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The 7 decay rates of highly excited nuclear states of odd-mass nuclei into the lowqying one-quasiparticle states are cal- 
culated in a microscopic way. We conclude that not only the one-quasiparticle component but also "quasiparticle ® pho- 
non" components of the wave function of highly excited states can play an important role in their 7 decay. 

Recently, the first experiments on 7 decay of  deep-hole states in odd-mass nuclei have been performed [1,2]. 
In the (3He, aT) reaction on even Pd and Sn isotopes, 3' quanta and c~ particles have been detected in coincidence. 
By this method it is possible to examine the 3' spectrum of  decaying states in an energy interval fixed by the ener- 
gy of  outgoing a particles. The comparison of  the energy distribution of  direct 70 transitions to the ground state 
with the one going through low-lying states has allowed one to conclude that in this reaction not only the one- 
particle component of  the wave function o f  deep-hole states could be investigated but collective ones as well [2]. 
From this point of  view the contributions of  one-particle and collective transitions to the matrix element of  7 de- 
cay have to be examined. We will consider this problem here for the decay of  the neutron deep-hole state (lg9/2) -1 
in l l lSn .  

The wave function of  an odd-mass nucleus can be written in terms of  the quasiparticle O~+m (with the shell 
quantum numbers,/= n~" and magnetic quantum number m) and phonon Q~,i (k, 11 are the momentum of  the 
phonon and its projection, i is the RPA-root number) operators 

ct/ ~ Dk i fa  + 0 + 1 ~ v ( J M ) = C j v  + + m .. ] t " l 'm~ iJJM 

+ ~Fl .~ l i lh2 i z (J~  ) ot + + + ) 
[ 7m [Qhl~, i l  Qx2~2i2 ]Itz]JM ~0  , (1) 

where xI, 0 is the ground-state wave function of  the neighbouring even-even nucleus. The phonon operator is de- 
freed as follows: 

+ 1 ~  hi,o~+ + , 
a x , i  = 2 H ~ '  [ l m ~ ' m ' l ~  - ( _ ) x - , ~ ] ~  [ot],m,Otzrn]h_u (2) 

and describes both collective and noncollective excitations in an even-even nucleus. The amplitudes ~ and ~o and 
one-phonon energies 6oxi are calculated from the well-known RPA-equations for quasiparticles. 
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To calculate the coefficients C, D, F of the wave function (1), we apply the quasiparticle-phonon nuclear 
model (QPM) [3,4]. The model hamiltonian includes the phenomenological average potentials for protons and 
neutrons, pairing forces with constant matrix elements and separate interaction in the particle-hole channel 
written as multipole and spin-multipole expansions. 

The coupling of the odd quasiparticle with the phonon excitation of the core is determined by the quasipar- 
ticle-phonon interaction term [5] 

(2.i I + I11]2 
Hqph _ 2V Xui ~ /d2 ~-j \2-~~/ Y(Jl /2M)[Q:ui+(-)X-UQh-ui lB(I ' I /2X-u)+h'c"  

B(Jl]2?~ - la) = ~ ( - j  a+m2 (/lml/2m2lX -- I.t)a/+ml a/2_m2 . (3) 
r n l m 2  

The value of P(]l/2 M) depends on the single-particle matrix elements of the residual forces, superfluid 
Bogolubov's coefficients and phonon characteristics and has no free parameters. 

To get the spectrum of the eigenvalues r0v of the QPM hamiltonian for the basic vectors (1), we have to solve 
the following system of equations: 

xi] 

I'2 (/7 'X'i') ) 
Dli(Jv) 6i + whi - ~Jv -j,h,~t., e/, + t~hi + o~, i, - rlyv 

T[a2 i2 iX-" "'~' 2 i2 (Xi') 
l ~i, D?i'(Jv) 2 vh l i l " ' t ) t Jh l i l  
2 . K l i l h 2 i 2  e i + t ' O h l / 1  +L O K 2i  2 - - ~ J v  

+ ~ D.Xaix(Jv)f ~ r(/~/1X2i2)f{j x., .~2/1 }(-)x+x2+/t*J 
/ l X l i l  l l  - [_ K2i2 

( ~ lU~i2(Xl i l )  ~Hx2i2(xi)"~hlil ) 
X + 

ej 1 + £OXi + G)h2i 2 --  ~Jv  e~ + G ) R l i l  -t- O9h2i2 --  "f/jp 
^ A 

PQf2M) P(I'J2Xlil)Jlf 
[ = P(S/Xi) 

a + Q+ 
P(II/2 Xi)~ (~ t  m I II Hqp h 11 [ 7"2 m 2 h~ti]] 1 m I ) ' 

U~[~(Xi)-(Qxuil lHqphll[Q~u,i  I Q~auai=l~.u>, X=(2 X + 1)1/2 . 

Here e/is the energy of the one-quasiparticle state. As one can see from (4) the I"([1]2X 0 are the coupling 
+ ~+  + . . 

strengths of the quasiparticle cql m 1 and "quasiparticle ® phonon" [ i2 m 2 Qhui]il m I states. The interaction 
matrix elements uXtt:a (M) describe the so-called anharmonic corrections, i.e., they describe the interaction 
between the phonons of the core. 

hi The coefficients D. "of the wave function (1) are obtained from the system (4); the coefficients F are ex- 
pressed as linear combinations of D's; the one-quasiparticle amplitude is determined by the norm of the wave 
function (1). The application of the QPM-formalism to the odd nuclei could be found in more detail in refs. 
[6-8]. 

(4) 
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In spite of the simplifications due to the separable form of the effective forces and phonon representation of 
the core excitations, to solve the system (4) is a hard problem since in realistic calculations we have to diagonal- 
ize a high dimension matrix. To overcome this difficulty we use the strength function method [9]. The exten- 
sion of the method to the calculation of the coefficients D. xi and electromagnetic transition rates has been 
worked out in refs. [7,8]. It should be noted that in calcu/ations of ref. [8] the terms ~I~U ofeqs. (4) were 
omitted. 

The standard one-body operator of the ~' transition in nuclei after simple transformations can be written in 
terms of the quasiparticle and phonon operators in the following way: 

C ~ ( E , / ~  ) = ~-1 .~.  (]1 IJc~(E,-MX) 11]2) ((U/lUj 2 g vhv/z)Bqz/2X#) 
1112 

~i  hi + ) + +(Uj lVj2 "I-uj2Vj l)  . (~;K15 2 +~) l ] l ) [Q;k/a i - ( - )~ ' - /~QK_/~ i ]  . (5) 

The first term in (5) causes 7 transitions between the components of initial (i) and final ( i) states of the same 
complexity, i.e., Ic~+) i = ]a+)f, In+Q+) i =~ [a+Q+)f, etc. In principle, due to this term the transitions with the ex- 
change of two phonons (e.g., la+Q+Q+) i =~ It~+)f) are allowed, as follows from the boson expansion technique 
[10], but they will be strongly suppressed by a factor ~ff~ as compared to the transitions Itx+) i ~ I~+)f. In the 
Tamm-Dancoff approximation the transitions Itx+Q+Q+) i =* la+)f are forbidden (~--- 0). The second part of the 
operator (5) causes transitions with the exchange of one phonon, i.e., I t~+Q+) i = l a +)f. In the transitions of this 
type the quasiparticle quantum numbers do not change. Which of the two terms in (5) is dominant depends on 
the matrix element of each partial transition and on the corresponding coefficients C, D, F of the i and f states. 

We consider here the 3' decay of 9/2 + states that are excited in the one-neutron pick-up reaction 
l l2Sn(3He,a) l l lSn into the ground state 7]2~ and the low-lying states 11/2 i- and 5/2~ of the l l lSn  nucleus. 
These final states have practically the one-quasiparticle structure. We get for them C 2 i> 0.9 in agreement with 
experimental data. So, we suggest that Df and Ff  coefficients vanish. The structure of the high-lying 9/2 + states 
is much more complicated and we describe it by the wave function (1). We are especially interested in excitations 
within the energy range E* = 3 - 6  MeV where the main part of lg9/2-neutron hole strength is concentrated. The 
9/2 + states in this range have rather discernible values of C 2 (1 g9/2), and, moreover, they have large admixtures of 
more complex components. The crucial role is played by the competition between partial transitions la+)i 
Icx+)f and Ict+Q+)i=* la+)f. In that case the components la+Q+Q+) i are important as they are coupled with let+Q+) i 
configurations and influence their fragmentation. So, without "quasiparticle ® two phonons" components it is 
impossible to obtain a correct energy distribution of the I~t+Q+)i ~ la+)f part of the transition strength. 

Let us now turn to the results of the calculations. The excitation of the deep-hole state in the (3 He, a) reac- 
tion goes mainly through the one-quasiparticle component of the wave function. So, firstly, we need to calculate 
the energy distribution of the 1 gg/2"neutr°n hole strength. These calculations had long been done in ref. [ 11 ]. 
Our present results slightly differ from those of ref. [11] due to minor changes in the truncation of the basis of 
complex configurations and to the influence of the anharmonic terms in eqs. (4) [i.e., the terms with U, x l~a (hi) 
coefficients] that had not been taken into account in ref. [11]. The calculated energy distribution C2/2(E '.2) bears 
a qualitative resemblance with the energy distribution of the intensity of direct 70 transitions from the resonance- 
like deep-hole bump to the ground state [1,2]. But our goal is to show that no conclusions on the decay mecha- 
nism can be drawn from this resemblance because although the excitation of deep-hole states goes through the 
one-quasiparticle component of the wave function, the decay of the excited state may go through the "quasipar- 
ticle ® phonon" component. 

To analyse the decay mechanism of 9/2 + states in 111 Sn, we calculate the absolute intensities T(E,MX) of 
3' transitions. The results are presented in fig. 1. The contribution of the one-quasiparticle part of the transition 
rate (Itx+) i ~ Ict+)f) for theM1 transition 9/2 + ~ 7/2;.s. and the E1 transition 9/2 + ~ 11/2 i- is shown by the 
dashed curve. The shape of the curve coincides with the function C2/2(E *) X (E*) 2x+l ()t is the transition multi- 
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polarity). The E* dependence comes from the expression for T(E,MX): 

T(E,M'A)- 81r(X + 1) 1 / g * ~  2h+l 
X[(2X, 1)!!]2 ~ ~h--~c ! B(E,M'A). 

The solid curve shows the calculations where both partial transitions (la+)i =~ la+)f and I~+Q+) i =~ la+)f) are taken 
into account. As in ref. [8], the results are presented in the form of the strength functions with the averaging pa- 
rameter A = 0.5 MeV. We also display in fig. 1 the intensity of  the E2 transitions 9/2 + ~ 7/2;.s. that go exclusive- 
ly via the la+Q+)i =~ [a+)f way. For any reasonable value of the neutron effective charge the transition 10t+) i =~ 
[a+)f is more than two orders of  magnitude less than the la+Q+) i ~* la+)f transition. We get the same picture for 
E2 transitions 9/2 + ~ 5/2~. 

The direct 7 transitions to the low-lying states from the energy range E* > 6 MeV go predominantly through 
the "quasiparticle ® phonon"  components.  This is quite natural because the contribution of  the one-quasiparticle 
component  to the wave functions of  the 9/2 + states at these energies is small, as follows from our calculation. 

The most interesting range to discuss is E* < 6 MeV. The intensity of  the M 1 transitions from this range is 
more than one-half of  the E 1 transition intensity (note, we use effective spin-gyromagnetic factors geff = 0.8g~sree), 
and the intensity of  the E2 transitions is much lower. The interesting feature is that the character of  E 1 and M 1 
transitions is different. An admixture of  collective components I lh t l /2  ®Q+(1-) ) i  in the wave functions of  the 
9/2 + states at E* < 6 MeV is extremely small; that is why the E1 transitions 9/2 + ~ 11/2 i- are determined by the 
one-quasiparticle part la+)i =~ la+)f. 

The discrepancy between the solid and dashed curves in fig. lc  at E* < 6 MeV is of  artificial origin: since we 
use the strength function averaging, it is due to an admixture of  the slowly sloping Lorentz's tail of I lhl/2 
®Q+(1 -))i  states with large T(E1) values from the range E* > 6 MeV. 

As for the MI transitions from the range E* < 6 MeV, both components,  i.e., la+Q+)i=, la+)f and la+)i =~ 
la+)f, give approximately the same contribution to it. This is vividly seen from fig. 2, in which the strength func- 
tion of the reduced transition probability B(M1,9 /2  + ~- 7/2;.s. ) is shown. This calculation is performed with the 
averaging parameter A = 0.1 MeV. The strong peak at E* = 3.75 MeV will be suppressed in the cross o*~tion of  

' T(M1)~lolt'/(MeV'sec) I), 1__ o) 

5 .~ 

010t A ? A  
)YTL  

I 2 3 4 5 6 7 8 E;MeV 

Fig. 1. Strength functions of the 3' transition rates T(E,MK). 
The one-quasiparticle parts of the transition rate are displayed 
by the dashed curves, the solid curves are the results of the 
complete calculations. (a) M1 transitions 9/2÷~ 7/2.~ s ; Co) 
E2 transitions 9/2+~ 7/2;.s.; (c) E1 transitions 9/2+~2~'11/21. 
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l.ig. 2. Strength function of the reduced Ml-transition proba- 
bility B(MI, 9/2 ÷~ 7/2~.s. ). I"or notation see fig. 1. 

the (3He, aT) reaction because of  the small contribution o f  the one-quasiparticle component in the wave functions 
of  9/2 + states. This peak is due to the collective component of  their wave functions, that is o f  the type I 1 g7/2 
® Q+(1 +)>. The strong interference of  both comppnents l a+>i ~ la+>f and l a+Q+> i =.la+)f of the M1 transitions 
takes place in the energy interval 4 <E* < 5 MeV. The interference has a destructive character and changes essen- 
tiaUy the result obtained only with the la+)i ~ Ic~+)f component. That is why we want to point out that the par- 
tial transitions of  the la+Q+) i ~ Ic~+)f-type cannot be neglected in considering the 7 decay of  high-lying single- 
particle (or hole) states especially if in the range of  the one-quasiparticle strength concentration the "quasiparticle 
®phonon" states with the same j~r are placed. 

Since we do not calculate the cross section of  the (3He, a'7) reaction but only the decay properties of  the ex- 
cited states, we substitute the direct comparison with the experimental data of  refs. [1,2] by a qualitative one. 
We assume that in this one-nucleon transfer reaction the excitation goes exclusively through the one-quasiparticle 
component of  the wave function (1), thus each (9/2) + state is excited in accordance with its C~ value. So, to get 
the model cross section we have to multiply the C2/2 (E*) distribution by the T(E*) distribution. To compare 
our results (fig. 3c) with the experimental data o f  refs. [1,2] (figs. 3a, 3b), we normalize all solid histograms to ob- 
tain the integral cross section equal to 100 arbitrary units. The histogram corresponding only to la+)i = la+)f de- 
cay transitions (dashed line) has a lack of  strength below E* = 4 MeV. Our solid histogram (fig. 3c) has a less pro- 
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Fig. 3. The cross section of the ll2Sn(3He,cr-to) lit Sn reac- 
tion for the 70 decay to the ground state in arbitrary units: 
(a) from ref. [1 ]; (b) from ref. [2]; (c) our calculations. For 
details see text. 
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nounced peak than the experimental ones, but this is partly caused by the artificial reason as we use the strength 
function averaging with A = 0.5 MeV. In spite of  the strong 7 transitions predicted in fig. 1 at E* > 5 MeV the 
cross section of  the reaction rapidly decreases at those excitation energies. The reason is the decreasing of  the 
C 2 (lg9/2) value and the vanishing of  the excitation probability of  initial states. It should be noted that on the 
whole we obtain a good qualitative agreement with experiment. 

A very sensitive characteristic of  the admixture of  collective components is the E2/M 1 mixing ratio 6. If  no 
collective transitions occur, it will be close to zero since for the neutron la+)i =* I~+)f transition e (2) ~ 0. In ref. elf -- 

,, ,r+0.28 for the region E* = 4 .0-4 .5  MeV. Our calculations give the result [1 ] it has been estimated to be 6 = -u.~o_0.35 
6 = -0 .03  for this region and 6 = -0 .08  for a wider region E* = 3 .0-6 .0  MeV. Surely, with such large experimen- 
tal uncertainties it is hard to judge about the role of  a collective mechanism. 

In summary, in the framework of  the microscopic~ approach we have presented for the first time the calcula- 
tions of  the 7-decay rates of  the neutron lg9/2 deep-hole resonance-like structure in 111 Sn to the ground state 
and low-lying one-quasiparticle states. We have found the "almost pure one-quasiparticle character for the E1 
transitions 9/2 + -+ 11/2~- and strong destructive interference between one-quasiparticle and collective "quasipar- 
ticle ® phonon" terms for the M 1 transitions 9/2 + ~ 7/2g.s .. So, in some cases the collective "quasiparticle ® pho- 
non" components of  the wave function may play a crucial role in 7 decay of  high-lying single-hole and/or single- 
particle structures. The schematic calculation of  the 112 Sn (3 He, otT0)ll 1 Sn cross section gives a qualitative 
agreement with the experimental data [1,2]. Our QPM formalism can be applied to the study of  7 decay in a 
large number of  medium and heavy odd-mass spherical nuclei. 
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