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Test of the modified BCS model at finite temperature
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A recently suggested modified BCS (MBCS) model has been studied at finite temperatures. We show that
this approach does not allow the existence of the normal (nonsuperfluid) phase at any finite temperature (F T).
Other MBCS predictions, such as a negative pairing gap, pairing induced by heating in closed-shell nuclei, and
superfluid to super-superfluid phase transition are discussed also. The MBCS model is tested by comparing it with
exact solutions for the picket fence model. Severe violation of the internal symmetry of the problem is detected.
The MBCS equations are found to be inconsistent. The limit of the MBCS applicability has been determined
to be far below the superfluid–normal phase transition of the conventional F T-BCS, where the model performs
worse than the F T-BCS.
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I. MOTIVATION

Interest in nuclear pairing correlations has been intensified
for many reasons in recent years (see, e.g., reviews in
Refs. [1,2]). Among the many aspects of the problem, the
thermal behavior of the pairing correlations in nuclei is also
considered. It is well known that results produced by the
conventional thermal BCS approach are not very precise when
applied to finite many-particle systems like atomic nuclei,
principally because of particle number fluctuations. In order
to overcome, at least partially, the shortcomings of the BCS
approach, a new model, named the modified BCS (MBCS),
was suggested and explored in Refs. [3–7]. According to
the MBCS calculations, a sharp superfluid–normal phase
transition, which is a distinct feature of the conventional
thermal BCS theory, appears at much higher temperatures and
may be washed out completely. In this paper we analyze the
performance of the MBCS.

II. INTRODUCTION TO THE MBCS MODEL

The conventional BCS theory is based on the Bogoliubov
transformation from particle creation a

†
jm and annihilation ajm

operators to quasiparticle operators {α†
jm, αjm}:

a
†
jm = ujα

†
jm + vjαjm̃, (1)

where the index jm corresponds to the level of a mean field with
quantum numbers j ≡ [n, l, j ], projection m (we consider the
spherical case) and energy εj . The tilde in Eq. (1) and below
indicates the time-reversal operation: αjm̃ = (−1)j−mαj−m.

The BCS equations at zero temperature, T = 0, are ob-
tained, e.g., by minimization of the energy of the pairing
Hamiltonian,

Hpair =
∑
jm

εja
†
jmajm − 1

4

∑
jmj ′m′

Gjj ′a
†
jma

†
jm̃aj ′m̃′aj ′m′ , (2)
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in the ground state (treated as a quasiparticle vacuum) under
the condition that the number of particles N in the system is
conserved on average. Let us consider the simplest case of
a constant pairing matrix element Gjj ′ = G. Then the BCS
equations have the form

N = 2
∑

j

�jv
2
j ,

(3)
� = G

∑
j

�jujvj ,

where

uj =
√

1

2

(
1 + εj − λ

Ej

)
, vj =

√
1

2

(
1 − εj − λ

Ej

)
, (4)

�j = (j + 1/2), and Ej = √
(εj − λ)2 + �2 is the quasipar-

ticle energy. In these equations � is a pairing gap and λ is a
chemical potential or the energy of a Fermi level.

The nuclear Hamiltonian H ′ = Hpair − λN̂ can be rewritten
in terms of quasiparticles as

H ′ = U +
∑

j

bjNj +
∑

j

cj (A†
j + Aj ) + Hc + Hres, (5)

where

Nj =
∑
m

α
†
jmαjm, A†

j = 1√
�j

∑
m>0

α
†
jmα

†
jm̃,

and (see, e.g., Ref. [8])

U = 2
∑

j

�j (εj − λ)v2
j − G


∑

j ′
�j ′uj ′vj ′




2

,

bj = (εj − λ)
(
u2

j − v2
j

) + 2Gujvj

∑
j ′

�j ′uj ′vj ′ , (6)

cj = 2
√

�j (εj − λ)ujvj − G
√

�j

(
u2

j − v2
j

)∑
j ′

�j ′uj ′vj ′ .
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In Eqs. (6) the terms that renormalize single-particle energies
(∼Gv2

j ) are omitted.
When the pairing strength G is weak, the BCS equa-

tions yield the trivial solution (normal phase): {uj , vj } =
{0(1), 1(0)} for all j, i.e., � = 0. Above some critical value
Gcr, a superfluid solution appears energetically preferable.
The value of the pairing gap �, which receives a positive
contribution from all levels, may be considered a measure of
how strong pairing is in the system. Indeed, the ujvj

combination in the second expression of Eqs. (3) indicates
how far away the system is from the trivial solution.

In the conventional BCS theory at finite temperature (F T-
BCS), minimization of the pairing Hamiltonian is replaced
by the statistical average of the free energy over the grand
canonical ensemble. The F T-BCS equations read as

N = 2
∑

j

�j

[
(1 − 2nj )v2

j + nj

]
,

(7)
� = G

∑
j

�j (1 − 2nj )ujvj ,

where nj are the thermal Fermi-Dirac occupation numbers for
the Bogoliubov quasiparticles,

nj = 1/[1 + exp (Ej/T )], (8)

with uj and vj coefficients and energies Ej having the same
form as Eqs. (4) at T = 0. However, now they are temperature
dependent through the � and λ values.

The MBCS model also starts from the Hamiltonian [Eq. (2)]
and the canonical Bogoliubov transformation [Eq. (1)]. New
ingredients appear at the extension of the approach to finite
temperatures.

In brief, a temperature-dependent unitary transformation
to the Bogoliubov quasiparticles {α†

jm, αjm} is applied, thus

transforming them into new bar-quasiparticles {ᾱ†
jm, ᾱjm}:

ᾱ
†
jm = √

1 − njα
†
jm + √

njαjm̃. (9)

A new ground state |0̄〉 is introduced as a vacuum for the
bar-quasiparticles:

〈0̄|ᾱ†
jmᾱjm|0̄〉 = 0. (10)

The coefficients in the transformation, Eq. (9), are selected so
that

〈0̄|α†
jmαjm|0̄〉 = nj , (11)

and it is assumed that the occupation numbers nj for the
Bogoliubov quasiparticles should have the same form, Eq. (8),
as in the statistical approach.

Combining Eqs. (1) and (9) the particle operators {a†
jm, ajm}

are expressed in terms of the bar-quasiparticle {ᾱ†
jm, ᾱjm}

operators:

a
†
jm = ūj ᾱ

†
jm + v̄j ᾱjm̃, (12)

where

ūj = uj

√
1 − nj + vj

√
nj , v̄j = vj

√
1 − nj − uj

√
nj .

(13)

Since the expectation value of Hpair at T �= 0 in the |0̄〉
ground state looks similar in terms of ūj and v̄j coefficients to
the one at zero temperature in terms of uj and vj , the MBCS
equations are written in analogy to Eqs. (3) as

N = 2
∑

j

�j v̄
2
j ,

(14)
�̄ = G

∑
j

�j ūj v̄j

or, in terms of uj and vj coefficients and thermal quasiparticle
occupation numbers nj ,

N = 2
∑

j

�j

[
(1 − 2nj )v2

j + nj − 2
√

nj (1 − nj )ujvj

]
,

�̄ = G
∑

j

�j

[
(1 − 2nj )ujvj − √

nj (1 − nj )
(
u2

j − v2
j

)]
.

(15)

III. THERMAL BEHAVIOR OF THE MBCS PAIRING GAP

In Refs. [3–5], applying the MBCS to study the thermal
behavior of different nuclear quantities, the authors point out
the following distinctive features of the new model: (a) the
pairing gap decreases monotonically as temperature increases
and does not vanish even at very high T; (b) the superfluid–
normal phase transition is completely washed out.

Taking the MBCS equations as they have been suggested,
we analyze the validity of the above results. We have repeated
the MBCS calculations for neutrons in Ni isotopes and for
neutrons and protons in 120Sn in Refs. [4] and [5], respectively.
The MBCS equations (15) have been solved with an accuracy
of 10−11. Our code excellently reproduces all the results in
Ref. [4]. As typical examples, we use in this presentation the
nuclei 76Ni (quasibound calculation; single-particle levels in
the continuum having no width), 84Ni (resonant-continuum
calculation; finite width is taken into account for the levels
with positive energy) and 120Sn.

We start with the thermal behavior of the pairing gap. The
neutron MBCS pairing gap in 76Ni is plotted in Fig. 1(a). One
notices that it reaches zero at T ≈ 2.1 MeV and continues
to decrease with the negative sign. These calculations were
performed as reported in Ref. [4] on a truncated single-particle
basis assuming the N = 0 − 28 inert core. Later it was
recommended in Ref. [5] that the MBCS calculations should
be performed on an entire or as large as possible single-particle
spectrum. However, though in Ni isotopes this recipe of the
entire spectrum helps to avoid negative values of the pairing
gap, it does not work in the case of 120Sn (see below).

In calculations with a wider single-particle spectrum in Ni
isotopes we have found that the gap starts to continuously
increase above a certain temperature, always remaining pos-
itive. The pairing strength has been renormalized to keep the
�̄(T = 0) value.

An example of such behavior of the pairing gap is presented
in Fig. 2(a) for 84Ni. As can be seen, at T ≈ 3.3 MeV
some strange discontinuities are apparent, a phenomenon
that may be defined as a superfluid–super-superfluid (S-SS)
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FIG. 1. (Color online) MBCS (a) pairing gap �̄ and (b) v̄j

coefficients for particle levels near the Fermi surface in 76Ni
(neutrons). The conventional critical temperature Tc is shown by the
vertical arrow, and the single-particle spectrum used is from Ref. [4].

phase transition. At this temperature, the MBCS equations
find a new energetically preferable solution. A T dependence
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FIG. 2. MBCS (a) pairing gap �̄, (b) chemical potential λ̄, and (c)
excitation energy E∗ in 84Ni (neutrons). The single-particle spectrum
from Ref. [4] is extended by including levels from N = 0 − 28 shells.

of the total excitation energy given by

E∗ = E(T ) − E(0), (16)

where E(T ) is calculated from Eq. (45) in Ref. [4], is shown
in Fig. 2(c). The chemical potential jumps away from the
λ(T = 0) value at T ≈ 3.3 MeV [see Fig. 2(b)].

In short, while at the �̄ = 0 point the behavior of physical
observables is smooth [see Fig. 1(b)], at the S-SS point
discontinuities in excitation energy, pairing gap, and chemical
potential take place. Thus, there is no phase transition from
the superfluid to normal phase within the MBCS, but instead
a phase transition of a new type is predicted at finite
temperatures.

The absence of the normal phase in all MBCS calculations
has motivated us to apply this model to a magic-number
system of nucleons in which the existence of this phase at
T = 0 is expected. The nucleus 120Sn has been taken as an
example. The MBCS neutron pairing gap [solid curve in
Fig. 3(a)] in this nucleus shows the same behavior as already
discussed for 76Ni even though a rather complete single-
particle basis has been employed in 120Sn. The neutron pairing
gap vanishes at T ≈ 5.5 MeV and becomes negative at higher
temperatures.

The proton gap in 120Sn exhibits a rather strange behavior
as a function of T. Starting from zero value at T = 0 the gap
smoothly develops to a value of −0.73 MeV at T = 5 MeV
[dashed curve in Fig. 3(a)]. A completely different result for
the MBCS proton pairing gap in this nucleus has been reported
in Ref. [5], and it is shown as the dotted line �̄CS in Fig. 3(a).
To obtain it, it has been suggested that closed-shell systems
should be treated differently from open-shell ones, namely, all
summations in the MBCS equations (15) should be carried
over hole levels only.

In our opinion, the last recipe contradicts the previous
recipe of using the entire spectrum in the same publication.
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FIG. 3. MBCS (a) pairing gap �̄ and (b) chemical potential λ̄ for
neutrons (solid curves) and protons (dashed curves) in 120Sn. �̄CS

and λ̄CS (dotted curves) correspond to closed-shell calculations in
Ref. [5]. See text for details.
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It is also evident that this artificial constraint cannot be
justified for a heated system. Indeed, both subsystems, the
former hole (fully occupied) and particle (empty) levels,
become partially occupied owing to the heating, and there
are no physical reasons to ignore the particle part of a
single-particle spectrum. Moreover, to keep the number of
nucleons N constant under the above constraint forces the
MBCS equations to abnormally renormalize the corresponding
chemical potential. In the above CS calculations the λ̄

quantity moves rapidly away from λ̄π,CS(T = 0) = −10 MeV
to λ̄π,CS(T = 5) = +175 MeV [following the dotted line in
Fig. 3(b)]. In addition, the capacity of the system is zero
in the CS approximation; i.e., the system is artificially
frozen.

The above MBCS results are natural consequences of
Eqs. (15). For example, these equations do not have the trivial
solution {ūj , v̄j } = {0(1), 1(0)}. Indeed, from Eqs. (13) the
solution would correspond to

uj = √
1 − nj ; vj = √

nj − particles,

uj = −√
nj ; vj = √

1 − nj − holes,

and contradict the positive definition of uj .
One may also notice from Eqs. (13) that v̄j coefficients

become negative for particle levels above a certain temper-
ature, with nj increasing, since vj 	 uj . In this case the
MBCS pairing gap �̄ receives a positive contribution from
hole levels and a negative contribution from particle levels.
Thus the contributions of single-particle and single-hole states
to a pairing phenomenon appear to be essentially different.

Numerical calculations [see Fig. 1(b)] show that two
terms in the second expression of Eqs. (15) compensate
each other around the critical temperature of the conventional
BCS Tc ≈ 0.57 × �T =0 for particle levels, and v̄j become
negative at higher temperatures. The gap �̄ may vanish at
some temperature but only when a negative contribution from
particles and positive contribution from holes cancel each other
(notice the difference from the conventional BCS, � = 0).
However if this happens at higher T, the balance appears to
be broken and �̄ becomes finite again. This also means that
�̄ = 0 has nothing in common with the normal phase and that
one cannot conclude from the absolute value of the pairing gap
how strong the pairing is in the system.

The temperature behavior of the pairing gap depends on a
delicate balance between particle and hole parts of the single-
particle basis used, which makes the MBCS predictions very
doubtful.

IV. MBCS AND EXACT SOLUTIONS OF THE PAIRING
HAMILTONIAN

In this section we compare MBCS predictions with exact
solutions of the pairing Hamiltonian employing the picket
fence model (PFM) [9], which is widely used as a test model
for the pairing problem (see, e.g., Ref. [10]). For numeric
calculations we have selected N = 10 levels, each twofold
degenerate (for spin up and spin down), with the energy
difference of 1 MeV and 10 particles distributed over the levels.
This configuration thus represents five levels for holes with
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FIG. 4. (Color online) (a) Pairing gap �̄, (b) excitation energy E∗,
and (c) specific heat Cν as predicted by the MBCS (solid curves) and
F T-BCS (dashed curves) for the PFM (N = 10 and G = 0.4 MeV).
The exact results in (b) and (c) are plotted as dotted curves.

energies ε−i = −0.5 MeV, −1.5 MeV, etc. and five levels for
particles with energies εi = +0.5 MeV, +1.5 MeV, etc.

The MBCS predictions for the pairing gap, excitation
energy, and specific heat given by

Cν = ∂E
∂T

are shown in Fig. 4 by the solid curves. Here, the F T-BCS
results are also shown as dashed curves (explicit expressions
for the quantityE in both approaches are given below). Both the
MBCS and F T-BCS can be compared with the exact solutions
of the pairing Hamiltonian (dotted curves). It should be noted
that the MBCS-PFM pairing gap behavior is qualitatively
very similar to the one in 84Ni reported in Fig. 2(a) and that
the superfluid–super-superfluid phase transition takes place at
T ≈ 1.78 MeV.

One concludes from Fig. 4 that the MBCS does not achieve
its main goal of improving on the description of heated nuclei
in the conventional F T-BCS. Indeed, except for a narrow
region around Tc, the deviation from the exact results is worse
in the MBCS case than in the conventional F T-BCS, which
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FIG. 5. (Color online) Spectroscopic factors of the two lowest
particle and hole levels in the PFM (N = 10 and G = 0.4 MeV)
calculated within the MBCS (solid curves) and F T-BCS (dashed
curves). Dotted curves represent the exact results.

holds even at a very low temperature. It is also obvious that the
superfluid–super-superfluid phase transition and the overall
behavior at higher temperatures are artificial effects of the
MBCS.

In addition, a more detailed analysis shows that the situation
with the MBCS is much worse than the disagreement apparent
in Fig. 4. We further present in Fig. 5 the spectroscopic factors
for two particle and two hole levels closest to the Fermi surface,
within the MBCS (solid curves) and F T-BCS (dashed curves)
for a comparison with the exact results (dotted curves). It is
important to keep in mind that the pairing Hamiltonian in
the PFM possesses particle-hole symmetry. For this reason,
dotted curves in Fig. 5 for hole −i and particle i levels are
ideally symmetric about the y = 1 line. The same is true for
the F T-BCS results. Nothing of this symmetry remains after
the secondary Bogoliubov transformation of Eq. (9) is applied
in the MBCS (see solid curves in the same figure). In addition,
the description of this physical observable in the MBCS is very
poor compared with the F T-BCS results.

Breaking of the particle-hole symmetry in the MBCS
calculations is even more clearly seen from an analysis of
the MBCS quasiparticle spectrum presented in Fig. 6(b). In
the PFM it should be twofold degenerate (i.e., Ēi ≡ Ē−i) as,
e.g., in the F T-BCS calculation in Fig. 6(a), because of this
symmetry. The chemical potential λ̄ in the MBCS calculations
does not stay at zero energy (as it should) but moves rapidly
to positive values as temperature increases. This explains why
the level i = 2 appears at a lower energy than the i = 1 level
above T ≈ 1.6 MeV. It is also the origin of the Ei/E−i splitting
in these calculations.

We have repeated the MBCS-PFM calculations with dif-
ferent values of the pairing strength G > Gcr. As G increases,
the MBCS superfluid–super-superfluid phase transition takes
place at a lower temperature, and the splitting of i and −i levels
becomes stronger.
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FIG. 6. Quasiparticle spectrum in the PFM (N = 10 and G =
0.4 MeV) within (a) the F T-BCS and (b) the MBCS. Particle (hole)
levels are plotted as thick (thin) curves.

Another consequence of the particle-hole symmetry is that
under any conditions it should be true that ui ≡ v−i and vi ≡
u−i or, alternatively,

u2
i + u2

−i ≡ u2
i + v2

i = 1. (17)

In Fig. 7 we demonstrate what happens to this analytical
identity in the MBCS. The calculations have been performed
for a different number of levels N of the PFM, and the strength
parameter G has been adjusted to keep Tc = 0.5 MeV in each
calculation. The convergence of the results in this T range (also
for �̄, λ̄, and E∗) is reached at N ≈ 10. The conclusion from
Fig. 7 is that the analytical identity of Eq. (17) is completely
broken in MBCS calculations even at very low temperatures.

Thus one can see that the MBCS severely violates the sym-
metry between particles and holes, which is an essential feature
of the pairing problem solved for the PFM. Accordingly, the
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FIG. 7. (Color online) The (u2
1 + u2

−1) quantity in the MBCS-
PFM calculations with different N. Tc = 0.5 MeV is the same in all
calculations. Analytical identity (y = 1) is plotted as a dotted curve.
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MBCS can be applied to this problem only at temperatures
much lower than Tc.

V. INCONSISTENCIES OF MBCS AND MHFB
APPROACHES

In this section the evaluation of the MBCS equations is
analyzed to verify consistency. To start with, we agree that the
pairing Hamiltonian H̄ ′ expressed via the MBCS variables ūj

and v̄j has the same form as the BCS Hamiltonian H ′ of Eq. (5)
at T = 0. It is also true that the expectation value of the pairing
Hamiltonian 〈0̄|Hpair|0̄〉 at T �= 0 looks similar to 〈0|Hpair|0〉
in the case of the BCS at T = 0. But then the formal similarity
is broken, and the corresponding energies Ēj are attributed
to the conventional Bogoliubov quasiparticles and not to

the bar-quasiparticles. These energies Ēj =
√

(εj − λ̄)2 + �̄2

enter through new thermal occupation numbers nj and new u,

v coefficients

uj =
√

1

2

(
1 + εj − λ̄

Ēj

)
, vj =

√
1

2

(
1 − εj − λ̄

Ēj

)
(18)

[see the remarks on page 8 in Ref. [5] just after Eq. (86)].
In other words, the MBCS procedure yields new eigenen-

ergies of Bogoliubov quasiparticles while new eigenstates are
now modified quasiparticles. The point here is that if one
would take the mean of the modified quasiparticle energies
under Ēj , they should coincide with the BCS Ej at T = 0.
Indeed, the secondary Bogoliubov transformation of Eq. (9) is
a unitary one and, as such, cannot change the eigenvalues of
the Hamiltonian.

There are several possibilities for analytically deriving the
BCS equations from the expectation value 〈0|Hpair|0〉 at T = 0.
One of them is presented, e.g., in Ref. [8]. The BCS equations
are obtained by stipulating that

bj ≡ Ej and cj ≡ 0, (19)

where bj and cj are defined in Eqs. (6). The first expression in
Eqs. (19) means that the pairing Hamiltonian is diagonalized
in the quasiparticles space; the second one indicates that the
so-called dangerous diagrams are excluded from the theory.
The solution of the BCS equations is unique. In another words,
it is absolutely necessary that Eqs. (19) are fulfilled exactly to
have the BCS equations in the form given in Eq. (3). Let us
verify this for the MBCS.

We introduce b̄j and c̄j quantities to replace the {uj , vj }
coefficients in Eqs. (6) by {ūj , v̄j } coefficients and calculate
the later from the MBCS equations. The differences |b̄j − Ēj |
and c̄j quantities for several neutron subshells in 120Sn are
presented in Fig. 8(a) and 8(b), respectively, showing that

b̄j �= Ēj and c̄j �= 0. (20)

In addition, Eqs. (19) are also not fulfilled within the MBCS.
We remind a reader that the MBCS equations were not

obtained analytically but were written in analogy to the T = 0
BCS equations and, as far as the MBCS founders had noticed,
using a formal similarity in some BCS and MBCS expressions.
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FIG. 8. (Color online) MBCS b̄j and c̄j quantities as functions of
temperature for some neutron levels in 120Sn. See text for details.

But, as a matter of fact, the basic MBCS equations contained
in Eqs. (14) or (15) cannot be reached from the expectation
value 〈0̄|Hpair|0̄〉 at finite T because of Eqs. (20).

One finds in the literature [5] that the MBCS equations
may be obtained from a modified HFB model called the
MHFB. There it was noted that after application of the
secondary Bogoliubov transformation of Eq. (9), a generalized
particle-density matrix at finite temperature “formally looks
the same as the usual HFB approximation at T = 0” [5]. Then,
“following the rest of the derivation as for the zero-temperature
case” [5], the MHFB equations were written. Below we verify
the thermodynamical consistency of the MHFB (MBCS), since
Ref. [5] lacks such an analysis.

The total energy of the system in the statistical approach
has the form

〈H〉 = Tr(HD), (21)

where D is a density operator and 〈. . .〉 indicates averaging
over the grand canonical ensemble. After grand potential
minimization, one obtains an expression for the system energy
as

EBCS = 2
∑

j

�jεj

[
(1 − 2nj )v2

j + nj

] − �2/G (22)

in the F T-HFB (or F T-BCS). In the MHFB (or MBCS) it has
the form

EMBCS = 2
∑

j

�jεj

[
(1 − 2nj )v2

j + nj

− 2
√

nj (1 − nj )ujvj

] − �̄2/G. (23)

Equation (23) appears as Eq. (83) in Ref. [5] or as Eq. (45) in
Ref. [4].

In Fig. 9(a) we present the low-T part of Fig. 4(b) (up to
Tc) with predictions of the MBCS (solid curves) and F T-BCS
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FIG. 9. (Color online) Excitation energy of the PFM calculated as
E∗ (thick curves) and 〈H〉∗ (thin curves) in the MHFB (solid curves)
and the F T-HFB (dashed curves) with Tc = 0.42 MeV for (a) N = 10
and (b) N = 2.

(dashed curves) for the system excitation energy. It should be
reminded that the results in Fig. 4(b) were obtained for the E∗
quantity [see Eq. (16)] with E calculated in the MBCS and
F T-BCS from Eqs. (23) and (22), respectively. These results
are plotted as thick curves in Fig. 9(a). The excitation energy
calculated in the MHFB and F T-HFB as

〈H〉∗ = 〈H〉(T ) − 〈H〉(0)

(in the Gjj ′ = G limit for exact comparison with the MBCS
and F T-BCS results) is shown by thin curves in the same
figure. Since DMHFB (Eq. (66) in Ref. [5]) does not equal DHFB

(Eq. (12) in Ref. [5]), the 〈H〉∗MHFB and 〈H〉∗HFB quantities are
slightly different in Fig. 9.

In any consistent model the values 〈H〉∗ and E∗ should
not differ significantly, since they represent the same physical
observable. One notices that the accuracy of the F T-BCS
becomes worse on approaching Tc, as is well known, and
disagreement reaches a few percent. The picture within the
MHFB (MBCS) is completely different: the E∗

MBCS quantity is
several times smaller than the 〈H〉∗MHFB quantity at almost any T
in this example.1 We have repeated the calculations in Fig. 9(a)
also for N = 8 and N = 12, keeping Tc fixed. The differences
between the N = 8, 10, 12 results are hardly noticed by eye
for each line in Fig. 9(a); i.e. convergence of the results in
this example is reached with N = 8–10. The correspondence
between 〈H〉∗ and E∗ still remains acceptable for the F T-HFB
(F T-BCS) even for N = 2 [see Fig. 9(b)]. On the other hand,

1Very small, almost zero, E∗ and Cν values for T <∼ Tc is a distinctive
feature of other MBCS predictions as well (see Fig. 2 above, Fig. 4
in Ref. [4], and Ref. [11]).

disagreement in the MHFB (MBCS) results reaches several
orders of magnitude in the N = 2 case [notice the logarithmic
y scale in Fig. 9(b)].

To conclude, thermodynamical inconsistency of the MHFB
(MBCS) is obvious from this example. This inconsistency is
detected from T 	 Tc.

The last result clearly demonstrates that the MBCS ap-
proach is not justified within the framework of the usual
statistical approach. This conclusion can be reached by other
reasoning as well. The point is that the basic MBCS equations
given by Eqs. (15) obtained via the secondary Bogoliubov
transformation cannot be considered a result of the thermal
averaging over the grand canonical ensemble. Indeed, the
bar-quasiparticles in Eq. (9) and the new correlated ground
state

|0̄〉 =
∏
jm

(
√

1 − nj + √
njα

+
jmα+

jm̃)|0〉

are temperature dependent, although the MBCS founders do
not use this terminology. The proposal to deduce the basic
MBCS equations via a variational procedure in application
to the average value 〈0̄|H |0̄〉 contradicts what was proven
long ago [12]: a ground state with such a property cannot be
constructed in principle in the space spanned by eigenvectors
of a quantum Hamiltonian (see also the footnote on page 3 in
Ref. [4]).

VI. CONCLUSIONS

In this paper we have studied the modified BCS model
suggested and explored in a series of papers [3–7]. We have
shown that this model yields many unphysical predictions: a
negative value for the pairing gap, the pairing correlations
induced by heating in the closed-shell systems, and the
superfluid–super-superfluid phase transition. It also predicts
that the normal phase does not exist at any finite temperature.
The MBCS has been tested versus the picket fence model for
which an exact solution of the pairing problem is available. In
addition to a rather poor description of the exact solutions, it
has been found that the model severely violates the internal
particle-hole symmetry of the problem.

Analysis of the MBCS equations, their derivation, and
description of different physical observables by this model
have led us to the following general conclusion: The T-range
of the MBCS applicability has been determined to be far below
the conventional critical temperature Tc. Within this narrow
temperature interval the MBCS performance is worse than that
of the conventional F T-BCS. Moreover, the MBCS is found
to be thermodynamically inconsistent.
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