig. 1 is the theoretical prediction of
the ISGQR strength distribution calculated within the QPM.
Details on the calculation can be found in Ref. [6]. This
spectrum has been convoluted with a Gaussian of width
50 keV (FWHM) that is representative of the experimental
energy resolution.

The purpose of the analysis techniques to be discussed
is to extract from the data some information on the energy
scales that characterize the fluctuations in the cross section
that constitute the fine structure of the ISGQR in 208Pb.
These energy scales can then be compared to scales similarly
extracted from theoretical calculations of the ISGQR strength.
Our basic approach is to apply a similar analysis technique
to both experimental and theoretical “data” and make a
comparison using scales obtained on an equal footing, thus
circumventing some of the difficulties in the interpretation of
these scales.

B. Lengthlike and widthlike scales

There are two basic meanings of “scale” in the literature
that, confusingly, are often used almost interchangeably. On
the one hand, well-established methods of analysis, such as

FIG. 1. Data used in the analysis. (Top panel) Experimental
energy spectrum of 200 MeV protons scattered from 208Pb at
� = 8◦. The region of interest, where the ISGQR is concentrated,
is expanded in the middle panel. (Bottom panel) Theoretical strength
function calculated within the framework of the QPM. The latter
has been convoluted with a Gaussian of 50-keV FWHM, which is
representative of the experimental energy resolution.

autocorrelation analysis, are used to extract lengthlike scales
from spectra, i.e., “distances” between features, which in a
model-dependent analysis yields information on, for example,
level densities [15]. On the other hand, widthlike scales are also
discussed, as in the hierarchy of decay widths in the damping of
giant resonances. For given features of a spectrum these two
types of scales will have different values. At the same time
they are related to one another, and both can occur together in
the same data set. By comparing only the scales found with
a specific technique for different data sets this interpretative
problem can be avoided. We thus do not rely on some internal
idea of scale for a particular data set, for instance scales that
might be built into some theoretical model.

Another problem arises in relating the energy scales
determined using one technique to those of another. This can
only really be approached empirically by comparing results
obtained with the different techniques for some model data
set. A related problem occurs in the wavelet analysis described
below, where different wavelet families have different intrinsic
scales. To avoid this ambiguity in scale, we have used a
common scale for all wavelet families. Thus, rather than the
intrinsic wavelet scale sint, we use the value s = λwsint where
the constant λw depends on the particular wavelet family. This
factor λw is determined, as detailed, e.g., by Torrence and
Compo [16], by the analysis of the wavelet decomposition
of a sinusoid of known period. With this procedure all
wavelet families give the same scales in the analysis of a
sinusoid. Because of the physics nature of the scales in the
present problem we prefer to extract widthlike scales derived
empirically from wavelet transforms of Lorentzian peaks. This
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scale, called the “wavelet scale” corresponds to the FWHM of
the peak.

A final problem occurs in Fourier transform pairs. Because
we report scales s in terms of energy rather than 1/energy
we have a choice to regard 1/s or 2π/s as conjugate to the
energy E. In the spirit of regarding the scale as a “length-like”
quantity we have chosen the latter (2π/s), which we call a
“Fourier scale.”

III. LOCAL SCALING DIMENSION (LSD)

A. Method

Aiba and Matsuo [12] have proposed a technique for the
analysis of fine structure by the determination of a local scaling
dimension calculated from a subpartitioning of the data. This
scheme is based on the scaling analysis of a series having a
self-similar multifractal character.

Given a strength function S(E) defined over some energy
range �E = [Emin, Emax], the data are partitioned on a number
of different scales. At each scale δE the data are rebinned into
a number N = �E/δE bins. The strength of the nth bin is
denoted pn = ∑

i∈n Si . From the set of binned data {pi} a
partition function of order m is determined by

χm(δE) =
N∑

i=1

pm
i = N

〈
pm

i

〉
, (1)

where 〈. . .〉 denotes an average.
With this formulation, a statistical distribution of fluc-

tuations in the data results in all pi being approximately
the same, pi ∝ 1/N ∝ δE and hence χm(δE) ∝ (δE)m−1.
In the other extreme, if all strength S is located at one
energy, then χm(δE) = S for all δE. For a fractal distribution
of fluctuations, the partition function will have a nontrivial
scaling depending on some fractal dimension. When dealing
with more general data having specific energy scales, the
fractal dimension is extended by the definition of a local scaling
dimension Dm(δE) to characterize the type of fluctuations that
might arise in the damping of giant resonances [12],

Dm(δE) = 1

m − 1

∂ ln χm(δE)

∂ ln δE
. (2)

A change in local scaling dimension as a function of energy
scale then reveals a characteristic scale of the data. The method
has been used to extract characteristic scales from shell-model
calculations of the ISGQR and the isovector giant quadrupole
resonance (IVGQR) in 40Ca [17].

Careful treatment of the boundaries of the data are needed
[12] to avoid artifacts in the results. In our case, the method
was applied to multiple repeats of the region of interest, thus
giving, essentially, periodic boundary conditions. The results
are nevertheless very sensitive to small shifts in the boundary.

B. Results

Application of this method to the data is shown in Fig. 2.
Calculations are shown for values m = 2 or 3 of the order
of the partition function as examples. Differences are small.

FIG. 2. Analysis by the local scaling dimension method,
Eq. (2). The top and bottom panels show the results the experimental
and theoretical spectrum, respectively. Open circles and crosses
correspond to values m = 2 and 3 of the order of the partition function,
respectively. The solid and dashed lines are to guide the eye only.
Arrows indicate possible scales at 80 keV, 600 keV (top), and 80 keV,
1.3 MeV (bottom) revealed by the analysis.

It is not very obvious on how to interpret these plots in
terms of scales. Taking variations of Dm as a criterion, scales
in the experimental spectrum are indicated at about 80 and
600 keV and in the theoretical spectrum at about 80 and
1.3 MeV, marked by arrows in Fig. 2. However, it is clear from
the plots in Fig. 2 that these scales are not well discriminated
and the ability of the method to resolve scales is limited.
Furthermore, numerical studies suggest that the method is
not stable with respect to different forms of background in
experimental spectra.

IV. THE ENTROPY INDEX METHOD (EIM)

A. Method

Another technique [13] proposed for the multiscale analysis
of the fine structure problem and based on a subpartitioning
of the data is the entropy index method (EIM). This method
defines an entropy derived from a measure of fluctuations of
a spectrum. This measure is determined on a range of scales,
and changes in the entropy with scale signal the appearance of
characteristic scales in the data. An advantage of this method
is its model independence—no assumption is made a priori
about the number of scales in the data or their values.

The data set σ (E) is rebinned for each scale as described in
Sec. III A. For each bin j a coefficient at scale δE is defined
as

Dj (δE) =
∫ Ej

Ej−1

σ (E)
j (E) dE, (3)

where Ej = Emin + jδE. Here, 
j (E) is a windowing func-
tion that is nonzero only within the interval j and has a van-
ishing zeroth moment, i.e.,

∫

(E)dE = 0. An antisymmetric

function is chosen, the simplest being the step function


j (E) = sign

[
E −

(
j − 1

2

)
δE

]
, (4)
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FIG. 3. Illustration of the extraction of a coefficient at scale δE

in the entropy index method. The coefficient Dj (δE), Eq. (3), is
determined by folding the spectrum σ (E) with the step function,
Eq. (4), and corresponds to the difference between the sums over the
dark- and light-gray shaded region in the spectrum.

which changes sign midway across the interval. The process of
applying such a windowing function to the data is illustrated
in Fig. 3.

The coefficients Dj (δE) thus found form a coarse-grained
derivative of the data σ (E). If the fluctuations in the data are of
the order of scale δE then the coefficients will be significant;
if the fluctuations are of much larger or smaller scale then the
coefficients will be small. This assessment is made by defining
a scale-dependent entropy from the data. First the coefficients
are normalized by the averages of their absolute values,

Wj (δE) = |Dj |
〈|Dj |〉 , (5)

where

〈|Dj |〉 = 1

N

N∑
j=1

|Dj |. (6)

Thus, at each scale δE the coefficients Wj (δE) give a normal-
ized measure of the fluctuations at that scale, independent of
the magnitude of the original spectrum. Finally, an entropy K is
constructed to quantify the scale dependence of the fluctuations

K(δE) = − 1

N

N∑
j=1

Wj (δE) log Wj (δE). (7)

In the case of statistical fluctuations of σ (E), the entropy K is
constant. A change in the behavior of K is a signature for the
appearance of a characteristic scale in the data. As more such
scales are introduced at decreasing values of δE, the entropy
should increase to a maximum. From the steplike increase in
K(δE) the characteristic scales of the data can be extracted.

The authors of Ref. [13] have shown that a suitable model
for the steplike increase can be obtained from a Fermi-Dirac-
like function

K(δE) =
m∑

i=1

ki

1 + exp
[ ln(δE)−di

�i

] , (8)

where there are m scales and ki, di , and �i are parameters
obtained by a fit to the data. The characteristic energy scales
(δE)i = si of structures in the data can be related to the
parameter ki by an empirical factor K(si) = (0.92 ± 0.01)ki

for each component i [18].
In principle, obtaining the scales is straightforward and

the method has been applied [18] with some success on
experimental data and model calculations (both, however,
different from the ones analyzed in this article) of the ISGQR in
208Pb. In practice, however, the method shows sensitivity to any
peculiar features of the data, e.g., underlying background and
the choice of the boundary conditions, and structures appear
in the entropy index whose origin is not clear. A particular
shortcoming of the method is that there is no possibility of
reconstructing the spectrum on different scales to assess the
importance or localization of a scale. In addition, the entropy
as defined does not have the expected property of entropy;
in particular it is not extensive. Thus, the entropy from two
adjacent regions cannot be combined into a single entropy by
addition. This again impacts on the localization of the scales.

It should be noted that the coefficients Dj that have been
defined are in essence the coefficients of a wavelet analysis
(discussed in Sec. VI below), in this case a continuous
version of the Haar wavelet. Thus, the entropy index can also
be calculated from the coefficients of a continuous wavelet
transform using the Haar wavelet. Presumably, a similar
entropy could be defined for other wavelet families, where the
general characteristic of the Haar wavelet is maintained, i.e.,
for families that also yield a coarse-grained derivative of the
spectrum. Although our use of the wavelet transform discussed
in the next section has been motivated by this observation,
we have found it more convenient to work with the wavelet
coefficients directly.

B. Results

The entropy index as a function of the scale δE extracted
from the present experimental and theoretical data sets is
shown in Fig. 4. Energy scales at 100 keV, 420 keV, and
1.5 MeV are extracted by fitting the index with a sum of
Fermi-Dirac functions. The solid line shows the fit according
to Eq. (8) and the dashed lines the individual contributions
for a certain value of i. Applying the method to an excitation
energy range of 7.6 to 11.7 MeV in experimental (e, e′) and
(p, p′) data on 208Pb [5], intermediate scales were found at
energies of 125 keV, 460 keV, and 1.1 MeV and confirmed
by second-random phase approximation (SRPA) calculations
[18]. Using these scales provides a reasonable description of
the present experimental data as well. In the QPM calculations
scales at 180 and 760 keV are suggested.

However, it is clear that there is additional structure in
the analysis of the experimental data in the region of δE =
200–400 keV, as well as around 700 keV in both data sets,
which does not easily fit into the scheme of the EIM because
it would imply a decreasing entropy. It is our experience from
the analysis of a variety of data that this type of structure can
occur quite easily in the EIM analysis for no apparent reason.
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FIG. 4. Results of analysis by the entropy index method. The
top and bottom panels show the analysis of the experimental and
theoretical spectrum, respectively. The arrows indicate possible scales
at 100 keV, 420 keV, and 1.5 MeV in the experimental data and at 180
and 760 keV in the QPM results, respectively, revealed by the fitting
procedure discussed in the text. The dashed lines are the individual
fits of Fermi-Dirac functions and the solid line the sum, Eq. (8).

This represents a limitation of the method which prevents an
unambiguous determination of scales.

V. FOURIER TECHNIQUES

A. Method

The wavelet analysis discussed in the next section is often
regarded as a generalization of the Fourier analysis. As an
introduction to the wavelet methods, we discuss this classical
technique. Here, we focus on the use of the Fourier power
spectrum or some estimator thereof. By the Wiener-Khinchin
theorem, the autocorrelation function and the power spectrum
are Fourier transforms of one another. Thus, the two techniques
are, in a sense, equivalent. However, for our purposes the
form of the analyzed data is more satisfactory using the power
spectrum. If f (x) is a function of some quantity x and f̂ (k)
is the Fourier transform of f , the Fourier power spectrum is
given by

Pf (k) = |f̂ (k)f̂ ∗(k)|, (9)

up to some normalization of the spectrum.
Here, some remarks are in order. A spectrum can be

regarded as a strength function [19,20]

S(E) =
∑

siδ(E − Ei), (10)

consisting of discrete peaks i with individual strengths si .
Typically, physical effects and experimental resolution lead to
a broadening of the peaks by convolution with a function such
as a Gaussian. The power spectrum of this, i.e., the square
of its Fourier transform, has a zero frequency component

determined by the total strength, with a rapid decay as a
function of frequency determined by the overall envelope of
the spectrum. This rapid decay will also be influenced by any
windowing of the data. The bulk of the spectrum has a “noisy”
character related to all possible differences Ej − Ei , giving
rise to essentially random phases of the Fourier transform.
The convolution with a resolution function leads to a slow
modulation and cutoff of the power spectrum over a range
characteristic of the width of the resolution function, the
relatively narrow resolution function giving rise to a broad
peak in the Fourier domain. Additional structure arises from
correlations between the energy levels [19,20].

This picture is illuminating and some of these features are
obvious in our data. However, the effect of multiple scales leads
to additional complexity, making it unclear how to proceed
with analysis. In addition, the strong localization present in
our data questions the assumption of stationarity that underlies
the technology of Fourier analysis.

B. Results

The Fourier power spectra of the two data sets are shown in
Fig. 5. Note that they are plotted unconventionally against the
energy rather than the reciprocal of energy (i.e., against s =
2π/k rather than k) to enable a comparison with the wavelet
analysis reported below. The analysis of the experimental
spectrum is rich in structure but it is unclear how to interpret
this. However, one may take some guidance from the fact
that the experimental resolution produces a cutoff below

50 keV. Thus, structure below this energy must be statistical
noise. Above this cutoff we can identify peaks at 70, 80, 130,
and 200 keV (and perhaps 100 keV) potentially indicating
significant scales in the data. The QPM results exhibit scales
at 60 and 110 keV and eventually around 1 MeV, although

FIG. 5. Fourier power spectra, Eq. (9), of the data sets described
in Sec. II normalized to the data variance. The arrows indicate possible
scales at 70, 80, 130, and 200 keV in the experimental data (top) and
at 60 and 110 keV in the QPM calculation (bottom).

024302-5



A. SHEVCHENKO et al. PHYSICAL REVIEW C 77, 024302 (2008)

for the latter the power spectrum does not show a pronounced
maximum but becomes approximately constant toward larger
scale values.

VI. WAVELET ANALYSIS

An increasingly popular method for the analysis of nonsta-
tionary time series is that of wavelet analysis, developed over
the past two decades. In the language of signal processing, it is
a method of analyzing signals by using a “wavelet” localized in
both frequency and time domains [21,22]. A wavelet transform
yields a set of coefficients that contain a representation of the
data, which in the present case depends on the structure scale
δE and the energy location E.

There are two fundamental types of such wavelet transform:
the continuous (CWT) and the discrete (DWT). The discrete
version is orthogonal and thus exactly invertible. However,
the scales related are strictly ordered by factors of 2. Thus,
the scale information lacks detail. The continuous transform,
however, can have scales at arbitrary intervals but contains
redundant information. Because the continuous wavelet basis
is nonorthogonal and nonindependent, reconstruction of the
data is overdetermined and thus more difficult and ambiguous.
For the present purposes, however, the continuous transform
offers greater flexibility. We compare both methods below,
concentrating more on the CWT.

A. Continuous wavelet transform: Method

The transform depends on a wavelet function 
(x, s) that
is allowed to vary in both position x and scale s. In addition, it
must satisfy certain admissibility conditions, basically that it
has zero mean and is square integrable [21,22]. For the present
application, the CWT is then defined by

Ci(δE) ≡ C(δE,Ex) = 1√
δE

∫
σ (E)
∗

(
Ex − E

δE

)
dE,

(11)

where position x can be identified with the excitation energy
Ex in the spectrum and δE describes the energy scale. In
practice, this integral is efficiently performed using the fast
Fourier transform. As is usual, the data are binned into channels
of constant energy width, referring to an energy bin at Ei by
its index i. The integral thus becomes a sum over a finite grid
of points. It is convenient to choose scales based on a fixed
factor between adjacent scales

δEj = δE0 2
j

n , (12)

where δE0 is the smallest scale and n divides each factor of two
into subintervals. Typically, δE0 is taken to be the spectrum
energy bin and n = 16.

The set of coefficients Ci(δE) obtained in such an analysis
can be represented by a suitable plot, such as is illustrated in
Fig. 6, where the Morlet wavelet [22]

ψMorlet(x) = π−1/4eikxe−x2/2 (13)

has been used as a basis function. The parameter k weighs
the resolution in scales versus the resolution in localization.
To satisfy the admissibility conditions, k <∼ 5 must be fulfilled.
The examples discussed below use a value k = 5.

FIG. 6. Application of the CWT to the experimental and the-
oretical data sets. (a, top) Experimental spectrum over a range
of excitation energy corresponding to the ISGQR. (Lower right)
Density plot of the square of the CWT coefficients of the data
using a complex Morlet wavelet. Lower left: total wavelet power
as a function of scale obtained by projection onto the ordinate.
(b) Same as (a) but for a restricted region of interest in scale
(0–1 MeV). (c) Same as (b), but for the QPM strength function.
The arrows indicate scales observed at 50 keV, 110 keV, 500 keV,
1.1 MeV, and 2.5 MeV in the experimental data and at 55 keV,
110 keV, 850 keV, and 1.4 MeV in the QPM calculation.
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The wavelet mother function that is shifted and dilated
in Eq. (11) defines a family of wavelets. Numerous basis
functions are available, each having some intrinsic scale. A
large overlap between the data and a wavelet of a particular
value of δE and Ex leads to a large (positive or negative)
value of the wavelet coefficient. Thus the CWT essentially
determines the match between the data and the wavelet at
some scale and position.

In Fig. 6, the square of the wavelet coefficients is plotted
as a function of both energy and scale for a selected energy
range [E1, E2] of interest, for example, that of the ISGQR.
The wavelet power spectrum is obtained by summing over the
N energy bins in this range. We may define the wavelet power
spectrum, which depends on the scale δE, by

Pw(δE) = 1

N

i2∑
i=i1

|Ci(δE)C∗
i (δE)|. (14)

Peaks in these power spectra can then be identified with
important scales in the data.

B. Continuous wavelet analysis: Results

The results of a continuous wavelet transform of the
experimental spectrum are presented in Fig. 6. In the top panel,
Fig. 6(a), the spectrum is shown for the excitation region
of the ISGQR in 208Pb. The two-dimensional density plot
below shows the squared wavelet coefficients as a function of
excitation energy and scale. Dark regions correspond to large
coefficients, whereas light regions correspond to regions with
low wavelet power. It is clear that the fluctuations are localized
in both energy and scale. This demonstrates an advantage of
the wavelet method over other techniques like the entropy
index method, the local scaling dimension, and the Fourier
power spectrum. These supply only global information and no
information about localization of structure that can lead to an
optimization of the boundaries of the region of interest. In the
present case, the plot can be restricted to the energy region
Ex = 8–13 MeV. The wavelet analysis is shown again in
Fig. 6(b) for scale values up to 1 MeV to demonstrate the
presence of large coefficients at smaller scales as well. Finally,

the same analysis is applied to the QPM strength function,
displayed in Fig. 6(c).

To achieve a more quantitative assessment of the charac-
teristic scales, the sum of the squared wavelet coefficients in
the region of interest is projected onto the scale axis. This
gives rise to the wavelet power spectra shown in the left-hand
panels of Fig. 6. From the peaks in this spectrum, intermediate
characteristic scales of 110 keV, 500 keV, 1.1 MeV, and
2.5 MeV were extracted from the (p, p′) data. An additional
scale appears at about 50 keV; however, this is simply arising
from the experimental resolution. In a similar analysis applied
to the model spectrum based on the QPM, scales are observed
at 55 keV (again, the trivial one), 110 keV, 850 keV, and
1.4 MeV.

As an illustration of the significance of structure in the
wavelet power spectrum we compare in Fig. 7 the analysis
for two energy regions in the experimental data. One region
has considerable fine structure, and one at a higher energy has
fluctuations which are expected to be of a statistical nature. The
resulting wavelet power distributions normalized relative to
each other clearly show that indeed one finds scales associated
with the fine structure; in the other case power on all scales in
the region of interest is small.

Most results we quote have been obtained from the structure
of the wavelet power spectrum. This is closely related to the
Fourier power spectrum as discussed below. However, the full
utility of the wavelet analysis is represented by the plot of
wavelet coefficients against excitation energy and scale. This
allows an easy identification of regions of significant or little
structure. It is also easy to identify any energy dependence of
structure that is averaged out in the projection onto a power
spectrum. Thus, the wavelet coefficients are invaluable in a
full analysis.

Further verification of the nature of the fine structure
is given by a reconstruction of the spectrum from the
wavelet coefficients. This permits a restriction to significant
scales and allows a comparison with the original spectrum.
However, there is some ambiguity in this process owing
to the redundancy in the nonorthogonal continuous wavelet
coefficients. This seems to be mitigated to some extent by
the use of scales in a logarithmic sequence. Given a set
of coefficients, the original spectrum can be approximately

FIG. 7. Comparison of scales in
different regions of the experimental
data. (Top) Data in the region of
the ISGQR (left) and the resulting
wavelet power as a function of scale
(right). (Bottom) Results for a region
of higher excitation energy, where no
fine structure is expected.
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reconstructed as [22]

σ (E) = 1

Cδ

∫ ∫
C(δE,Ex)

1

(δE)5/2



×
(

Ex − E

δE

)
d(δE) dEx, (15)

where Cδ is a normalization constant dependent on the wavelet
family.

To demonstrate the significance of these scales we show
the approximate reconstruction of the experimental spectrum
in Fig. 8. The Morlet wavelet, Eq. (13), was used as the basis
function for the initial decomposition. The top figure shows
the original spectrum together with a reconstruction based
on the largest scales, δE = 0.8–3 MeV; subsequent figures
show the effect of adding in significant wavelet scales as
indicated (cumulative from the top down). Note that most
structures in the spectrum are accounted for by using the
significant scales only. The final figure shows the result from
a reconstruction using all the wavelet coefficients. It is clear
that, despite the redundancy of the continuous wavelet basis,
a good reconstruction can be achieved.

C. Discussion on various aspects of wavelet analysis

A number of questions concerning the wavelet analysis may
arise, and we attempt to address some of these below.

1. How arbitrary are the scales?

The intrinsic scale of a particular wavelet basis function has
a certain arbitrary character: it is chosen more for functional
simplicity than any physical or mathematical characteristic
of the wavelet. Thus, if any comparison between different
wavelet families is made, a conversion factor between the
scales of these two families must be introduced. This factor
is a constant for a given wavelet family due to the linearity
of the transform. The conversion is conveniently achieved by
relating the scale of a particular wavelet family to the scale
introduced by a Fourier transform [16]; in practice the two
should agree on, say, the wavelength of a sinusoidal function.
All scales can then be normalized to this “Fourier scale.” A
direct link between Fourier and intrinsic scale can be made for
the case of the complex Morlet function, which should give
identical scales. In turn, all other wavelet families can easily be
normalized to the latter. The normalization is obtained from the
main component of a Fourier analysis of the mother wavelet via
the inverse Fourier transform. Because of the physical nature
of the scales suggested for the decay of giant resonances in
nuclei [1,2,6] we prefer to use a “wavelet scale,” related to
the Fourier scale by another constant factor, determined as
described in Sec. II B.

2. Do different wavelet families give the same result?

The wavelet analysis is sometimes viewed as a tool that is
useful for qualitative results but that has a certain quantitative
ambiguity. It is thus important to show that different wavelet

FIG. 8. Reconstruction of the spectrum using CWT. The top
panel shows the original spectrum (histogram) together with the
reconstruction based on scales between 0.8 and 3 MeV (dashed line).
The three panels below show the effect of adding significant scales
in the energy intervals indicated, to the reconstruction in the figure
above; the bottom panel shows the spectrum reconstructed with all
significant scales.

families give similar results. This is not obvious when viewing
the plots of the coefficients but by comparing the wavelet
power spectra, as in Fig. 9, it can be seen that the different
families indeed do so. Of course, for this comparison all
wavelet scales must be converted to the same Fourier scale
as discussed above.

Figure 9 demonstrates that similar structures are obtained
for all wavelet families; however, they differ in their ability
to resolve details in the scales. For a particular experimental
spectrum this depends (in addition to the type of data) on the
response function of the detector. In the present case it is well
approximated by a Gaussian, which makes the Morlet wavelet
a preferred choice for our applications because it contains a
Gaussian envelope superimposed on the sinusoidal structure.
We also note that an application of the complex Morlet and
a restriction to the real part gives only essentially identical
results. Therefore, in practice we restrict the analysis to using
the real part of the Morlet wavelet function.
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FIG. 9. Comparison of wavelet power spectra for the experimen-
tal data, as determined from different wavelet families. Note that
the power spectra are plotted with a logarithmic scale. The left-hand
panels show the wavelet power spectra and the right-hand panels
the mother wavelet used in the corresponding continuous wavelet
transform. For the complex Morlet wavelet, the solid and dashed
lines indicate the real and imaginary part, respectively.

3. How are scales chosen for the analysis?

Scales naturally differ from one another by a factor rather
than an increment. It is thus useful to choose scales that are
equally spaced on a logarithmic axis. With the DWT discussed
below these scales differ from one another by integer powers
of 2. A convenient choice for the CWT is given by Eq. (12). In
addition, the localization in scale of a structure is proportional
to the scale, so the resolution in the power spectrum is uniform
when plotted on a logarithmic scale axis.

4. What data preconditioning should be applied?

For Fourier analysis there has arisen a great deal of lore
regarding the preconditioning needed to get the best results
from the data. With wavelet analysis a great deal of this is not
needed. For instance, windowing of the data is theoretically
obscure for the wavelet transform and in any case would distort
local structure in the data.

One problem that does require addressing is that of edge
effects: the boundaries give rise to a cone of influence that
extends to larger portions of the coefficients as the scale
increases. Two methods can be used to treat this. First
we note that the range of our interest in the present example
is at excitation energies of 8 to 13 MeV. The CWT can be
performed on the full spectrum, with a range of 0–22 MeV,
and then the region of interest can be later isolated, with
coefficients at low and high energies discarded. Alternatively,

the region of interest can be isolated before the transform and
protected against end effects by padding both left and right
sides; this can be done by padding with zeros, by padding
with a functional form that tends rapidly to zero [23], or by
continuing the spectrum at a constant value from the boundary
of the region of interest to the edges of the original spectrum.
This latter method tended to give the least edge effects in the
coefficients [24] and was used to extract the scales given in
Sec. VI B.

5. How sensitive are the results to variations of the background?

In contrast to the LSD and EIM approaches, the wavelet
analysis shows little sensitivity to varying background con-
ditions. Wavelet functions exhibit the feature of vanishing
moments defined by∫

En
(E) dE = 0 with n = 0, 1 . . . m. (16)

Therefore, any background in the spectrum, whether instru-
mental or due to physical processes, does not contribute to the
wavelet coefficients if it can be approximated by a polynomial
of order m.

6. What measures of significance are there for peaks in the
wavelet power spectrum?

It can be shown that the average power per channel is given
by the signal variance [16]. For a noise signal, a similar power
would appear in each channel and the wavelet power spectrum
normalized to the signal variance would have a mean value
of 1. With a real signal, the extent to which the peak is greater
than unity is a measure of the significance of the peak.

D. Discrete wavelet transform: Method

A choice of scales based on powers of 2 leads to the discrete
wavelet transform [21,22]. It can be viewed as an iterative
decomposition in the form of high-pass and low-pass filtering
of the data yielding sequences of details (Di) and approxima-
tions (Ai). At each level of decomposition Ai + Di = Ai−1.
At the first level of decomposition, A1 + D1 = σ (E), where
σ (E) is the original spectrum. This decomposition method is
illustrated in Fig. 10.

A key point is that the transform leads to an orthogonal de-
composition of the spectrum from which exact reconstruction
is possible. This makes direct comparison of the influence of
characteristic scales possible. However, the resolution in scale
is limited as scales are related to one another by integer powers
of 2.

E. Discrete wavelet analysis: Results

The results of the decomposition of the experimental
spectrum into its approximations and details Ai and Di

are illustrated in Fig. 11 using the experimental data set
as example. Because the Morlet wavelet function does not
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FIG. 10. Block diagram of the decomposition technique based on
the discrete wavelet transform.

allow for an orthogonal decomposition, the so-called BIOR3.9
wavelet [22] was used in this analysis. The plots represent the
contribution of particular wavelet coefficients to the overall
spectrum. The approximation coefficients illustrate how the
background evolves as the index of the coefficient increases
from 1 to 9. The Di coefficients show the deviations from the
approximation at a given scale. They provide a measure at
which scales fluctuations in the spectrum are important. It is
also clear that significant structure can be localized in energy.
For example, the 96–192 keV scale has significant fluctuations
in the region 8–12 MeV but little strength at higher energies.

A reconstruction of the experimental spectrum can be also
be attempted using a limited set of the coefficients. If only
“significant” scales are included in this reconstruction, an
assessment of their significance can be made [25]. For instance,

FIG. 12. (Top) Reconstruction of the experimental data set
(histogram) from the coefficients of a DWT decomposition using
selected subsets of the details Di as indicated (dashed lines). (Bottom)
Relative errors obtained by comparison with the exact spectrum.

Fig. 12 shows the reconstruction of the experimental spectrum
by using the coefficients of A8 + D8 + D7 + D5 + D4 + D3.
The fluctuations in the spectrum are reproduced remarkably
well, as shown by the relative errors in the bottom left panel.
However, reproduction with scales that would seem to be less
significant (A8 + D6 + D2 + D1) leads to much larger errors,
as shown in the bottom right-hand panel.

Thus, with the DWT analysis it is possible to isolate scale
regions that carry significant information about the fluctuations
in the spectrum and to test this significance directly by
reconstruction. However, the basic scales are related by factors
of 2, with the result that the power is not particularly well
localized in scale. For instance, if a significant scale lies close

FIG. 11. Approximation (Ai) and de-
tail (Di) spectra obtained from the
DWT coefficients for the experimental
spectrum. The corresponding scale re-
gions are given on the right-hand side
and those marked in bold are consid-
ered important for the approximate re-
construction of the spectrum shown in
Fig. 12.
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FIG. 13. Comparison of power spectra de-
duced from the experimental data with the DWT
and the CWT.

to the boundary between two scale increments, the power will
be distributed over both ranges.

In passing we note another important application of the
DWT discussed in Ref. [10]. The property of vanishing
moments [Eq. (16)] of wavelet functions allows to determine
background with a smooth energy dependence in the giant-
resonance region of the experimental spectrum based on
the DWT decomposition. Combining this feature with a
fluctuation analysis [15], level densities can then be extracted
from the fine structure in a nearly model-independent way.
This permits, e.g., experimental tests [26] of claims of a parity
dependence of the level density in certain mass regions [27,28].

F. Comparison of CWT and DWT

The two forms of wavelet analysis are of course related. It
is thus gratifying that there is a strong consistency between the
CWT and DWT analyses. This consistency is demonstrated in
Fig. 13, where we compare the CWT wavelet power spectrum
and the sums of the squared detail coefficients from the DWT.
A strong correlation of the two is observed. These results
suggest that the CWT offers some advantages in that a clearer
view of the strengths of the scales is achieved. For instance,
the breadth of the peak in the region around 100 keV in the
analysis of the experimental data hints at a doublet, whereas
this is compressed into a single relative maximum by the DWT.

We have also shown in Fig. 12 that the discrete wavelets
can be used for spectrum reconstruction to test the relevance of
different scales. In this case the transform is orthogonal and the
reconstruction can be exact; the limitation is in the coarseness
of the scales. An approximate reconstruction is possible with
the CWT as demonstrated in Fig. 8. However, the remaining
deviations depend on the choice of the wavelet function and
on the particular data sets.

G. Comparison of CWT and Fourier analysis

Finally, in Fig. 14 the wavelet power spectra from the
CWT are compared with the Fourier power spectra; both are
normalized to the data variance. There is good agreement
between these two spectra: in fact, the wavelet and Fourier
power spectra are related by

Pw(s)/s =
∫

Pf (k) |ψ̂0(sk)|2 dk, (17)

where ψ̂0(sk) is the Fourier transform of the wavelet mother
function. We note that the square of the Fourier transform of
a wavelet function is typically a bell-shaped function centered
at s. Thus the wavelet power spectrum is a smoothed version
of the Fourier power spectrum.

An interesting feature of the Fourier spectrum is its
apparently greater detail. Although there is a suggestion of
doublets of the peaks observed in the wavelet power spectrum
in the regions around 100 and 200 keV, it is not clear whether
this is a real effect in the Fourier spectrum or arises because
of the constraints of matching a nonstationary spectrum with
Fourier components. It is notable in the reconstruction of this
scale as shown in Figs. 8 and 11 that the amplitude of the
coefficients varies quite strongly over the energy region. This
effect can be obtained only with a Fourier analysis by addition
of several components.

It is also worth noting that reconstruction of this scale region
from a single wavelet component gives a similar picture; if
this reconstruction is Fourier analyzed, two frequencies are
found. Thus, a single wavelet scale has to be represented
by two Fourier analysis scales. The Fourier analysis has the
possibility of giving greater resolution, whereas the wavelet

FIG. 14. Comparison of Fourier power spectra (solid lines) and
CWT power spectra (dashed lines) for the two data sets as a function
of the wavelet scale. All spectra are normalized to the data variance.
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analysis clusters closely spaced scales into a single group.
Both of these techniques offer unique advantages. The CWT
shows the localization of structure for a given scale; the Fourier
transform will give clearer results for periodic or regularly
spaced features.

VII. CONCLUDING REMARKS

In this article we described various methods for obtaining
information on the scales of fine structure in nuclear spectra.
As a typical example, used to demonstrate the various
techniques, the fine structure of the ISGQR in 208Pb has been
investigated using an experimental data set and a theoretical
calculation based on the QPM. The local scaling dimension
method, the entropy index method, and the continuous and
discrete wavelet transform have been applied to the analysis
of the experimental data and the model strength function.
In addition the results of a Fourier analysis have been
explored.

We have shown that wavelet analysis, both continuous and
discrete, is a particular promising tool to obtain information

on the scales of the fine structure. The analysis reveals clear
signatures of the various important scales that occur in the
demonstration spectra. Indeed, we have found that this signa-
ture extends to other nuclei and other types of giant resonances
as well. However, the nature of this information is not easy to
interpret in isolation and requires comparison with theoretical
results (see, e.g., Refs. [6,10]). A summary of our findings
on the fine structure of the ISGQR observed in nuclei over a
wide mass range and its implications for an understanding of
the physical nature of the scales is subject of a forthcoming
article.
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