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Fine structure of the isovector giant dipole resonance in 142–150Nd and 152Sm

L. M. Donaldson ,1,2,* J. Carter,2 P. von Neumann-Cosel,3 V. O. Nesterenko,4 R. Neveling,1 P.-G. Reinhard,5 I. T. Usman,2

P. Adsley,1,2,6 C. A. Bertulani,7 J. W. Brümmer,6 E. Z. Buthelezi,1 G. R. J. Cooper,8 R. W. Fearick,9 S. V. Förtsch,1 H. Fujita,10

Y. Fujita,10 M. Jingo,2 N. Y. Kheswa,1 W. Kleinig,4 C. O. Kureba,2,11 J. Kvasil,12 M. Latif,2 K. C. W. Li,6 J. P. Mira,1

F. Nemulodi,1 P. Papka,1,6 L. Pellegri,1,2 N. Pietralla,3 V. Yu. Ponomarev,3 B. Rebeiro,13 A. Richter,3 N. Yu. Shirikova,4

E. Sideras-Haddad,2 A. V. Sushkov,4 F. D. Smit,1 G. F. Steyn,1 J. A. Swartz,1,6 and A. Tamii10

1iThemba LABS, Old Faure Road, Faure 7131, South Africa
2School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

3Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
4Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

5Institut für Theoretische Physik II, Universität Erlangen, D-91058 Erlangen, Germany
6Department of Physics, Stellenbosch University, Matieland 7602, South Africa

7Department of Physics and Astronomy, Texas A&M University–Commerce, Commerce, Texas 75429, USA
8School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa

9Department of Physics, University of Cape Town, Rondebosch 7700, South Africa
10Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

11Department of Physics and Astronomy, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
12Institute of Particle and Nuclear Physics, Charles University, CZ-18000, Prague 8, Czech Republic

13Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town 7535, South Africa

(Received 2 October 2020; accepted 7 December 2020; published 29 December 2020)

Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward scattering angles
including 0◦ has been established as a tool for the study of electric-dipole strength distributions in nuclei. The
present work reports a systematic investigation of the chain of stable even-mass Nd isotopes representing a
transition from spherical to quadrupole-deformed nuclei.
Purpose: Extraction of the equivalent photo-absorption cross sections and analysis of their fine structure in the
energy region of the isovector giant dipole resonance (IVGDR).
Method: Proton inelastic scattering reactions of 200 MeV protons were measured at the iThemba Laboratory
for Accelerator Based Sciences in Cape Town, South Africa. The scattering products were momentum-analyzed
by the K600 magnetic spectrometer positioned at θLab = 0◦. Using dispersion-matching techniques, energy
resolutions of �E ≈ 40–50 keV (full width at half maximum) were obtained. After subtraction of background
and contributions from other multipoles, the spectra were converted to photoabsorption cross sections using the
equivalent virtual-photon method. Wavelet-analysis techniques are used to extract characteristic energy scales of
the fine structure of the IVGDR from the experimental data.
Results: Fine structure of the IVGDR is observed even for the most deformed nuclei studied. Comparisons
between the extracted experimental energy scales and those energy scales obtained from the quasiparticle-
phonon model (QPM) and Skyrme separable random phase approximation (SSRPA) predictions provide insight
into the role of different giant-resonance damping mechanisms. It can be seen that the scales in the spherical
and most likely also in the deformed nuclei mainly result from the fragmentation of the one-particle-one-hole
(1p1h) strength into several dominant transitions serving as doorway states. In cases where calculations beyond
the 1p1h level are available, some impact of the spreading due to coupling of the two-particle-two-hole (2p2h)
states to the 1p1h doorway states is observed.
Conclusions: New virtual-photon absorption data for the chain of stable Nd isotopes and 152Sm are presented,
with a focus on the phenomenon of nonstatistical cross-section fluctuations, referred to as fine structure, in
the energy region of the IVGDR. The wavelet-analysis techniques used allowed for the features of the fine
structure to be quantified in the form of characteristic scales. Comparisons between experimental results and
model predictions indicate that Landau damping seems to be the main source of the fine structure in both the
spherical and deformed nuclei, but calculations including 2p2h degrees of freedom would be beneficial to confirm
this for the deformed cases.
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I. INTRODUCTION

Giant resonances are essentially a collective motion of
many, if not all, particles in the nucleus [1]. In quantum-
mechanical terms, they correspond to a transition between
the ground state and the collective state, with strengths de-
scribed by transition amplitudes. It is for this reason that giant
resonances serve as a prime example of collective modes
in the nucleus. A smooth mass-number dependence of the
resonance parameters is characteristic of all giant resonances
and, as such, a study into their properties yields information
about the nonequilibrium dynamics and the bulk properties
of the nucleus [2]. The first indication of the existence of
giant resonances was the observation of the dominant giant
resonance structure in photoabsorption spectra now known as
the isovector giant dipole resonance (IVGDR) [1].

Although photoabsorption has been used most extensively
to study the IVGDR, direct nuclear reactions such as inelastic
scattering are generally just as effective in the study of gi-
ant resonances provided that the appropriate kinematics are
selected [3]. In recent years, methods for the extraction of
electric-dipole strength distributions in nuclei via relativistic
Coulomb excitation have been developed [4]. These make use
of proton inelastic scattering with energies of a few hundred
MeV at scattering angles close to θLab = 0◦, which requires
special experimental techniques [5,6]. Under these kinematic
conditions, the background from other nuclear processes has
been found to be small in heavy nuclei and its contribution can
easily be subtracted [7–13].

An important property of any giant resonance is its width,
since it provides valuable information on the excitation and
decay of the giant resonance. It is often expressed by [1]

� = �� + �↑ + �↓ (1)

with contributions from the following three processes: (i)
Landau damping (��), in which the initial dipole excitation
fragments into one-particle-one-hole (1p1h) states, (ii) direct
particle emission from the 1p1h excitations, which give rise to
an escape width �↑, and (iii) coupling to more complex 2p2h
states through the residual two-body interaction [2] and finally
to npnh states. This coupling to more and more complex states
results in a spreading width �↓ and ultimately terminates in
the compound nucleus states. This particular coupling mech-
anism is referred to as the doorway states mechanism. Fine
structure in the response of the nucleus may be induced by the
chaos of nuclear states mentioned above [14]. Insight into the
dominant damping mechanisms of nuclear giant resonances
is provided in the properties of the fine structure [15], which,
in the case of the IVGDR, is understood to be the result of
characteristic energy scales or energies of the coupling steps.

The contributions in Eq. (1) cannot be easily separated,
but coincidence decay experiments have shown [1] that the
spreading width increases with mass number and makes the
largest contribution in heavy nuclei, while the escape width
can be large (several MeV) in light nuclei but is of the order
of a hundred keV only in heavy nuclei. The distribution of
IVGDR strength due to Landau damping in the spherical
nuclei studied here is of the order of 1 MeV, as exemplified
in the theoretical results presented below.

FIG. 1. Variation of the ratio of the energies of the first 4+ and
2+ states, E (4+

1 )/E (2+
1 ), with respect to the neutron number N for

the neodymium (blue) and samarium (red) isotope chains.

An additional contribution to the width comes from reso-
nance splitting owing to nuclear deformation. There exists a
clear correlation between the IVGDR width and the nuclear
deformation parameter in a certain mass region [16]. For
heavy quasispherical nuclei with N = 82, the IVGDR occurs
in the form of a narrow, single peak. Slight deformations
with increasing N result merely in an increase in the IVGDR
width, whereas strong deformations result in the splitting of
the IVGDR into two distinct components corresponding to
different K quantum numbers [17].

In the early 1950s, the discovery was made that some nu-
clei are deformed in their ground states. Research in this area
has focused primarily on the rare-earth (for which 82 < N <

120) and actinide regions since a large number of deformed
nuclei are located near to or on the line of beta stability in
these regions. These regions are, as a result, easily accessible
experimentally [18]. The increased permanent deformation of
the ground state with increasing neutron number is typified by
the even-even neodymium and samarium isotope chains. This
is shown in Fig. 1 by the ratio E (4+

1 )/E (2+
1 ), which is a useful

method for determining the extent of nuclear deformation in
a nucleus [19]. Figure 1 separates both the neodymium and
samarium isotope chains into four regions, namely, the quasi-
spherical region, the intermediate spherical/deformed region
(where the nucleus is treated as being spherical on average
but with a small deformation, or as having a small perma-
nent deformation), the transitional region, and the deformed
region. The transitional region is particularly interesting since
this region comprises nuclei that alter the properties of nu-
clear surfaces dramatically. In the range where the neutron
number varies from 88 to 92, there is essentially a phase
transition from a spherical vibrator to an axial rotor. The
IVGDR in the even-even Nd and Sm isotope chains has been
studied using photoabsorption experiments at Saclay [20,21]
and Coulomb excitation at the iThemba Laboratory for Accel-
erator Based Sciences (iThemba LABS) [11]. It is important
to note, however, that the energy resolution of the Nd and Sm
photoabsorption data is very poor; Refs. [20,21] report that the
width of the quasimonochromatic γ -ray beam obtained from
the annihilation in flight of monochromatic positrons was
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approximately 300 keV. The Coulomb-excitation study of the
Nd and Sm isotope chains at iThemba LABS was a two-part
study. The first part, published in Ref. [11], investigated the
shape evolution of the IVGDR from spherical to deformed nu-
clei in the rare-earth region as well as the reproducibility of the
photo-absorption results of Refs. [20,21]. The nontrivial dis-
agreements observed between the two sets of data with respect
to the distribution of the IVGDR strength are discussed in de-
tail Ref. [11]. The second, current part makes use of the same
data as in Ref. [11] but focuses on investigating the fine struc-
ture of the IVGDR observed using the high energy-resolution
capabilities at iThemba LABS. The present paper provides
additional experimental details not included in Ref. [11] as
well as the results of the fine-structure investigation.

II. EXPERIMENTAL DETAILS

The experiments were performed using a dispersion-
matched 200 MeV proton beam produced by the Separated
Sector Cyclotron (SSC) at iThemba LABS. Protons were
inelastically scattered off self-supporting 142,144,146,148,150Nd
and 152Sm targets with areal densities ranging from 1.8 to
2.6 mg/cm2. All of the targets were isotopically enriched to
values greater than 96% except for the 148Nd target, which
was enriched to 90%. The calibration targets used were 24Mg
and 26Mg. The reaction products were momentum analyzed
by the K600 magnetic spectrometer in 0◦ mode [5] with the
acceptance defined by a circular collimator with an opening
angle of θLab = ±1.91◦. Under these kinematic conditions,
the dominant reaction mechanism is relativistic Coulomb ex-
citation. Two multiwire drift chambers (MWDCs) followed
by two rectangular plastic scintillators composed the focal-
plane detection system, which made it possible to do particle
tracking in the focal plane in order to determine the horizontal
and vertical focal-plane coordinates (xfp, yfp) as well as the
focal-plane angle (θfp).

Faint-beam and dispersion-matching techniques were im-
plemented in order to exploit the high energy-resolution
capabilities of the K600 magnetic spectrometer. As a result,
energy resolutions �E = 42–50 keV full width at half max-
imum (FWHM) were achieved. Further details regarding the
experimental setup and data extraction (beyond the descrip-
tions provided in Sec. III below) can be found in Refs. [5,22].

III. DATA EXTRACTION AND OPTIMIZATION

A. Particle identification

Particle identification was based on the combination of in-
formation on the time-of-flight (TOF) selection and the energy
loss of the particles in the scintillation detectors.

1. Time-of-flight selection

The TOF is determined from a fast coincidence between
the radio-frequency signal of the cyclotron and the signals
from the plastic scintillators. The magnetic rigidity R of the
spectrometer determined by the radius of curvature r and the
magnetic field B,

R = rB = p

q
, (2)

FIG. 2. Particle and background identification for the
144Nd(p, p′) reaction with Ep = 200 MeV and θLab = 0◦±1.91◦.
(a) Two-dimensional spectrum of the pulse height in the first
scintillator detector versus the relative TOF. The software gate
indicated with dashed contour lines was used to select the events of
interest. (b) Same as (a) but for an empty target. The background
component caused by beam halo is identified. (c) Two-dimensional
correlation of the energy losses through the first and second
scintillators. (d) Same as (c) but for an empty target. The software
gates used to select the events of interest are indicated by dashed
contour lines.

selects particles with the same p/q ratio, where p denotes
the momentum and q the charge. The combination of the q-
dependent energy loss �E on the TOF thus allows distinction
of different particle types.

In the case of 0◦ proton inelastic-scattering experi-
ments, the combined information is particularly useful to
distinguish between protons scattered from the target and
beam-halo events. To determine the TOF and energy-loss
characteristics of the beam-halo events only, an empty-target
measurement can be done. Figures 2(a) and 2(b) display
the two-dimensional spectra of the pulse height in the first
scintillator detector versus the TOF values for a 144Nd-target
measurement and an empty-target measurement, respectively.
As can be seen from Fig. 2, the majority of target-related
events can be distinguished from the beam-halo events, which
can be removed using a software gate on the target-related
events, as indicated by the dashed line.

2. �E correlation technique

The type of particle and its associated kinetic energy will
determine its loss of energy in the scintillation detectors. For
this experiment, which suffers from a significant background
of low-energy protons caused by small-angle elastic scattering
off the target foil followed by re-scattering off any exposed
part inside the spectrometer, a �EScint.1 versus �EScint.2 spec-
trum is valuable to further isolate the protons of interest. The
dependence of pulse height on the position of the detected par-
ticle along the length of the scintillation detector was removed
by taking the geometrical average of the signals from the two
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photomultiplier tubes that are mounted on opposite ends. Fig-
ures 2(c) and 2(d) show the �EScint.1 versus �EScint.2 spectra
for a 144Nd-target measurement and an empty-target mea-
surement, respectively. The region containing the high-energy
protons of interest is bordered with a dashed line in Fig. 2(c).
This dashed region is reproduced in Fig. 2(d) to illustrate
the high-energy nature of the beam-halo events, which can
mostly be removed by the TOF selection. However, there are
still instrumental-background events due to beam halo as well
as the previously mentioned target-related background in our
identified region of interest. Because of this, in addition to the
particle-identification techniques applied, there is a need for
further background subtraction to remove these background
events.

B. Background subtraction

The instrumental background can be readily characterized
if the spectrometer is operated in vertical focus mode,
i.e., the inelastically scattered protons from the target are
focused around the vertical focal-plane position yfp = 0,
while the instrumental background is evenly distributed in
the vertical direction [5,23]. In this particular experiment,
however, centering the spectrum around yfp = 0 resulted in
an undesirable amount of beam-halo events. The spectrum
was, therefore, shifted slightly by changing the vertical beam
position on the target resulting in an unequal distribution of
background events above and below the area of interest. The
method for background subtraction described in Refs. [5,23]
relies on the xfp versus yfp spectrum having two equal
background regions. Consequently, the usual method had to
be adjusted slightly in this case.

Figure 3 displays a two-dimensional spectrum of the hor-
izontal (xfp) and vertical (yfp) focal-plane coordinates for the
144Nd(p, p′) reaction with Ep = 200 MeV in the top-left panel
as well as the yfp projection in the top-right panel. The total
area of the projection comprises the events of interest and
the background events, with the assumption that the profile of
each remains uniform throughout the spectrum. These com-
ponents were fitted with a Gaussian peak and a quadratic
background (in red). The total fit, which is the addition of
these components, is shown in blue. Fitting the spectrum in
this way allowed for the total number of background events
directly underneath the area of interest to be determined.
An area from the background section, which contained the
same number of background events, was then identified and
subtracted. This background component is indicated by the
dashed red lines and the red component in the top-right and
bottom-left panels of Fig. 3, respectively. This ensured that
the correct amount of background was subtracted without
inducing structure in the region of interest.

C. Line-shape correction

The line-shape-correction procedure was done using the
24Mg and 26Mg calibration targets, which show sharp peaks
in the region of interest. During the experiment, a kine-
matic correction procedure [22,24] was performed as the first
step towards obtaining good energy resolution. In order to
achieve this, the magnetic spectrometer field was adjusted
such that the nuclear states appeared approximately upright

FIG. 3. Top left: Two-dimensional scatter plot of the horizontal
and vertical focal-plane coordinates (xfp, yfp) for the 144Nd(p, p′)
reaction at Ep = 200 MeV. Top right: Projection of the yfp events
showing a total fit (in blue), where the events of interest sit on top
of the background fitted with a quadratic function (in red). The
area between the dashed red lines corresponds to the region used
to approximate the background under the central region of interest
indicated with dashed blue lines. Bottom left: Focal-plane position
spectrum showing the components described in the background sub-
traction procedure, i.e., the raw data (in black) and the background
component corresponding to the area between the dashed red lines
identified in the top right panel (in red).

in the two-dimensional θfp versus xfp spectrum, thus ensuring
that particles from the target emerging at the same excitation
energy of the residual nucleus but at different θfp converge at
the same xfp. To do this, changes were made to the K coil and
H coil of the K600 spectrometer [5] for first-order focusing
and corrections of second-order aberrations, respectively.

Although the use of the K and H coils during the exper-
iment provides a reasonable starting point, additional offline
adjustments to ensure upright and well-resolved states are
required to obtain the best-possible energy resolution of the
spectra. Figure 4(a) shows the scatterplot of θscat versus xfp

for the 24Mg target before the line-shape-correction proce-
dure, where θscat is the horizontal component of the scattering
angle of the reaction reconstructed using θfp information. As
can be seen, a dependence of the focal-plane position on the
scattering angle is still visible, which leads to broadening in
the focal-plane position spectrum as seen in Fig. 4(b).

To correct for the remaining angular dependence of the
focal-plane position, a function dependent on the focal-plane
coordinates was subtracted from the original xfp values as
follows:

xcorr = xfp −
[

5∑
n=1

an(θscat )
n +

2∑
n=1

bn(yfp + yoffset )
n

+ c(xfp − x0)θ2
scat

]
. (3)
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FIG. 4. An illustration of the effect of the line-shape correction.
(a) Two-dimensional scatter plot of θscat versus xfp in the vicinity
of the prominent 10.711 MeV peak in 24Mg before line-shape cor-
rection. (b) Corresponding focal-plane position spectrum. The plots
(c) and (d) are the same as (a) and (b), respectively, but after the
line-shape correction.

The dependence on yfp was included to compensate for the
unequal distribution of background events below and above
the area of interest described in Sec. III B. By including this
term in the correction (and thus centering the events around
zero), any dependence of xfp on yfp does not change the xfp po-
sition but simply rotates it around the vertical center of the line
shape. This correction was then applied to the Nd and Sm data.

D. Double-differential cross sections

The double-differential cross sections (with a systematic
uncertainty of ±7%) obtained following the above-mentioned
procedures and those in Ref. [22] are displayed in Fig. 5
binned to 20 keV. The experimental energy resolutions
(FWHM) achieved were 50, 42, 46, 43, 45, and 42 keV
for 142,144,146,148,150Nd and 152Sm, respectively. The broad
structure visible for all isotopes between approximately Ex =
12 MeV and Ex = 18 MeV corresponds to the excitation of
the IVGDR. Statistical errors in this region are of the order of
2–4%. Pronounced fine structure is visible over the excitation-
energy region of the IVGDR for all isotopes, even in the most
deformed nuclei.

IV. CONVERSION FROM (p, p′) TO EQUIVALENT
PHOTOABSORPTION CROSS SECTIONS

Obtaining equivalent photoabsorption cross sections that
are comparable to the E1 response spectra provides a better
representation of the IVGDR in terms of position and width
than that provided by the spectra shown in Fig. 5. This is be-
cause the Coulomb-excitation probability has a strong energy
dependence. The fine-structure analysis of the IVGDR will
thus be performed on the converted spectra.

FIG. 5. Experimental double-differential cross sections for
the 142,144,146,148,150Nd(p, p′) and 152Sm(p, p′) reactions at Ep =
200 MeV and θLab = 0◦ ± 1.91◦.

The conversion of the measured (p, p′) spectra to equiva-
lent photoabsorption cross sections is a three-stage process:
subtraction of the nuclear background, calculation of the
virtual-photon spectrum, and implementation of the equiv-
alent virtual-photon method. By way of example, Fig. 6
provides an overview of the conversion process for 144Nd,
which is outlined below.

A. Subtraction of the nuclear background

Although proton inelastic scattering at incident energies
of several hundred MeV at very-forward scattering angles
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FIG. 6. Conversion process from 144Nd(p, p′) to photoabsorp-
tion cross sections: (a) Double-differential (p, p′) cross section and
background components. The green and pink lines describe the con-
tribution from the ISGMR and ISGQR, respectively. The blue line
describes the phenomenological component explained in the text.
(b) Virtual-photon spectrum. (c) Equivalent photoabsorption spec-
trum resulting from Eq. (4).

predominantly excites the IVGDR, other resonances of dif-
ferent multipolarities also contribute to the spectra. In similar
measurements with heavy nuclei, these contributions were
found to be small [7–10] but, in order to isolate the IVGDR
strength reliably, they must be taken into consideration and
subtracted before a conversion to equivalent photoabsorption
cross sections can be performed.

The most important among these contributions are the
isoscalar giant quadrupole resonance (ISGQR), the isoscalar
giant monopole resonance (ISGMR), and a phenomenological
background displayed in Fig. 6(a) by the pink, green, and blue
lines, respectively. The way in which the ISGQR and ISGMR
contributions to the spectrum in Fig. 6(a) were estimated is
described in a previous paper [11] but will be summarized
here for completeness. Distorted wave Born approximation
calculations were performed with the code DWBA07 [25] us-
ing quasiparticle phonon model (QPM) transition amplitudes
and the Love-Franey effective interaction [26,27] as input
(analogous to Ref. [8]) in order to determine the computed
angular distributions of the ISGQR and ISGMR cross sec-

FIG. 7. Example of the DWBA07 calculations of the IVGDR
(black), ISGMR (green), and ISGQR (pink) differential cross sec-
tions in (p, p′) scattering at Ep = 200 MeV off 142Nd.

tions. A representative example of the DWBA07 calculations
for the 142Nd isotope is shown in Fig. 7. Since the ISGMR and
ISGQR are collective excitations exhausting a large fraction of
the respective sum rules, the angular distributions of the other
studied nuclei are the same except for a small correction due
to the target mass dependence of the recoil term.

Taking the experimental angular acceptance into account,
these calculations provide a relationship between the the-
oretical cross sections and transition strengths under the
assumption of a dominant one-step reaction mechanism,
which is well fulfilled for Ep = 200 MeV. The ISGQR and
ISGMR strength distributions were then converted to (p, p′)
cross sections using this proportionality. The positions and
widths of the ISGQR component were taken from a recent
study of the ISGQR across the even-even Nd isotope chain
[28,29] with methods analogous to Refs. [30–32]. For the
ISGMR contribution, the isoscalar giant-resonance strength
distributions for the Sm isotope chain reported by Itoh et al.
[33] could be directly applied in the case of 152Sm. The results
from Ref. [33] were also applied to the corresponding Nd
isotones, which have very similar deformation parameters,
incorporating a correction for the global mass dependence of
the ISGMR [1]. The B(E1) transition strengths (and, by impli-
cation, the photoabsorption cross sections) cannot, however,
be extracted using this approach since the Coulomb-nuclear
interference term breaks the proportionality [11].

The phenomenological background incorporates all un-
known multipolarity contributions as well as quasifree scat-
tering and describes the behavior of the cross section at higher
excitation energies where the Coulomb excitation contribution
is negligible. It was approximated by finding the maximum
of the cross section between 20 and 23 MeV and using a
width that best described that region of the spectrum. In a
study of 208Pb [34], where an experimental extraction of the
angular distribution of the background was possible, a similar
description for the shape of this component was found.

B. Virtual-photon production function

The equivalent virtual-photon method describes the excita-
tion of a target nucleus as the absorption of equivalent photons
whose spectrum is determined by the Fourier transform of
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the projectile’s time-dependent electromagnetic field [35].
More in-depth descriptions of the equivalent virtual-photon
method can be found in Refs. [35,36]. In order to make use of
this method, the virtual E1 photon spectrum was calculated
for each isotope using the eikonal approximation [37] and
averaged over the angular acceptance of the detector. The
calculated virtual E1 photon spectrum for 144Nd is shown in
Fig. 6(b) as an example.

The impact of a deformed projectile or target nucleus on
the virtual-photon spectrum has been investigated in Ref. [38].
A calculation along these lines for the most deformed case
150Nd finds a very small increase (<2% for the K = 0 and
<3% for the K = 1 component) for the present reaction.
Thus, deformation effects on the virtual-photon spectrum are
neglected for the conversion to photoabsorption cross sections
discussed in the next section.

C. Application of the equivalent virtual-photon method

As a final step, the equivalent photoabsorption cross sec-
tion for each isotope was obtained [see Fig. 6(c)] using the
following equation:

d2σ

d� dEγ

= 1

Eγ

dNE1

d�
σπλ

γ (Eγ ), (4)

where Coulomb-nuclear interference is assumed to be negligi-
ble as a result of the kinematics of the experiment [4]. Figure 8
shows the resulting equivalent photo-absorption cross sections
for all isotopes binned to 20 keV. The present setup at θLab =
0◦ at iThemba LABS does not allow for the accurate determi-
nation of the vertical component of the scattering angle, which
limits the angular resolution of the measurement [39]. As
stated in Ref. [11], we, therefore, refrain from extracting ab-
solute photoabsorption cross sections. The excitation-energy
dependence of the conversion is, however, unaffected.

V. FINE-STRUCTURE INVESTIGATION

A. Wavelet-analysis technique

Wavelets are functions that satisfy a set of predetermined
mathematical requirements and are useful in the representa-
tion of data or other functions. This concept is not unique
to wavelet analysis since the same idea is used in Fourier
analysis, where functions are represented by a superposition
of sine and cosine functions. Wavelet algorithms differ in
that they are capable of processing data at different scales
(or resolutions). Thus, they serve as a powerful tool to an-
alyze the role that these scales play in the interpretation of
the data [40]. Observing the data through a large window
would mean that broader features of that data are extracted.
Similarly, observing through a small window would mean
that the finer features would be seen. Using an analogy, the
wavelet-analysis technique, therefore, allows for the forest as
well as its individual trees to be seen [40].

In the case of Fourier analysis, the sine and cosine func-
tions used to represent the data are nonlocal and extend to
infinity. The disadvantage is that any sharp discontinuities in
the data are approximated badly. The functions that form the
basis of wavelet analysis, however, are approximating func-

FIG. 8. Equivalent photoabsorption cross sections obtained us-
ing (p, p′) scattering at Ep = 200 MeV off Nd and Sm isotopes.

tions contained in finite domains, which makes them ideal
for the analysis of data with sharp discontinuities. Wavelet
analysis is, therefore, well suited to the fine-structure analysis
of giant resonances in nuclei [15].

The wavelet-analysis procedure involves the selection
of a wavelet prototype, which is referred to as a mother
wavelet. The time-based analysis is conducted with a con-
tracted, high-frequency version of this mother wavelet. In
contrast, the frequency analysis is performed using a dilated,
low-frequency version. The selection of a particular wavelet
as the mother wavelet depends on its adherence to a set of
predefined mathematical criteria outlined in the formalism
below.
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1. Wavelet-analysis formalism

A real or complex function, 
(x), may only be used as a
mother wavelet if ∫ ∞

−∞

(x)dx = 0 (5)

and

K
 =
∫ ∞

−∞
|
2(x)|dx < ∞, (6)

where K
 is the wavelet norm or, rather, the admissibility
constant. This varies depending on the wavelet under consid-
eration.

The first condition imposes the requirement of an oscillat-
ing function for which the mean value should be zero. The
second condition restricts the function to a finite domain.
Since wavelets are localized both in time and in frequency,
they are unaffected by the properties of the data far away from
the region of interest and, as such, are ideal for the description
of the local behavior.

A full discussion of the most frequently used functions for
wavelet analysis can be found in Ref. [41]. For the analysis
of the fine structure of nuclear giant resonances, the Morlet
wavelet is most suitable. This is because it contains a Gaus-
sian envelope on top of a periodic structure, and the detector
response is well approximated by a Gaussian line shape. In the
present fine-structure analysis, the complex Morlet wavelet
(see Fig. 1 in Ref. [42]) was used and is given by


(x) = 1√
π fb

exp(2π i fcx) exp

(
−x2

fb

)
, (7)

using fb = 2, which controls the wavelet bandwidth, and fc =
1, which is the center frequency of the wavelet [43].

A wavelet transform results in a set of coefficients that are
representative of the data, which rely on the two parameters of
Eq. (7). There are two classes of wavelet transforms available:
the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT). For the purposes of the present
analysis, only the CWT will be detailed. The DWT as well
as a comparison between the two transforms can be found in
Ref. [41].

2. Continuous wavelet transform

The coefficients of the wavelet transform for a spectrum,
σ (E ), following its convolution with the (generally complex-
conjugated) wavelet function, are given by

C(δE , Ex) = 1√
δE

∫
σ (E )
∗

(
Ex − E

δE

)
dE , (8)

where δE is the bin size and is responsible for the scaling
of the function. The parameter Ex shifts the position of the
wavelet in excitation energy and thus provides access to the
scale-localization information. In the CWT, the scale and lo-
cation parameters δE and Ex are varied continuously. When
the form of a scaled and shifted wavelet, 
(x), is similar to the
original spectrum, σ (E ), the values of C(δE , Ex) will be large.
Similarly, if the form differs greatly, the coefficients obtained
will be small.

FIG. 9. Top set (right column): CWT analysis of the equivalent
photoabsorption spectrum for 142Nd measured at Ep = 200 MeV and
θLab = 0◦ ± 1.91◦. Top set (lower right): Density plot of the real
part of the CWT coefficients of the data. This CWT plot displays a
wavelet scale that is equivalent to the Fourier scale. Top set (left col-
umn): The corresponding power spectrum for the excitation-energy
region indicated by the vertical dashed lines (11 � Ex � 20 MeV).
Middle and bottom set: Same as the top set but for the QPM 1 phonon
and QPM 1 + 2 phonon calculations, respectively.

The application of Eq. (8) is illustrated in Fig. 9 for the ex-
perimental photoabsorption spectrum of the IVGDR in 142Nd
(top) and two examples of the corresponding model calcula-
tions (middle and bottom). The two-dimensional distributions
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below the spectra display the wavelet coefficient as a function
of the parameters Ex and δE . One observes large amplitudes
localized at certain ranges of energy and scale values. The
sign change from positive (red) to negative (blue) amplitudes
is due to the oscillatory structure of the mother wavelet [see
Eq. (7).

As a natural consequence of wavelet analysis, wavelet en-
ergy scales can be extracted from the wavelet coefficient plot
as peaks in the corresponding power spectrum obtained by
squaring the complex CWT coefficients and summing these
as follows:

P(δE ) = 1

N

∑
i

|Ci(δE )C∗
i (δE )|, (9)

where P(δE ) is the power as a function of scale δE summed
at each scale value over the index i = N with N the number of
energy bins on the excitation-energy axis.

We note that the choice of the complex-Morlet mother
wavelet yields the equivalent Fourier scale, while other
mother wavelets require a scaling factor different from unity
between their own intrinsic scale and the equivalent Fourier
scale. A particular value of scale in a CWT plot corresponds to
the excitation-energy difference between consecutive minima
(or maxima) in the coefficient plot (referred to as a “length-
like” scale).

By way of example, the two-dimensional coefficient plot
shown at the bottom of Fig. 9 for the 142Nd QPM 1 +
2 phonon calculation displays a repetitive oscillatory struc-
ture from negative coefficients (blue) to positive coefficients
(red) at a wavelet energy scale of 2000 keV with a distinct
peak in the coefficient plot at Ex = 15.5 MeV correspond-
ing to the main E1 strength in the panel above it. Half of
the 2000 keV wavelet energy scale is the width 1000 keV
of this peak (FWHM) and is referred to as a “width-like”
scale.

Peaks and points of inflection in the power spectrum (here
and throughout, shown as the square root of power for better
clarity) indicate the presence of particular scales. The pres-
ence of the same scale in both the experimental result and
a theoretical model prediction is taken to be that both scales
agree within error bars of one standard deviation. Assuming a
normal distribution, the standard deviation of the peak values
is obtained by dividing the FWHM by a factor of 2.355 in
the usual way. Descriptions of the applications of the CWT to
other high energy-resolution nuclear giant-resonance spectra
can be found in Refs. [15,23,29–32,34,41,44–47] and applica-
tions to α clustering in Refs. [48,49]. We note that in some of
the previous applications, the scale values quoted correspond
to width-like scales.

B. Model predictions

1. Skyrme separable random phase approximation

Calculations for the IVGDR are performed within the
Skyrme separable random phase approximation (SSRPA)
approach [50]. The method is fully self-consistent since both
the mean field and residual interaction are derived from
the same initial Skyrme functional. The residual interac-
tion includes all the functional contributions as well as the

Coulomb direct and exchange terms. The self-consistent fac-
torization of the residual interaction significantly reduces the
computational effort while maintaining high accuracy of the
calculations [50–52]. We use the Skyrme parametrization
SLy6 [53], which provides a good description of the IVGDR
in medium- and heavy-mass deformed nuclei [52]. The code
used exploits the two-dimensional grid in cylindrical coor-
dinates. Pairing with volume delta forces is treated at the
BCS level [54]. A large two-quasiparticle basis up to 100
MeV is taken into account. The Thomas-Reiche-Kuhn sum
rule (including the enhancement factor κ) for isovector E1
strength [55] is exhausted by 102% (146Nd), 100% (148Nd),
97% (150Nd), and 98% (152Sm).

The axial quadrupole deformation characterized by the
parameter β2 is generally determined by minimization of the
total energy. However, since 144,146,148,150Nd and 152Sm are
rather soft, their energy curves E (β2) are flat and give a large
uncertainty in determination of the theoretical ground-state
equilibrium deformation. Thus, we adopt the experimental
values of β2 given in Ref. [11], which are β2 = 0.13, 0.15,
0.20, 0.28, and 0.31 for 144,146,148,150Nd and 152Sm, respec-
tively. For spherical 142Nd, a negligible deformation, β2 =
0.001, is used. For IVGDR branches with K = 0 and 1, the
photoabsorption (in fm2) is computed as

σ (E1K ; Ex) = 16

9
π3α

∑
K=0,1

(2 − δK,0)

×
∑

ν

Eν |〈ν| M̂(1EK ) |0〉|2 ξ�(Ex − Eν ),

(10)

where α is the fine-structure constant. Further, |ν〉 and Eν are
the wave function and energy of the νth SSRPA state, and

M̂(E1K ) = N

A

Z∑
i=1

riY1μ(�i) − Z

A

N∑
i=1

riY1μ(�i ) (11)

is the isovector dipole transition operator, which includes
the center of mass recoil correction. The smoothing Lorentz
weighting reads

ξ�(Ex − Eν ) = 1

2π

�

(Ex − Eν )2 + (�/2)2
. (12)

For accurate comparison between SSRPA and experimental
results, a smoothing parameter equivalent to the experimental
energy resolution is used. The strength is then summed over
the appropriate number of bins.

2. Quasiparticle phonon model

The quasiparticle phonon model (QPM) [56] calculations
were performed assuming either a spherical (142,144Nd) or
a deformed (148,150Nd, 152Sm) nature of the ground state of
the corresponding group of nuclei. The intermediate nucleus,
146Nd, was considered under both assumptions, spherical and
deformed. The Woods-Saxon potential with parameters from
global parametrizations was used as a mean field. The same
sets were used for all spherical and all deformed nuclei under
consideration and can be found in Refs. [57,58], respectively.
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The same values of the quadrupole deformation β2 as in
the SSRPA calculations were used for the mean field of the
deformed nuclei; a weak hexadecapole with β4 = 0.08 was
also added in all cases. The strength of the pairing interaction,
treated within the BCS with a constant matrix element, was
adjusted to experimental values of the pairing energies.

The QPM employs a residual interaction in a separable
form (the dipole-dipole one for the 1− states). The strength
of the isoscalar residual interaction is adjusted to exclude the
spurious state, i.e., to obtain the zero energy for the lowest
QRPA solution. However, the isovector strength parameter
is obtained from the correct description of the IVGDR peak
energy and, in deformed nuclei, it is done for the K = 1
branch, and the same value is used in the K = 0 calculation.

The results of the QPM calculations in deformed nuclei
are presented in the QRPA (or one-phonon) approximation
for the K = 0 and K = 1 components. In spherical nuclei,
the QRPA results are completed by the calculation in which
the doorway one-phonon 1− states interact with the back-
ground two-phonon configurations. The latter calculations are
referred to as the “1 + 2 phonon” calculations. The corre-
sponding spectra are obtained by diagonalization of the model
Hamiltonian on the set of states which are described by a wave
function which contains both one- and two-phonon configura-
tions. The two-phonon 1− configurations were made up from
the phonons with multipolarities from 1± to 9±.

C. Wavelet analysis of data and model predictions

In this section, the results of the wavelet analysis of the
experimental equivalent photoabsorption cross sections and
the photoabsorption predictions are presented. The discussion
is subdivided into the quasispherical 142,144Nd, the intermedi-
ate spherical/deformed 146Nd, and the transitional-deformed
148,150Nd, 152Sm as classified in Fig. 1.

1. Quasispherical 142,144Nd

Referring to the wavelet analysis example for 142Nd shown
in Fig. 9, the top left-hand panel of Fig. 10 again shows the
142Nd(p, p′) equivalent photoabsorption cross section together
with its associated power spectrum in the top right-hand panel,
now rotated so that the scale axis is displayed horizontally.
The vertical dashed lines appearing in the panels on the left
side of Fig. 10 indicate the excitation-energy region from 11
to 20 MeV over which the wavelet coefficients were summed
in order to determine the corresponding power spectra.

Following the procedure outlined in Sec. V A 2, wavelet
length-like energy scales are identified from the peaks and
points of inflection in the power spectrum and are displayed as
filled circles, with error bars representing one standard devia-
tion of the corresponding width-like scale. The experimental
results are also represented by vertical grey bars repeated in
all right-side panels in order to facilitate the determination of
similar energy scales in the corresponding power spectra for
the theoretical predictions of the QPM 1 phonon calculation
(red) and 1 + 2 phonon calculation (green) in the middle and
bottom panels, respectively. The corresponding energy scales
are indicated by red and green filled circles and error bars.

FIG. 10. Left column: Equivalent photoabsorption spectrum for
142Nd (top) in comparison with the QPM 1 phonon (middle) and
QPM 1 + 2 phonon (bottom) model predictions. The vertical dashed
lines indicate the excitation-energy region from 11 to 20 MeV over
which the wavelet coefficients were summed in order to deter-
mine the corresponding power spectra. Right column: Corresponding
power spectra where the positions of the scales are indicated by filled
circles together with error bars for the width. The experimental scales
are also indicated by vertical grey bars in each panel to allow direct
visual comparison with the theoretical predictions.

Table I lists the extracted experimental and theoretical energy
scales. When they agree within error bars, they are placed in
the same column. The application of the above procedures to
144Nd is displayed in Fig. 11 with the extracted energy scales
listed in Table II.

The similarity of the experimental equivalent photoabsorp-
tion spectra in 142,144Nd allows for the expectation that the
respective power spectra, top right-side panels of Figs. 10 and
11, would also display similar wavelet energy scales. This is
indeed the case, where four scales are identified between 100
and 1000 keV, with the middle two scales moving to smaller
values for 144Nd. In both nuclei, the theoretical calculations
are lacking the lowest scale in the data at 120 keV, and a
scale at values slightly above 1000 keV is predicted without
an experimental counterpart. The QPM 1 phonon predic-
tions each have a single dominant doorway state close to the
experimental maximum surrounded by well-spaced weaker
doorway states. As such, the corresponding power spectra
display scales that correspond well to the experimental scales
in 142Nd. In 144Nd, there are two theoretical scales seen to

TABLE I. Energy scales extracted for 142Nd.

Dataset Scales (keV)

Expt. 120 260 520 740
QPM 1 phonon 180 280 520 780 1060
QPM 1+2 phonon 120 220 320 480
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FIG. 11. As for Fig. 10 but for 144Nd.

correspond within error with the experimental scales at 180
and 400 keV.

For both 142Nd and 144Nd, the basic shape of the IVGDR
is predicted by the QPM 1 + 2 phonon calculations where the
maxima correlate well with the corresponding maxima in the
experimental spectra. Similar scales to the 1 phonon results
are found in the range of several hundred keV with only small
shifts in energy. The experimental scale at 780 keV in 144Nd
is well reproduced in contrast to the 1 phonon results, but the
corresponding scale in 142Nd at 740 keV is missed. However,
for both nuclei the low-energy scales missing in the 1 phonon
calculations are found indicating that these indeed result from
2p2h coupling.

The present findings conform with similar studies of the
fine structure of the IVGDR in lighter spherical nuclei [23]
and in 208Pb [34]. The scales in the calculations are generated
mainly by the fragmentation of the 1p1h strength, i.e., Landau
damping. Different to the present cases, no scales related to
the spreading width could be identified in 208Pb, but this may
be due to the low density of 2p2h states in a doubly magic
nucleus.

2. Intermediate spherical/deformed 146Nd

The results for the intermediate spherical/deformed nu-
cleus 146Nd are shown in Fig. 12. Now, in addition to the
spherical QPM results, the theoretical calculations have been
extended to include the QPM (deformed) and SSRPA pre-
dictions (see Sec. V B) because of the onset of deformation

TABLE II. Energy scales extracted for 144Nd.

Dataset Scales (keV)

Expt. 120 180 400 780
QPM 1 phonon 160 240 420 540 1120
QPM 1+2 phonon 100 180 300 460 740

FIG. 12. Left column: Equivalent photoabsorption spectrum for
146Nd (top) in comparison with the QPM 1 phonon, QPM 1 +
2 phonon, QPM (deformed), and SSRPA model predictions. Right
column: The corresponding power spectra.

in 146Nd. A comparison between experimental scales and the
various model predictions is given in Table III.

The experimental equivalent photoabsorption cross section
in the top left-side panel of Fig. 12 shows an overall peak
structure similar to the quasispherical 142,144Nd but the res-
onance peak has a larger width. The corresponding power
spectrum in the top right-side panel displays a pattern very
much like the adjacent less-deformed 144Nd (see Fig. 11) but
exhibits more structure with six (instead of four in 144Nd)
scales identified. The QPM 1 phonon prediction shows a
single dominant doorway state close to the experimental peak
maximum surrounded by well-spaced weaker doorway states
as was the case for the lower-mass quasispherical nuclei,

TABLE III. Energy scales extracted for 146Nd.

Dataset Scales (keV)

Expt. 130 210 300 420 560 1100
QPM 1 phonon 180 250 500 1100 1660
QPM 1+2 phonon 120 180 260 440 660 920
QPM (deformed) 140 240 520 1200
SSRPA 160 220 340 460 660
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FIG. 13. Left column: Equivalent photoabsorption spectrum for
148Nd (top) in comparison with the QPM (deformed) (middle) and
SSRPA (bottom) model predictions. Right column: The correspond-
ing power spectra.

and produces similar scales as can be seen when comparing
Tables II and III.

The QPM 1 + 2 phonon prediction, in contrast, shows
strong fragmentation and a width that already approaches that
of the experimental case. The corresponding scales extracted
from the power spectrum exhibit larger differences to the 1
phonon result than in the spherical cases highlighting the rele-
vance of spreading-width contributions to the fine structure. In
particular, as in spherical nuclei, the lowest experimental scale
at 130 keV and the scale at 420 keV can now be reproduced.
Indeed, the same number of scales is seen as in the data,
and fair agreement of absolute values is achieved except for
the largest scale (1100 keV experimentally versus 920 keV
theoretically).

As deformation increases, it is now possible to consider
approaches starting from a deformed single-particle basis.
The QPM (deformed) prediction produces a more compact
strength function but yields four out of the six experimental
scales with absolute values close to experiment. The SSRPA
results in the lower panel of the left side of Fig. 12 show
somewhat less fine structure than seen in the QPM predictions.
The experimental scales are well reproduced except for the
largest one. We note that both calculations find a scale at
about 150 keV, close to the lowest experimental scale. It is,
therefore, not possible in the present case to assign this scale
uniquely to spreading due to coupling with 2p2h states.

3. Transitional-deformed 148Nd, 150Nd, and 152Sm

Results for the transitional-deformed nuclei 148Nd, 150Nd
and 152Sm are given in Figs. 13–15, respectively. The calcula-
tions used for comparison in this deformed region of interest
are the QPM (deformed) and SSRPA model predictions
(see Sec. V B). The comparisons between the experimental

FIG. 14. As for Fig. 13 but for 150Nd.

scales and those for the model predictions are summarized in
Tables IV–VI.

The transitional-deformed 148Nd, 150Nd, and 152Sm nuclei
are considered together, noting that deformation increases
when moving to 148Nd with a further increase moving to
150Nd and 152Sm, which are essentially equally deformed iso-
tones. Experimental equivalent photoabsorption cross sections
shown in the top left-side panels of Figs. 13–15 show an in-
crease in the width of the IVGDR with deformation, although
no double-hump structure due to K splitting is visible in 150Nd
and 152Sm [11] in contrast to the observations from previous
(γ , xn) experiments [20,21]. The corresponding power spec-
tra display patterns similar to the less-deformed nuclei with a
comparable number of scales (five to six).

Photoabsorption spectra from the QPM (deformed) and
SSRPA models applicable to the deformed cases in the middle

FIG. 15. As for Fig. 13 but for 152Sm.
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TABLE IV. Energy scales extracted for 148Nd.

Dataset Scales (keV)

Expt. 120 200 380 540 760 1460
QPM (deformed) 100 160 300 800 1600
SSRPA 100 160 360 560 800 1480

and lower left-side panels of Figs. 13–15 show a high degree
of fragmentation. Differences (discussed further below) are
observed in the low-energy region of the IVGDR (11–15
MeV), where the SSRPA calculations find significantly more
strength than the QPM (deformed) calculations. The corre-
sponding power shown respectively in the middle and lower
right-side panels have varying degrees of overlap with the
experimental scales but typically give a comparable number
of scales, indicating that it is likely that the experimentally
observed fine structure arises mainly from fragmentation of
the 1p1h strength (Landau damping). Theoretical calculations
that include 2p2h degrees of freedom would, however, be
highly beneficial to verify this.

4. K splitting in 152Sm

As pointed out above, the theoretical results show a clear
difference in the lower-energy region of the IVGDR for the
most deformed nuclei. This is illustrated in the middle and
bottom panels of Fig. 16 for the example of 152Sm, where
the K = 0 and 1 components are shown separately in orange
and blue, respectively, and where K is the projection of the
nuclear momentum, I , onto the axis of symmetry. In both
calculations, one finds a well-defined lower excitation-energy
region from 11 to 14 MeV for the K = 0 component and
a higher excitation-energy region from 14 to 20 MeV for
the K = 1 component, but the K = 0 contribution is much
weaker in QPM (deformed). The experimental spectrum does
not allow such a clear separation, since the typical widths of
the K components are comparable to or larger than the spacing
of the centroids. Nevertheless, one can expect dominance of
either K = 0 or 1 in the chosen excitation-energy windows.

The results of a wavelet analysis for these excitation-
energy regions are shown in Fig. 17. For consistency, the
theoretical results are summed over both K components in
these intervals. A comparison between the extracted experi-
mental and theoretical scales from the total spectra and from
the dominant K = 0 and K = 1 regions is given in Table VII.

It can be seen in the top panels of Fig. 17 that the exper-
imental power spectra for the K = 0 and K = 1 equivalent
regions have noticeably different forms, resulting in two sets
of different scales. This can also be said for the corresponding
QPM (deformed) and SSRPA power spectra shown below.

TABLE V. Energy scales extracted for 150Nd.

Dataset Scales (keV)

Expt. 130 240 320 740 1000 1700
QPM (deformed) 200 320 500 660 1160 1680
SSRPA 100 240 320 700 1100

TABLE VI. Energy scales extracted for 152Sm.

Dataset Scales (keV)

Expt. 130 280 560 700 1040
QPM (deformed) 140 210 380 540 1220 1720
SSRPA 220 360 760 1220 1700

The power spectra from experiment and QPM (deformed) in
the dominant K = 1 region are very similar to those deduced
from the total spectra (Fig. 15). The deviations are somewhat

FIG. 16. Excitation-energy spectra for the 152Sm equivalent pho-
toabsorption cross section (top); the QPM (deformed) predictions
for the K = 0 (orange) and K = 1 (blue) components (middle); and
the SSRPA predictions for the K = 0 (orange) and K = 1 (blue)
components (bottom).
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FIG. 17. Wavelet power spectra for excitation-energy regions of
dominant K = 0 (left) and K = 1 (right) strength in 152Sm.

larger for the SSRPA results, but still the wavelet power from
the region of K = 1 dominance broadly follows that from the
total spectrum. The scales deduced from the energy region of
K = 0 dominance differ, in particular in the region of scale
energies between about 300 and 800 keV.

One interesting aspect is the differences of the K = 0 and
K = 1 wavelet power ratios in the experiment and models
in Fig. 17, where one can compare the relative ratios. The
data show significantly more power in the energy region of
K = 1 dominance. This is qualitatively also seen in the calcu-
lations, but the effect is more pronounced in the QPM results
reflecting the much smaller strength of the K = 0 component
compared to the SSRPA results visible in Fig. 16.

TABLE VII. Energy scales extracted from the total spectra and
from the energy regions of dominant K = 0 (11–14 MeV) and K = 1
(14–20 MeV) strength in 152Sm.

K Dataset Extracted scales (keV)

Expt. 130 280 560 700 1040
sum QPM (deformed) 140 210 380 540 1220 1720

SSRPA 220 360 760 1220 1700
Expt. 130 220 440 600 1200

0 QPM (deformed) 120 220 380 640 1240 1800
SSRPA 140 200 350 820 1180 1660
Expt. 130 280 550 700 1120

1 QPM (deformed) 140 210 380 520 1180 1740
SSRPA 140 240 760 1240 1720

VI. CONCLUSIONS

We present new virtual-photon absorption data for the
chain of stable Nd isotopes representing a transition from
spherical to quadrupole-deformed nuclei and for the de-
formed nucleus 152Sm extracted from measurements of the
(p, p′) reaction at 200 MeV and extreme forward scattering
angles, θLab = 0◦ ± 1.91◦. Using dispersion-matching tech-
niques, high energy-resolutions of the order 40–50 keV
(FWHM) were obtained. While the differences to previous
photoabsorption data and the implications for K splitting due
to ground-state deformation have been discussed elsewhere
[11], here we focus on the phenomenon of nonstatistical cross-
section fluctuations in the energy region of the IVGDR. The
observation of this fine structure, even in the most deformed
cases studied, is quite remarkable considering the extreme
level densities (e.g., about 108 Jπ = 1− states per MeV at the
IVGDR peak energy in 150Nd).

Wavelet-analysis techniques permit the quantification of
features of the fine structure in terms of characteristic scales.
Comparison is made with microscopic calculations of the pho-
toabsorption strength functions based on RPA and in spherical
nuclei extended to include 2p2h states. The agreement is
mixed: neglecting trivial scales resulting from the experimen-
tal energy resolution and from the total width of the IVGDR,
the number of scales can be approximately reproduced in most
cases, but the agreement for absolute values varies. However,
it is clear that the scales in the spherical and probably also
in the deformed Nd nuclei mainly result from the fragmen-
tation of the 1p1h strength into several dominant transitions
serving as doorway states, but we note again that theoretical
calculations including 2p2h degrees of freedom would be
beneficial to clarify this for the deformed cases. This result
is consistent with findings for the IVGDR in 208Pb [34], 120Sn
[15], and in light nuclei [46], although deformation is affected
by alpha clustering for the latter. Thus, the origin of the fine
structure of the IVGDR is fundamentally different from the
case of the ISGQR, where coupling to low-lying phonons was
identified as the driving mechanism [30,31] (except maybe
for lighter nuclei [32,45]). In the spherical 142,144Nd nuclei,
effects of the coupling to 2p2h states are seen in the QPM
calculations including 2 phonon states. The overall agreement
with the experimental scales is improved and the lowest scale
at about 100 keV can be reproduced in contrast to calculations
on the RPA level. The transitional nucleus 146Nd was stud-
ied with approaches starting from a spherical and deformed
single-particle base. The spherical QPM calculation including
2 phonon states provides a superior description of the experi-
mental strength function and the wavelet scales.

To summarize, the wavelet analysis reveals information
about the nature of the fine structure observed in the IVGDR.
Landau damping seems to be the main source of the fine
structure in both spherical and deformed nuclei. Some impact
of the spreading due to coupling of the 2p2h states to the 1p1h
doorway states is seen in the spherical and intermediate spher-
ical/deformed nuclei, where such calculations beyond RPA
are available. At present, it remains open whether information
on the fine structure scales can be utilized to improve the
development of global energy density functionals, where the
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isovector dipole response remains an open problem [12]. This
question will be addressed in future work, e.g., by systematic
investigations of their dependence on bulk matter parame-
ters [13]. Further insight is expected from the comparison
of experimental scales in selected nuclei with microscopic
calculations incorporating all three mechanisms contributing
to the resonance width simultaneously [59].
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