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Electron scattering cross sections have been measured for the elastic and the first 2¥,3~ and low-lying
4% excitations in '"®Sn. Forward angle data were taken for momentum transfers in the range
1.24< g <2.74 fm™~! allowing the extraction of transition charge densities in a Fourier-Bessel analysis.
Comparisons are made with microscopic calculations performed in the framework of the self-consistent
finite Fermi system theory and quasiparticle phonon approach.
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I. INTRODUCTION

In the excitation spectra of most even-even spherical
nuclei there are low-lying excitations that can be de-
scribed in a collective model of the nucleus as a vibration
of the nuclear surface. The longitudinal electromagnetic
response of such transitions in this model will then be
surface peaked. Experimentally extracted transition
charge densities from inelastic electron scattering experi-
ments, however, show that low-lying quadrupole excita-
tions may have considerable interior structure. In some
cases interior structure is an indication of a small number
of particle-hole transitions participating in the excitation.
Thus, phenomenologically, the shape of the experimental
densities can be explained as an admixture of the single
particle motion coupled to the collective surface vibra-
tions. Within the framework of self-consistent ap-
proaches, both modes of excitation are jointly incorporat-
ed, the surface peak being a coherent sum of a large num-
ber of particle-hole excitations and the volume structure
corresponding to a contribution of a few isolated low-
energy transitions. In nonmagic nuclei, the two-particle
(two-hole) channel is strongly mixed with the particle-
hole one influencing mainly the volume response. The in-
terplay between collective and single-particle modes ex-
hibited by low-lying quadrupole excitations has been ex-
perimentally investigiited in Ref. [1] (for ¥Y), Ref. [2]
(®%Sr), and Ref. [3] (*®»2%Pb), In these cases it was shown
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that the transition densities of collective excitations in
neighboring nuclei possess a very similar surface behav-
ior, while the volume structure changes considerably
from one nucleus to another. It is thus apparent that a
detailed study of the transition charge densities of low-
lying excitations can give insight into their microscopic
structure.

The present work on the low-lying, bound state struc-
ture of !'3Sn belongs to a series of works on the detailed
study of the transition charge densities of low-lying col-
lective states in spherical, superfluid nuclei using high-
resolution inelastic electron scattering. In a preceding
paper [4], a number of such densities in *’Ce were ex-
tracted from the experimental data and compared with
predictions of the quasiparticle-phonon approach (QPA)
and the finite Fermi system (FFS) theory. The analysis
revealed a rather complex structure for the majority of
states due to strong anharmonicity effects. Such a situa-
tion is typical for the nonmagic spherical nuclei with a
soft collective quadrupole mode when the 2] state has
comparatively low energy (0.64 MeV in *2Ce).

The situation with semimagic nuclei is simpler. In
such nuclei the 2; state lies higher (typically greater than
1 MeV), its collectivity is lower and the anharmonicity
effects are less pronounced than in nuclei with both shells
open. For this reason, the chain of tin nuclei (Z =50) has
often been chosen as a touchstone for checking methods
for the description of the pairing effects on the ground
state nuclear properties [5-7]. These isotopes are also of
special interest in the study of one-phonon states in
superfluid nuclei. An adequate description of such sim-
ple one-phonon states should serve as a good basis for the
analysis of more complicated cases.
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In this work we present the first extraction of the tran-
sition charge density for the lowest-lying collective exci-
tations in ''3Sn from electron scattering data. Form fac-
tors and transition charge densities have been extracted
for the first quadrupole excitation at 1.230 MeV, the first
octupole transition at 2.328 MeV, and the lowest-lying
hexadecapole transitions at 2.280 and 2.489 MeV. In ad-
dition, we have extracted the ground state charge distri-
bution from a combined analysis of all available electron
scattering data and muonic x-ray transition data. Our
experimentally extracted densities are compared with cal-
culations in the framework of the QPA and FFS theory.
QPA calculations [8—10], which have been successfully
applied to the description of the contribution of one- and
two-phonon configurations to the transition charge densi-
ties of low-lying states in the N =82 region [4,11], are
carried out here using the “standard” QPA technique
with a phenomenological Woods-Saxon potential and se-
parable multipole-multipole forces, with strength con-
stants fitted to the position of the first state for each mul-
tipolarity. Calculations in this work performed within
the framework of the FFS theory use the mixed (r,A) rep-
resentation as described in Refs. [4] and [12], but have
been extended in the present work by the completion of
completely self-consistent FFS calculations with the use
of the finite-range density-dependent forces of Refs.
[7,13]. These calculations have had considerable previ-
ous success in predicting the ground state properties of
both magic and nonmagic superfluid nuclei.

II. EXPERIMENT AND DATA ANALYSIS

Forward angle electron scattering data have been taken
covering a momentum transfer region of 1.24<q <2.74
fm~! using incident electron beam energies of 252 and
376 MeV at the MIT-Bates Electron Linear Accelerator
Center. Data were accumulated using the Energy Loss
Spectrometer System (ELSSY) [14] obtaining resolutions
of 16 keV for the 252 MeV data and 25-30 keV at the
376 MeV incident energy.

Position information in the bend plane of the spec-
trometer was obtained from a pair of vertical drift
chambers (VDC’s) [15], while signals from two multiwire
proportional chambers provided a determination of the
particle trajectory in the transverse plane. These detec-
tors were located at the approximate position of the spec-
trometer focal plane. Fiducial signals were initiated by a
coincidence between a plastic scintillator detector and a
gas Cherenkov counter, which also provided particle
identification for the relativistic electrons. Corrections
for aberrations due to the curvature of the spectrometer
focal plane, kinematic recoil, and instrumental deadtime
were made in an off-line analysis. Final spectra had typi-
cal energy resolutions of 8E /E=8X 107>,

Cross sections were determined from electron energy
loss histograms using the line-shape fitting program
ALLFIT [16]; the line shape was taken as the convolution
of a Gaussian and the theoretical line shape due to radia-
tive processes [17]. Energy calibrations were determined
using the differential recoil from known excitations in iso-
topes of varying mass. Using this method, the incident
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beam energies were determined to be 252.21+0.3 and
376.41+0.4 MeV. Data were taken over an angular range
of 58°-78.6° at 252 MeV and 47°-80° at 376 MeV.
Shown in Fig. 1 is a spectrum of inelastically scattered
electrons from !'®$n showing several of the low-lying ex-
citations. The incident electron energy for these data is
252 MeV and the laboratory scattering angle is 68°. The
data shown have been histogrammed into 5 keV bins and
known excitations [18] have been line-shape fit to obtain
the differential cross section for each level.

To aid in the extraction of the densities low momen-
tum transfer data from Yale [19] and NIKHEF-K [20,21]
were added to the analysis procedure.

Data were taken using target foils of 97.8% isotopical-
ly enriched '8Sn. Targets of 10.48 and 19.86 mg/cm?®
thickness were used. As the melting point of tin is rela-
tively low (231.9°C), the target foils were rotated in the
beam to spread the flux over a large enough area to
prevent melting. This also had the advantage of averag-
ing over target thickness irregularities.

Cross sections have been measured for levels up to 4.0
MeV. In this paper we present the experimentally ex-
tracted radial charge distribution for the ground state, as
well as the transition charge densities for the first excited
quadrupole, octupole, and hexadecapole levels in ®Sn.

Elastic cross sections extracted from the present work,
along with cross sections from previous (e,e’) experi-
ments [19-24] and Barrett moments obtained from
muonic x-ray experiments [25], were fit in a Fourier-
Bessel analysis of the nuclear ground state [26,27]. The
reduced y? for this fit to all data was 1.2 per degree of
freedom. Shown in Fig. 2 is the extracted charge form
factor, |F€|2, defined as the differential scattering cross
section divided by the Mott cross section for unit charge
and the recoil factor 7., where

_ 2E;sinX(6/2) |
Neee= |1+ M 2.1
and
do _ aX#ic Ycos*(6/2)
—_— = TP , : 2.2)
dQ |yow  4E7sin®(6/2)

where M, is the mass of the target nucleus.
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FIG. 1. Spectrum of inelastically scattered electrons from
11885 at 252 MeV, 68° (g.+=1.48 fm™!) showing levels below 4.0
MeV excitation.



11831 ELASTIC FORM FACTOR

100 T T T LT T T I T T T T I T T T T
10~1
3 10~2
b
~ -3
o 10
10—4 (O I I [ I 111 | 1
1 1.5 2 _, 25 3
qeﬂ (fm )
1857 GROUND STATE CHARGE DENSITY
8 T 171 | T T T 7T I TTTT I TTIrri l T T T I_
el?‘ . 1
& 86— —
® C n
N - -
o E i
z 2l —
°~ C ]
—lllll]lllllllllll $ 31 1]

o

2 4 6
Radius (fm)

o3}
-
(@]

FIG. 2. Top: Elastic form factor (cross section divided by
Mott cross section) for '®Sn recalculated to 376.4 MeV with
best fit from DWBA phase shift calculations (solid line).
Dashed line is the prediction based on a three-parameter Gauss-
ian model for the ground state density. Bottom: Ground state
charge distribution as extracted in the Fourier-Bessel analysis.
Dashed line is a best fit Gaussian parametrization while the
solid line is the FFS calculation discussed in the text.

The solid line is the best fit distorted wave Born ap-
proximation (DWBA) form factor recalculated to an in-
cident energy of 376.4 MeV, while the dotted line shows
the form factor obtained from a DWBA calculation
where the density has been parametrized as a three pa-
rameter Gaussian: '

14+w(r/c)?
(r)= — —  (2.3)
PO PO expl(r2—c?) /27]
Here the fitted parameters are w=0.30410.012,

¢=5.072+0.007 fm, and z=2.693%0.003 fm as taken
from Ref. [23]. Although the present analysis includes a
total of 66 cross section measurements spanning a
momentum transfer range of 0.49<g <2.74 fm~!, we
have plotted only those data that cover the region of
momentum transfer covered by the Bates measurements.
Except for the region of high momentum transfer,
g>2.5 fm™!, this Gaussian parametrization describes
the data rather well. The ground state charge density ex-
tracted in the Fourier-Bessel analysis is shown in the bot-
tom of Fig. 2, along with this three parameter Gaussian
fit (dashed line). The parametrization averages over the
small interior oscillations, but is seen to give an overall
good description of the size and shape of the experimen-
tal density. Calculations performed within the framework
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of the FFS theory are shown as the solid line in this
figure. The interior structure, which was not reproduced
by the Gaussian parametrization, is qualitatively pro-
duced by this calculation, though the surface is somewhat
enhanced as compared to the experimentally extracted
density.

The rms radius of the charge density as derived from
the present analysis is found to be (r)!'?
=4.642410.0007 fm. This compares with the previous

‘experimental extraction [28] for the rms radius of

(r%,)1/2=4.648+0.007 and a calculated value of 4.6104
fm in the FFS model.

Inelastic cross sections obtained in this work have been
normalized to the elastic scattering cross sections of
118Gh. Best fits in the Fourier-Bessel analysis to all
scattering cross sections and muonic x-ray data provided
separate normalization factors for each energy and angle.
Typical normalizations were 6% for the Bates data.
These normalizations have been applied to the fitted data
to provide the final cross sections presented in this work.

II1. INELASTIC EXCITATIONS

Laboratory cross sections obtained for the inelastic ex-
citations in !'8Sn have been analyzed to extract the tran-
sition charge density in the Fourier-Bessel analysis [29].
In this method the transition charge density is expanded
into a Fourier-Bessel series [29] given by

N
pr(n="3 A,q: " "j(g;7"r) (3.1)
=1

for r <R.. Here the densities are zero for radii greater
than the cutoff radius R, where R q ﬁ is the uth zero of
the spherical Bessel function of order L.

The coefficients A4, are determined in a least-squares fit
to the calculated cross section in DWBA [30]. In the
DWBA treatment, the distorted incoming and outgoing
electron waves are given by a partial wave expansion,
with the two component radial wave functions satisfying
the Dirac equation for a spherically symmetric electric
potential. Correct treatment of the Coulomb distortions
is necessary for heavy nuclei such as '®S$n and thus the
simple relationship that exists between form factors and
transition densities in the standard plane wave Born ap-
proximation (PWBA) does not exist in the present
analysis. Matrix elements of the interaction Hamiltonian
between initial and final nuclear states are calculated for
the transition of multipolarity L with the nuclear
currents related through the continuity equation:

V2L +1 % pL(N=VL %—L—_I Jrp—(r)
—VL+1 [%’*‘L—:-é JL’L+1(r) .
(3.2)

Collective excitations in heavy nuclei, such as the 2+
excitation in 2°®Pb as discussed in Ref. [31], or the low-
lying excitations in the rare-earth nuclei [4,11,32], are



2704

seen to have little contribution from the transverse
current J; ; +4(r). We anticipate this also to be true for
the collective excitations in tin. To investigate the trans-
verse contribution in !%Sn, we have, in addition to the
forward angle data, taken an inelastic spectrum at 155°,
252.4 MeV incident electron energy and compared the
cross sections of several low-lying states to forward angle
data taken at approximately the same value of momen-
tum transfer. Rosenbluth separations give maximum
transverse contributions of 2% for the first quadrupole
transition at 1.230 MeV and 5% for the 4 excitation at
2.489 MeV. These percentages are consistent with the
absence of a large transverse contribution. In the present
work we have thus analyzed the cross sections assuming
irrotational flow and thus requiring only those contribu-
tions from the current Jy ; _,(r) as required by the con-
tinuity equation.

Shown in Fig. 3 are the scattering data for the 1.230
MeV 27 level recalculated [29] to an incident electron en-
ergy of 376.4 MeV, and plotted as a function of g.g, the
effective momentum transfer. This is defined as
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FIG. 3. Top: Charge form factor recalculated to 376.4 MeV
with best fit (solid line) from DWBA phase shift calculation.
Dotted line is the prediction of the Tassie model, dashed line
FFS calculation, dot-dashed line QPA calculation. Data are
from this work (diamonds), Ref. [19] (stars), and Ref. [20] (cir-
cles). Bottom: Transition charge density p(r) for the first quad-
rupole transition at 1.230 MeV in '*®Sn. Error band is the best
fit to the data in the Fourier-Bessel analysis; the dashed line is
from a calculation using the self-consistent finite Fermi system
theory; the dot-dashed line is the prediction of the quasiparticle
phonon approach; dotted line is the Tassie model; small dot-
dashed line at bottom of figure is the two-phonon component
from the QPA model multiplied by a factor of 10.
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_ 4Z afic
dex ™4 1+3E-7'0A1/3 ’ (3.3)

where a radial parameter of 7,=1.12 fm has been used to
define the nuclear size. The best fit to the scattering data
in DWBA is shown as the solid line in the figure, where
we have plotted the ratio of the measured cross section to
the Mott cross section,

do
dQ

Mott

c(g)2=282
IFl=52 [4mn,.

Here 17,,. and the Mott cross section are defined as in
Egs. (2.1) and (2.2). For longitudinal transitions in
PWBA, this ratio is the square of the charge form factor
for a transition of multipolarity L, and is thus the
Fourier-Bessel transform of the transition charge density.
Though this relationship is not correct in DWBA, if the
transverse contributions are not great, all the data may be
presented in a single figure by recalculating each cross
section to the highest energy in DWBA and dividing by
the elementary scattering cross section and kinematic fac-
tor.

-— -The extracted transition charge density for these data

is also shown in Fig. 3 along with three model calcula-
tions. Error bands include both statistical and incom-
pleteness errors. From this density, the transition
strength as given by the B(E2)1 value, defined for a tran-
sition of multipolarity L as

V'2J,

F1 o
B(EL)t = |—=t= [ "p(r)r* +2r| ,

V2 +1 Yo

is found to be (1979:+47)e? fm*. This is somewhat larger
than obtained in previous low momentum transfer (e,e’)
data [19,20], where only the first maximum of the form
factor was fit in a hydrodynamic model. These analyses
obtained values of (1722+50)e? fm* and (1560+£60)e? fm*
(see Table I). Our analysis obtains a somewhat lower
value, however, than the value of (2160150)e? fm* ob-
tained from Coulomb excitation experiments [33,34], or
the pion scattering analysis of Ref. [35] which gives a
value of 3350e? fm* for the transition strength of the first
2% in 1188,
* Data have been analyzed to obtain the transition
charge density for the first octupole level at 2.328 MeV.
Analysis of these data was complicated by the presence of
a weak, unresolved 57 level which has been observed at
2.321 MeV in y-decay experiments [18,36]. Our data
were corrected for the additional ES5 strength by using
models of its contribution to the cross section from our
calculations. Cross sections were calculated in both QPA
and FFS for the first 37 and 5~ levels and the corre-
sponding form factors were scaled to give a best fit to the
combined data at 2.32 MeV. The difference in the calcu-
lated cross section predicted in the two models was added
to the final error as an estimate of the uncertainty in this
procedure.

Previous results from (e,e’) experiments [19,20] have
been at low momentum transfers (g5 <1.2 fm™!), and

2

(3.4)
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TABLE 1. Excitation energies and transition strengths of the low-lying collective excitations in !'*Sn obtained from experiment,
along with corresponding QPA calculations and self-consistent FFS predictions.

Experiment FFS QPA
JT E, (MEV) B(EM) (e? fm™) E, MeV) B(EA) (e? fm*) E, (MeV) B(E)) (e? fm™)
2+ 1.230 (1.97910.047) X 10° 1.21 1.98 X 10° 1.25 2.31X10°
1.23* (1.72:40.05) X 10°
1.23% (1.56:£0.06) X 10°
3- 2.328 (1.06+0.04) X 10° 2.61 1.01X10° 2.98 1.25X10°
2.32% (1.12:£0.03) X 10°
2.320 (1.740.3) X 10°
4+ 2.280 (3.2+0.3) X 10° 2.50 9:36 X 10° 2.39 5.52X10°
2.489 (2.80:£0.33) X 10° 3.38 2.05X10° 2.87 1.82x10°
5~ 2.321° (6.745.5) X 107 2.39 1.22Xx 107 2.32 3.55% 107
*Reference [20].
bReference [21].
“Unresolved level.
did not resolve the two levels. Analysis of the 3~ inthese 5~ contamination is, however, momentum transfer

two experiments assumed the combined cross section to
have little contribution from the unresolved 5~ state at
these values of the momentum transfer. This assumption
is confirmed by our calculations.

As the contribution of the 57 state to the total cross
section is predicted to be less than 1% at the peak of the
first maximum of the 3™ state, the error in predicting the
strength of the 37 state is small. The contribution of the
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FIG. 4. Top: Charge form factor as defined in the text for
the first 37 excitation at 2.328 MeV. Best fit in DWBA is
shown as solid line. Predictions of Tassie (dots), FFS (dashes),
and QPA (dot-dashed) models are shown. Bottom: Transition
charge density for first 37 level. Curves are as listed in top
figure.

dependent. Although corrections to the data were less
than a percent at the first maximum of the form factor, in
the minima of the 3™ form factor the 5™ contribution is
predicted to be virtually all of the observed cross section;
only upper limits to the 3~ form factor can be obtained
through this procedure at these values of the momentum
transfer.

We present in Fig. 4 the corrected form factor obtained
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FIG. 5. Top: Charge form factor as defined in the text for
the first 4™ excitation at 2.280 MeV. Best fit in DWBA is given
as solid line. FFS (dashed) and QPA (dot-dashed) calculations
are also shown. Bottom: Transition charge density for first 4%
level. Predictions of the one-phonon FFS (dashed) and QPA
(dot-dashed) models are shown for the first 4*.
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with this procedure, and the model predictions. A
Fourier-Bessel analysis of the corrected cross sections for
the 2.328 MeV level, assuming J™=37, gives the transi-
tion charge density displayed in the bottom half of Fig. 4.
As can be seen in Table I, the experimental B(E3) of
(1.06£0.04)X 10%? fm® is smaller than the previous
values obtained from (e,e’) data [19,20]. It is also found
to be smaller than the value of 2.02X10° as extracted
from the pion data [35], but is close to both the results
predicted in the two theory calculations and to the value
of (9.741.4)X 10%? fm® obtained from Coulomb excita-
tion [34]. By scaling the predicted form factors in QPA
and FFS, we obtain an average for the transition strength
of the unresolved 5~ level of B(E5)=(6.715.5)
X 107e? fm'®, where the large error is the result of the
large difference between the predictions for the cross sec-
tion in the two models. As the level is unresolved, this
result should be treated as a highly model-dependent ex-
traction of the transition strength. The transition
strengths and excitation energies for these levels are listed
in Table I.

The first and second excited 47 states lie at 2.280 and
2.489 MeV. Form factors and transition charge densities
have been extracted for both of these excitations and are
presented in Figs. 5 and 6. The relatively large error-
bands on the two experimental densities reflect the limita-
tions of the cross sections available for analysis, particu-
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FIG. 6. Top: Charge form factor as defined in the text for
the second 4% excitation at 2.489 MeV. Best fit in DWBA is
given as solid line. FFS calculations (dashed), and QPA (dot-
dashed) calculations are also shown. Bottom: Transition
charge density for the second 4% level. Predictions of the one-
phonon FFS model (dashed) and the QPA (dot-dashed) model
are shown for the second 4*.
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larly at low momentum transfers. Both experimental
densities show a large surface peak with a small interior
lobe at about 2 fm, though the large experimental uncer-
tainty in the interior precludes the positive identification
of such an interior contribution. Experimental B(E4)
values and excitation energies are given in Table I.

IV. COMPARISON WITH MODEL CALCULATIONS
A. Tassie model

In the Tassie model [37] the excitations of the nucleus
are described as small amplitude vibrations of an in-
compressible, irrotational fluid. To first order in the ex-
pansion amplitudes, the transition charge density for a
transition of multipolarity L then has the form

-1 dpo(r)
ar ’

where p, is the ground state charge density. Using the
ground state charge density as extracted from the elastic
scattering data, the transition density predicted in the
modified Tassie model of Ref. [19] is given as the dotted
line in the lower half of Fig. 3. The model density is sur-
face peaked, with essentially no interior structure. The
predicted shape is the result of the shape of the radial dis-
tribution of the ground state charge density, which is
fairly uniform out to the nuclear surface at about 4 fm
from the center, where it rapidly falls to zero.

The form factor calculated in DWBA using the density

-—predicted in the Tassie model is shown as the dotted
curve in the top half of Fig. 3. In this calculation, the
strength of the transition has been adjusted to the best fit
B(E2) value of 1722¢? fm* found in Ref. [19]. The quali-
tative shape of the experimental form factor is repro-
duced by the model, but its size is overestimated by about
an order of magnitude at high momentum transfer.

In Fig. 4 we present the form factor and transition
charge density for the first 3~ level using the same
modified Tassie model of Ref. [19], where the transition
strength as given by the B (E3) value is 1.12X 10%? fm®.
Although the form factor and surface peak of the transi-
tion charge density are again qualitatively reproduced by
this phenomenological model, quantitative agreement
with experiment in the nuclear interior is poor.

The Tassie model can be quantized and extended to
higher orders in the expansion. In such vibrational mod-
els [29,38], the amplitudes become combinations of pho-
non annihilation and creation operators. Expanding the
charge density in a Taylor series, it is found that the tran-
sition charge density for the n-phonon state is propor-
tional to the nth derivative of the ground state charge
density. Thus, interior structures not predicted in the
Tassie model, such as are seen in the experimental densi-
ties of the 2{ and 3 levels, could be interpreted as ad-
mixtures of many-phonon contributions into the pure
one-phonon state.

pr(r)~rk (4.1)

B. Quasiparticle-phonon approach

Microscopic calculations have been performed in the
finite Fermi system (FFS) theory framework for collective
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vibrations of superfluid nuclei and in the quasiparticle
phonon approach (QPA) in order to determine the struc-
ture of low-lying states in '®Sn. These models have had
considerable success in predicting electron scattering
transition charge densities for low-lying excitations in the
A =140 region [4,11,32]. In the QPA, one-, two-, and
three-phonon configurations are included in the wave
functions of excited states and the interplay between
these configurations is consistently taken into account.
In this paper we include for each A" all one-phonon
configurations up to an energy of 3 MeV, two-phonon
configurations up to 7 MeV, and three-phonon
configurations constructed of the first low-lying collective
phonons. Since the model Hamiltonian is diagonalized in
(A) space, one may obtain information on the contribu-
tion of all these configurations to the structure of the ex-
cited states. The detailed description of this approach to
the calculation of low-lying bound state transition charge
densities can be found in Refs. [4,11]. The nucleus Usgn
has a closed proton shell, and as our previous experience
shows [11,32], the interaction between configurations of
different complexity (i.e., between one- and two-phonon
configurations, etc.) is not very strong for half-magic nu-
clei. This results in a more or less pure one-phonon
structure for the lowest excitations and provides a
justification for applying calculations within the one-
phonon approximation.

In contrast to the 4 =140 region, in which we were
dealing with open proton shell nuclei and the first one-
phonon configurations had practically pure proton struc-
ture for half-magic isotopes [11,32] and proton-neutron
structure for nonmagic isotopes [4,11], the tin isotopes
with Z =50 have a closed proton shell. As a result the
main two-quasiparticle configurations contributing to the
structure of low-lying, one-phonon configurations are the
neutron ones. For example, the main proton
configuration for positive parity states is 7(1gg,5,2ds /).
This proton configuration gives a contribution of 8.2% to
the structure of the first 27 one-phonon configuration but
only 0.8% to the structure of the first 4 one-phonon
configuration. Since electrons feel only the proton part of
the phonon wave function, we obtain from the present ex-
periment information only about the weak two-
quasiparticle proton configurations in the structure of the
low-lying phonons. However, as the surface behavior of
the transition charge density of a collective excitation is
largely determined by the coherent interference of many
weak two-quasiparticle configurations, we obtain infor-
mation about the collective aspects of an excitation from
a study of the surface. It is found, for example, that the
amplitude of the surface peak of the transition charge
density of the first 2% state in closed proton shell nuclei
has approximately the same value as in open proton shell
nuclei [3]. On the other hand, the interior behavior of
the transition density is often determined by the one or
two strongest two-quasiparticle configurations and since
such strong configurations do not exist in the low-lying
phonons in !3Sn, no pronounced peaks in the interior re-
gion appear in the present microscopic calculations. It is
also not too surprising that no noncollective low-lying
levels which are of neutron nature have been observed in
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the present experiment, contrary to the experiments in
the 4 =140 region where several of them have been
separated.

In the QPA calculation the first 2* state in ''®Sn has
an excitation energy equal to 1.25 MeV and a B(E2)t
value of 2310e? fm*. The transition charge density of this
state is shown by dot-dashed curves in Fig. 3. Though
this state is a practically pure one-phonon state with 91%
coming from the first one-phonon 2" configuration, some
small admixture of two phonon configurations takes
place. The main two-phonon configurations in this state
are [21+®41+]2+ at 3.6% and [21+®21+]2+ at 2.1%. The

influence of all two-phonon configurations on the shape
of transition charge density is, however, very small and to
present their contribution, shown by the small dot-
dashed curve in the bottom of Fig. 3, we have had to
multiply the curve by a factor of 10. The shape of the ex-
perimental density is well reproduced, though we have
had to increase the value of the parameter r, of the
Woods-Saxon potential from the value of 1.24 fm [39] to
the value of 1.31 fm used in calculations for the 4 =140
region. The large B(E2) in this calculation is a result of
the shape of the Woods-Saxon well; the well produces a
density that decreases more slowly than is experimentally
observed in the exterior region of the nucleus. The same
situation occurs in calculations with Woods-Saxon poten-
tials for other half-magic nuclei [11].

The first 37 state at 2.39 MeV in this calculation is
again almost entirely due to the first one-phonon 3~
configuration (94% of the contribution). The shape of
the predicted transition density, shown as the dot-dashed
line in Fig. 4, is largely the result of this configuration.
The second largest contribution to this state is from the
[2f®37 ],- two-phonon configuration (4.5%), and it con-
tributes very little to the shape of the density. The
B(E3)% value of 1.25X 10%? fm® is larger in this calcu-
lation than the experimental value. In this case it is not
only that the shape of the Woods-Saxon well produces a
density that is more slowly decreasing than the experi-
mental density in the exterior region, as was the case for
the 2,+ state, but the interior structure is also enhanced in
the calculation, producing a transition strength slightly
greater than is actually observed.

The situation with the 4% states is more complicated.
The first one-phonon 4" configuration is less collective
compared to the ones with A"=2" and 3~. The second
one-phonon 4% configuration is about 0.4 MeV higher
and the shape of its transition charge density is very simi-
lar to the shape of the density for the first one-phonon 4
configuration. Both of these densities peak at approxi-
mately 5.3 fm, though the surface peak of the 47 is some-
what wider and has an amplitude about three times
smaller than the 4;".

The first two 4" levels are then the result of combina-
tions of these configurations with closely lying two-
phonon ones, producing states with excitation energies of
239 and 287 MeV and B(E4)! values of
5.52X 10%? fm® and 1.82X 10%? fm®, respectively. The
first 4" state appears as a result of the coherent interfer-
ence from the 77% contribution of the first one-phonon
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FIG. 7. Top: QPA (dot-dashed) and FFS (dashed) prediction
for the form factor for the first 5~ excitation in '"%Sn. Bottom:
Transition charge density for first 5 level in '®Sn as predicted
in QPA (dot-dashed) and FFS (dashed).

4% configuration with the 16% contribution from the
two-phonon configuration [2f ®2] ] 4+ 1n the structure

of the second 4%, the 83% contribution from the second
one-phonon 4% configuration interferes destructively
with the contributions of the two-phonon configurations
(5% from [2{®2{"],+ and 4% from [2{ ®4; ],+). This
interference results in the shift of the transition density
maximum to 5.4 fm for the first 47 state and to 5.2 fm for
the second. Such shifts are observed in the experimental-
ly extracted densities. As can be seen from Figs. 5 and 6,
the maximum of the peak of the first 4™ is located at
about 5.5 fm experimentally, while the maximum of the
second 47 is found at approximately 5.0 fm.

In Fig. 7 we present the transition charge density and
form factor predicted in the QPA for the unresolved 5™
In this calculation the structure of the excitation is pre-
dicted to be largely one phonon, with a B(ES) of
3.55X 107¢? fm'®—consistent with the model-dependent
extraction from the experimental data. In addition, we
note the predicted excitation energy of 2.32 MeV is very
close to the experimental value of 2.321 MeV.

C. Finite Fermi system calculations

Calculations of the bound state structure of '*Sn.

presented in this work within the FFS framework use the
mixed (r,A) representation as described in Ref. [4] and
Ref. [12] to solve the FFS theory equations for one-
phonon states in superfluid nuclei. One essentially new
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ingredient is added in the present treatment: the nuclear
mean field is generated self-consistently by the same

 effective forces which enter these equations. The effective

finite-range forces are similar to those suggested in Ref.
[7]. The only difference between the two forces is that
those used in the present analysis contain a density-
dependent surface term [13]. The ground state charge
density p, obtained within this self-consistent approach is
shown in Fig. 2.

It can be seen from Fig. 2 that the self-consistent FFS
theory describes the ground state charge density quite
well. The transition charge density for the first 27 state
predicted in this approach is shown as the dashed curve
in Fig. 3. Agreement with the experiment is also quite
good. Both the calculated value of £, =1.211 MeV for
the excitation energy and the predicted reduced transi-
tion probability of B(E2)1=1980e? fm* are in close
agreement with the experimental values obtained for this
state. It should be stressed that these calculations con-
tain no adjustable parameters.

FFS calculations for the transition charge densities for
the first 3~ and 4 levels are shown as dashed lines in
Figs. 4—6. For the 3~ state agreement with experiment is
again quite good; both the shape and strength as given by
the B (E3) value are within the errors of the experiment.
B(E3) values for the experiment and FFS calculations
are given in Table I.

The interpretation of experimental data with the re-
sults of the FFS is complicated for the L =4 transitions
observed in this experiment. In the FFS calculations at
the one-phonon approximation level, we have found the
two lowest 41 states to have excitation energies of 2.50
and 3.38 MeV with B(E4) values of 9.26 X 10°¢? fm® and
2.05X10%? fm®, respectively. Transition densities for
the first two 47 levels in FFS are given as the dashed
lines in Figs. 5 and 6. The shape of the calculated density
for the first 47 agrees with experiment, but the model
predicts enhanced interior structure for the 4, that is not
seen in the experimental density. In addition, the FFS
calculation predicts an energy separation of about 0.9
MeV between the two 4% excitations, but it is found ex-
perimentally that the first and second 4% states are
separated by a small energy gap of only 208 keV. These
results indicate that the density plotted for the FFS pre-
diction for the second 4™ in Fig. 6 may not correspond to
the experimentally observed level at 2.489 MeV.

‘As the second experimentally observed 47 lies at al-
most exactly twice the energy of the first 2, one should
expect that the mixing of one- and two-phonon com-
ponents plays a more important role than predicted by
the QPA calculations discussed above. One should then
expect that both observed 4; and 4; states are superpo-
sitions of one-phonon 4] and two-phonon [27 ®2;]
configurations with approximately equal weights. The
main strength would then come from the former, and this
should result in two states with more or less similar tran-
sition densities and close B(E4) values. A semiclassical
estimate of the two-phonon [2{ ®2]"] admixture shows
that the B(E4;0" —4;) value is reduced to 4.05
X 10%? fm® due to a destructive interference on the sur-
face between the one- and two-phonon configurations,
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with the surface peak being slightly shifted inward. Such
a reduction in strength and inward shift of the maximum
of the surface peak has been observed in the experimen-
tally extracted densities. As for the second 4™ state pre-
dicted in the FFS, it may correspond to one of the
higher-lying levels reported to have J”=4%, such as the
levels at 3.25 and 3.43 MeV [18], and this should be taken
into account when looking at Fig. 6. To adequately de-
scribe the effects of mixing between one- and two-phonon
configurations, microscopic self-consistent calculations
within the FFS framework may be necessary. This will
be the subject of a separate paper.

In Fig. 7 the FFS calculation for the form factor and
transition charge density for the first 5~ state is shown as
the dashed line. The shape predicted in the FFS theory
for the density and form factor is very similar to that pre-
dicted by the QPA calculations; the predicted strengths,
however, as measured by the B(ES5) values, differ from
each other by approximately a factor of three (see Table
D.

V. CONCLUSIONS

Data have been acquired and charge densities extract-
ed for the ground state and first low-lying collective exci-
tations in '¥Sn. This is a proton closed shell nucleus and
transition charge densities of the low-lying states ob-
served in this experiment are determined largely by col-
lective phenomena. No noncollective, lowlying levels
composed of practically pure neutron, two-quasiparticle
configurations have been observed in this experiment.
This is in contrast to what was found for the 4 =140 re-
gion, where several low-lying states determined to have a
large two-quasigarticle component. The first quadrupole
excitation of !'%Sn has little interior structure, while the
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higher multipolarities show interior structure consistent
with the presence of more complex configurations. Mi-
croscopic calculations within the framework of the self-
consistent finite Fermi system theory are able to repro-
duce the strength and shape of the ground state, 2* and
37 excitations quite well. The quasiparticle phonon ap-
proach predicts these excitations to be largely one pho-
non in structure; the size and shape of the densities for
these levels is well described in this model. On the other
hand, the 4T states have a much more complicated struc-
ture. QPA calculations show these states to be combina-
tions of one- and two-phonon configurations; calculations
within this framework describe the experimental densities
rather well. Calculations within the FFS framework at
the one-phonon approximation level are not expected to
describe the 47 states as well as the 27 and 37 levels.
Within this theoretical framework, a fully self-consistent
treatment of the mixing with the two-phonon con-
figurations may be necessary to adequately describe the
extracted transition charge densities of the experimental-
ly observed 4™ excitations.
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