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The applicability, predictive power, and internal consis-
tency of a modified BCS (MBCS) model suggested by Dang
and Arima have been analyzed in detail in [1]. That analysis
concluded that the T -range of the MBCS applicability can be
determined as being far below the critical temperature Tc, i.e.,
T � Tc. Unfortunately, the source of our conclusions has been
misrepresented in [2], which referred to MBCS predictions at
T � Tc.

Since above Tc, particles and holes contribute to an MBCS
gap with opposite signs, the model results are rather sensitive
to details of a single particle spectrum (s.p.s.) (e.g., discussion
in Sec. IV A 1 of [3]). As so, it is indeed possible to find
conditions under which the MBCS simulates reasonable
thermal behavior of a pairing gap. This can be achieved, e.g., by
introducing some particular T -dependence of the s.p.s. (item
(i) in [2]) or by adding an extra level to a picket fence model
(PFM) (item (ii) in [2]). But such results are very unstable, and
accordingly, the model has no predictive power.

Dang and Arima explain poor MBCS results for the
PFM (N = � = 10) discussed in [1] by referring to strong
asymmetry in the line shape of the quasiparticle-number
fluctuations δNj above T ∼ 1.75 MeV (symmetry of δNj

is announced as a criterion of the MBCS applicability.)
The space limitation is blamed for that in [2]. Remember,
particle-hole symmetry is an essential feature of the PFM with
N = �. Thus, strong asymmetry is reported from the MBCS
calculation in an ideally symmetric system.

It has been found that a less symmetrical example N =
10,� = 11 satisfies better the MBCS criterion [2]. Indeed,
the model mimics the behavior of a macroscopic theory in this
case [see Fig. 1(b)]. But this example is the only one in which
the MBCS does not breakdown, in a long row of physically
very close examples with more limited or less limited s.p.s. In
all other examples, we witness either negative heat capacity
Cν [Fig. 1(a)] or negative gap �̄ [Fig. 1(c)] at rather moderate
T (see also [4]).

Unfortunately, the conclusion in [2] that “within extended
configuration spaces . . . the MBCS is a good approximation
up to high T even for a system with N = 10 particles,” is based
on a single example, while in all other N = 10 examples the
MBCS yields unphysical predictions.

The most serious problem of the MBCS is its thermo-
dynamic inconsistency. It is not sufficient to declare two
quantities, 〈H 〉 = Tr(HD) and E representing the system
energy, as being analytically equal by definition (as is done
in footnote [8] of [2]) to prove the model consistency. It
is easy to find that the expression for EMBCS [in the form
of Eq. (83) in [3]] can be obtained in the same way as all
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FIG. 1. (Color online) MBCS pairing gap �̄ (top panels) and
specific heat Cν (bottom panels) for the PFM with N = 10 and (a)
� = 8, 9, 10, (b) � = 11, and (c) � = 12, 13, 14. Pairing strength
G = 0.4 MeV in all cases.

other MBCS equations have been derived: straightforwardly
replacing the Bogoliubov {uj , vj } coefficients in EBCS(T = 0)
expression by {ūj , v̄j } coefficients. Numeric results in Fig. 9
of [1] show that 〈H 〉MBCS and EMBCS have nothing in common,
while 〈H 〉BCS ≈ EBCS, as it should be for thermodynamically
consistent theory.

Another example of the MBCS thermodynamic inconsis-
tency is shown below. We calculate the system entropy S as

S1 =
∫ T

0

1

t

∂E
∂t

dt,

and

S2 = −
∑

j

(2j + 1)
[
nj lnnj + (1 − nj )ln(1 − nj )

]
,

where nj are thermal quasiparticle occupation numbers.
In Fig. 2, we compare S1 and S2 quantities, which refer
to thermodynamic and statistical mechanical definitions of
entropy, respectively. The calculations have been performed
for the neutron system of 120Sn with a realistic s.p.s.

It is not possible to visually distinguish S1 and S2 in the
FT-BCS calculation (solid curve in Fig. 2 represents both
quantities) as it should be for thermodynamically consistent
theory. The MBCS S1 and S2 quantities are shown by dashed
and dot-dashed lines, respectively. They are different by orders
of magnitude in the MBCS prediction.
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FIG. 2. Entropy of neutron system in 120Sn calculated within the
FT-BCS (solid curve) and MBCS (dashed and dot-dashed curves).
Notice the logarithmic y scale of the main figure and linear y scale
of the insert. See text for details.

We stress that the low T part is presented in Fig. 2. Dramatic
disagreement between S1(MBCS) and S2(MBCS) representing
the system entropy remains at higher T as well, but we do not
find it necessary to extend the plot: the model does not describe
correctly a heated system even at T ∼ 200 keV.

We show in the insert of Fig. 2 another MBCS prediction:
entropy S1 decreases as temperature increases. This result is
very stable against variation of the pairing strength G within a
wide range and contradicts the second law of thermodynamics.

Finally, as we stated before, the conclusion in [1]—that the
T -range of the MBCS applicability can be determined as being
far below the critical temperature Tc—is based on the analysis
of the model predictions from T � Tc and not on T � Tc

results as presented in [2].
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