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1. Supplementary Methods
A. Details on the experimental setup

Five 3′′ × 3′′ LaBr3:Ce-detectors were positioned 22 cm away from a 137Cs gamma-ray

source, which resulted in an average full-energy efficiency of 1.50(5)% at an energy of

661.66 keV for the entire set-up. The 137Cs had an average activity of 603(18) kBq. The

lead shield had minimal thicknesses of 12.5 cm and 8.5 cm for the 72◦ and 144◦ groups,

respectively. These thicknesses were chosen on the basis of a Monte-Carlo simulation with

the program GEANT4 [17]. Data were recorded using a digitizer with 14 bit resolution

and a sampling rate of 250 MHz (SIS3316 of Struck company). The gain of the detectors

exhibited a temperature dependence of up to 10 keV. These gain shifts were corrected

by repeating the energy calibration every ∼35 min using the 661.66 keV transition of

the 137Cs source and a background line. The background caused by cosmic-rays and

their decay products was a considerable challenge during the experiment. It was partly

suppressed using five large plastic scintillators as veto detectors, which were positioned

on top of the experimental set-up. The width of the time gate on the prompt coincidence

peak (2.4 ns) was chosen to optimise the signal-to-random ratio and includes 90(3)% of

γγ-events. The values of δ given in the letter are corrected for the width of this time

gate. The correction factor was determined in a separate measurement using a 60Co

source (which emits two coincident gamma-rays) considering the energy dependence of

the time resolution.

B. Details on the QPM calculations

A calculation in the framework of the QPM has been performed in order to obtain

additional insights in the γγ-decay process. The QPM is a phenomenological, microscopic

approach to nuclear structure. Its Hamiltonian is given by

Hqpm = Hsp +Hpair +Hph
m . (1)

Hsp is a one-body Hamiltonian (mean field). The Woods-Saxon potential with parameters

from a global parametrisation is used for this term. All bound and quasi-bound single-

particle states are accounted for, i.e. the QPM allows to investigate the properties of

nuclei over a wide excitation energy range. Hpair accounts for monopole pairing with a

constant, state independent, matrix element of the pairing force. It is fitted to odd-even

mass differences of nuclei in the mass range of interest. The last term of supplementary

Eq. (1) Hph
m is a residual multipole interaction in the particle-hole channel which has a
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separable Bohr-Mottelson form. The strength of the residual interaction is fixed through

the properties of the neighbouring even-even nuclei, in particular through the excitation

energy and B(E2)-strengths of the 2+1 states.

In the QPM procedure the Hamiltonian Hqpm is diagonalised stepwise. First, the

BCS-equation based on Hsp + Hpair are solved and the quasiparticle state formalism is

implemented through the Bogoliubov transformation. Second, the phonon basis which

describes 1p-1h excitations of an even-even core is built. It is obtained by solving the

Quasiparticle Random-Phase Approximation (QRPA) equations. In the final step, the

QPM Hamiltonian is diagonalised on the set of wave functions that, in present calcula-

tion for 137Ba, contain a mixture of quasiparticle and different [quasiparticle ⊗ 1 phonon]

configurations. Further details on the QPM are given in Ref. [16].

The calculations have been performed for the ground Iπ = 3/2+ and isomeric

Iπ = 11/2− states and also for the states with Iπn = 5/2±, 7/2±, 9/2± as virtual in-

termediate states. Phonons with spin and parity from 1± to 5± and excitation energies

up to 20 MeV have been used. The calculation yields about five thousand excited states

for each Iπn . The excitation energies and B(SL) values of the lowest states in 137Ba are

presented in supplementary table 1 in comparison to experimental values. The calcula-

tion underestimates the energy of the 11/2−1 level, while other quantities in supplementary

table 1 are in reasonable agreement to data. The problem is traced back to the mean

field in which the 2d3/2 and 1h11/2 orbitals are too close in energy. It may be solved

by a small increase of the strength of the ls-term of the Woods-Saxon potential for the

neutrons. We did not do this adjustment but instead used the experimental energies for

the states in supplementary table 1 in calculation of αSLSL coefficients. The running sums

for αS′L′SL are shown in figure 1. The dominating matrix elements are αE2M2, αM1E3.

For the QPM results shown in the letter all stretched contributions, i.e. the ones shown

in the top of figure 1 and listed on the left-hand side of supplementary table 2, were used.

The non-stretched J = 4 E2E3/E3E2 and stretched J = 5 E2E3/E3E2 contributions

were found to be negligible for the overall γγ-decay branching ratio and for the angular

correlation of the two emitted photons.

2. Supplementary Equations
A. Determination of the differential branching ratio δ

The quantity δ is defined as the differential γγ-decay width d5Γγγ/dωdΩdΩ
′ integrated

over the corresponding energy bin ∆E = Eh − El, with El < Eh ≤ E0/2 (E0 is the

transition energy), and divided by the single-gamma decay width Γγ

δ(El, Eh, θ12) :=
(4π)2

Γγ

∫ Eh

El

dω
d5Γγγ

dωdΩdΩ′

∣

∣

∣

∣

θ12

. (2)
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The integration must only be performed up to E0/2 to take the Bose character of the

photons into account and thus, to avoid double counting. θ12 is the average emission

angle between the two gamma-rays, i.e. in our experiment θ12 = 72◦ and 144◦. Note

that no integration over dΩ or dΩ′ is performed, but rather the differential decay width

is evaluated at the central angle θ12 between the two emitted gamma-rays. To motivate

this definition it is instructive to look at δ, assuming a vanishing angular correlation of

the two gamma-rays, i.e.
d5Γiso

γγ

dωdΩdΩ′ =
1

(4π)2
dΓiso

γγ

dω
(3a)

then

δiso(El, Eh) =
1

Γγ

∫ Eh

El

dΓiso
γγ

dω
dω (3b)

and after integration over all gamma-ray energies (i.e. El = 0 and Eh = E0/2)

δisotot =
Γiso
γγ

Γγ
. (3c)

Thus δ corresponds just to the branching ratio in case of vanishing angular correlation.

Next we clarify, how δ is related to the experimentally observed intensities. Assuming

N decays of the isomer have taken place, then

N ′
γγ = N · 1

Γ

∫

4π

dΩ

∫

4π

dΩ′
∫ Eh

El

dω
d5Γγγ

dωdΩdΩ′ ǫintr(ω,Ω)ǫintr(E0 − ω,Ω′) (4)

is the number of detected γγ-events assuming an intrinsic detection efficiency of ǫintr(ω,Ω)

for a gamma-ray of energy ω travelling in direction Ω = (θ, φ). The quantity Γ is the total

decay width. The intrinsic efficiency ǫintr will only be non-vanishing if Ω overlaps with

the solid angle covered by one of the detectors. Assuming that d5Γγγ/dωdΩdΩ
′ varies at

most linearly over the angles subtended by a detector pair we obtain

N ′
γγ = N · 1

Γ
· (4π)2 ·

∫

dω
d5Γγγ

dωdΩdΩ′

∣

∣

∣

∣

θ12

[

∑

i<j

2ǫ
(i)
abs(ω)ǫ

(j)
abs(E0 − ω)

]

, (5)

where i, j denotes the detector numbers (1. . . 5) and ǫ
(i)
abs(ω) is the absolute full-energy

peak efficiency of detector i for gamma-rays emitted isotropically of energy ω. The term

in brackets is the absolute efficiency for two gamma-ray detection, assuming no angular

correlation

ǫisoabs,γγ :=
∑

i<j

2ǫ
(i)
abs(ω)ǫ

(j)
abs(E0 − ω). (6)

As explained below, this quantity can be determined rather well experimentally and is

approximately independent from the gamma-ray energy ω. It is convenient to define the
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quantity

N ′′
γγ(θ12) =

N ′
γγ(θ12)

ǫisoabs,γγ
. (7)

This is the efficiency-corrected number of counts of γγ-events in detector pair(s) with

opening angle θ12, under the assumption of isotropic emission. If the emission is isotropic,

it follows immediately that N ′′
γγ = Nγγ := N ·Γγγ/Γ. For the single-gamma decay a similar

expression is obtained

N ′′
γ =

N ′
γ

ǫisoabs,γ
, (8)

with

ǫisoabs,γ =
∑

i

ǫ
(i)
abs(E0). (9)

Since the single-gamma decay is isotropic N ′′
γ = Nγ := N · Γγ/Γ. Now we consider the

ratio
N ′′

γγ(θ12)

N ′′
γ

=
N · 1

Γ
· (4π)2 ·

∫

dω d5Γγγ

dωdΩdΩ′
|θ12

N · Γγ

Γ

(10)

and see that this corresponds exactly to the definition of δ in supplementary Eq. (2).

Thus, experimentally the quantity δ from supplementary Eq. (2), is given by

δ =
N ′′

γγ(θ12)

N ′′
γ

, (11)

while N ′′
γγ and N ′′

γ are straight-forwardly determined from the experimentally measured

number of counts N ′
γγ and N ′

γ by supplementary Eqs. (7) and (8). The measured counts

of γγ-events N ′
γγ had to be further corrected for the missed events due to the small

coincidence window of 2.4 ns. The used digitizer allowed to measure N ′
γ and N ′

γγ with a

negligible dead time even at detector rates of several kHz. The efficiencies ǫ
(i)
abs(E0) were

determined before the actual experiment with a source measurement.

The product ǫ
(i)
abs(ω)ǫ

(j)
abs(E0−ω) depends on the energy of both gamma-rays. However,

in the present experiment it was only possible to measure in an energy window defined

by the condition |E1 − E2| <350 keV for background suppression. Inside this energy

window, which corresponds to the energy range of 156 keV< E1,2 < 506 keV, the energy

dependence of the full-energy efficiency ǫ
(i)
abs(ω) can be approximated with the function

ǫ
(i)
abs(ω) = ai exp(−bω). Therefore the product ǫ

(i)
abs(ω)ǫ

(j)
abs(E0 − ω)

ǫ
(i)
abs(ω)ǫ

(j)
abs(E0 − ω) = aiaj exp(−bE0) (12)

is approximately energy-independent. The energy dependence of ǫ
(i)
abs(ω) was simulated

with GEANT4 [17]. The simulated efficiencies were scaled to the measured efficiencies at

an energy of 661.66 keV. Then for each detector i the parameters ai and b were determined
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through a fit of ǫ
(i)
abs(ω) = ai exp(−bω) to the simulated and scaled efficiency curves in

the energy window of interest. Thus, the γγ-coincidence efficiency ǫ
(i)
abs(ω)ǫ

(j)
abs(E0−ω) for

each detector pair was determined.

In order to suppress the background it was necessary to impose the energy conditions

|E1 − E2| <300 keV and |E1 − E2| < 250 keV for the 72◦ and 144◦-groups, respectively.

Thus, the values of 1.65(25) ·10−6 and 0.63(19) ·10−6 obtained for δ by evaluating supple-

mentary Eq. (11) are only parts (86% and 80%) of the full values (which would require

an energy gate of |E1 − E2| <661.66 keV). This restriction has been considered in the

extraction of the total branching ratio Γγγ/Γγ included in Tab. 1.

The difference of the energy gates of the 72◦ and 144◦-groups is due to the process

we term ’sequential’ Compton scattering. In this process the 661.66-keV gamma-ray of

the single-gamma decay deposits a part of its energy in detector A (EA ≈ 477 keV) and

is then scattered by ∼180◦ in the opposite direction. Next it scatters again on the 137Cs

source or the lead bricks by angles of ∼72◦ and ∼144◦ into detector B where it deposits

the remaining part of its energy (EB ≈125 keV for 72◦ and EB ≈172 keV for 144◦). The

sum energy of both detectors EA + EB is approximately ∼603 and ∼650 keV for the

72◦ and 144◦-groups, respectively. Therefore the ’sequential’ Compton scattering process

does not prohibit the analysis of the γγ-peak at 661.66 keV in case of the 72◦-group

due to the large energy difference of ∼60 keV. On the other hand in case of the 144◦-

group the ’sequential’ Compton scattering peak is only ∼10 keV away from the γγ-peak.

Furthermore, the energy gate |E1 − E2| < 300 keV, which limits the accepted E1 and

E2 values to the range from 181 to 481 keV, is not sufficient to suppress the ’sequential’

Compton scattering process entirely. Hence we chose the energy gate |E1−E2| < 250 keV,

corresponding to a single gamma-ray energy range from 206 to 456 keV, for the 144◦-

group.

It is possible to increase the energy gate of the 72◦-group to e.g. |E1 − E2| < 400 keV.

However, this would increase the background close to the γγ-peak in the sum energy

spectra E1 + E2 drastically, since one of the two background gamma-rays has typically

a low energy (< 180 keV). And, more importantly, the single energy spectra follow a

ω5 · (E0−ω)5 behaviour, neglecting the small octupole-dipole contribution, which can be

seen Fig. 4a. Thus, the (single) energy spectra peak at ω = E0/2, which corresponds to

|E1−E2| ∼ 0. Going away from the central energy E0/2 reduces the signal rather quickly,

while at the same time, the background increases, due to more copious low-energy gamma

rays. Hence, a larger energy gate would degrade the signal-to-noise ratio.
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B. Derivation of the equation for the differential γγ-decay probability

Starting from Eqs. (A34a) and (A15) in Ref. [3] and following [18] one obtains after a few

steps of angular momentum algebra supplementary Eq. (13) for the differential γγ-decay

width d5Γγγ/(dωdΩdΩ
′) for the transition from the first excited Ii = 11/2− state to the

If = 3/2+ ground state of 137Ba. The equation is not only valid under the assumption

that the angular momenta of the two emitted gamma-rays couple to J = |Ii − If | = 4 in

a stretched way, i.e., that the sum of the multipolarities L+L′ of the two involved virtual

transitions fulfills L+L′ = J = 4, but also for non-stretched E2E3 and E3E2 transition

and stretched E2E3 and E3E2 transitions with J = 5. Furthermore the selection rule

(−1)L
′+S′+L+S = πiπf = −1 requires for the considered 11/2− → 3/2+ stretched J = 4

transition that one transition character is magnetic while the other one has to be electric.

Non-stretched transitions of pure electric character are also possible, e.g. E2E3. S and

S ′ denote the transition characters (S = 0 for electric and S = 1 for magnetic transition

characters) and πi, πf denote the parities of the initial and final nuclear states. The

expression for d5Γγγ/(dωdΩdΩ
′) is then given by

d5Γγγ

dωdΩdΩ′ =
ωω′

96π3

∑

JS′

1
L′

1
S1L1

S′

2
L′

2
S2L2

P ′
J(S

′
1L

′
1S1L1)P

′
J(S

′
2L

′
2S2L2)

∑

l

aJξl Pl(cos θ12)
(13)

where ξ stands for a full set of parameters {S ′
1L

′
1S1L1S

′
2L

′
2S2L2} specifying the parities

and angular momenta of the two emitted photons. The parameters aξJ in front of the

Legendre polynomials Pi(cos θ12) are given in supplementary table 3. The functions

P ′
J(S

′L′SL) are the so-called generalised polarizabilities as given in Eq. (A19) in Ref. [3]

P ′
J(S

′L′, SL, ω′ω) = (−1)S+S′

2π(−1)Ii+IfωLω′L′·
√
2L+ 1

√
2L′ + 1

√

L+ 1

L

√

L′ + 1

L′
1

(2L+ 1)!!(2L′ + 1)!!
·

∑

n

[{

L L′ J
If Ii In

} �If ||iL′−S′

M(S ′L′)||In��In||iL−SM(SL)||Ii�
En − Ei + ω

+

(−1)L+L′+J

{

L′ L J
If Ii In

} �If ||iL−SM(SL)||In��In||iL
′−S′

M(S ′L′)||Ii�
En −Ei + ω′

]

.

(14)

En and In are the excitation energies and the spins of the intermediate nuclear states

through which the γγ-decay proceeds. The definitions and conventions of the reduced

matrix elements and the transition operators M(SL) are the same as in Ref. [3]. It is

convenient and interesting to separate P ′ into terms which involve intermediate states of

a certain spin and parity In only. Thus it is possible to rewrite supplementary Eq. (14)

6
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as

P ′
JIn(S

′L′, SL, ω′ω) = (−1)S+S′

2π(−1)Ii+IfωLω′L′·
√
2L+ 1

√
2L′ + 1

√

L+ 1

L

√

L′ + 1

L′
1

(2L+ 1)!!(2L′ + 1)!!
·

[{

L L′ J
If Ii In

}

αS′L′SL(ω) + (−1)L+L′+J

{

L′ L J
If Ii In

}

αSLS′L′(ω′)

]

,

(15)

with P ′
J =

∑

In
P ′
JIn and

αS′L′SL(ω) =
∑

n

�If ||iL
′−S′

M(S ′L′)||In��In||iL−SM(SL)||Ii�
En − Ei + ω

. (16)

Excluding the non-stretched J = 4 and all J = 5 contributions d5Γγγ/(dωdΩdΩ
′) in

supplementary Eq. (13) depends on six αS′L′SL(ω) parameters: αM2E2(ω), αE2M2(ω),

αM1E3(ω), αE3M1(ω), αM3E1(ω) and αE1M3(ω). For example in case of αE2M2(ω) the

nucleus does a virtual M2-transition from the 11/2− state to an intermediate 7/2+ state

through which it decays via a virtual E2-transition to the ground state or for αM2E2(ω) a

virtual E2-transition to an intermediate 7/2− state through which it decays via a virtual

M2-transition to the ground state. The corresponding sums run over all 7/2+ and 7/2−

states of the nucleus. Following Ref. [3] the denominator of supplementary Eq. (16)

is approximated through En − Ei + ω ≈ En − 0.5Ei to obtain approximate values for

the αS′L′SL(ω) parameters that are independent of ω (ω is replaced by its average value

ω = 0.5Ei). This approximation is good in cases where En − Ei ≫ Ei. Therefore with

(Ei = E0)

αS′L′SL(ω) ≈ αS′L′SL =
∑

n

�If ||iL
′−S′

M(S ′L′)||In��In||iL−SM(SL)||Ii�
En − 0.5E0

. (17)

It is desirable to extract all six parameters αS′L′SL performing a fit based on supple-

mentary Eq. (13) to the measured energy spectrum and angular correlations. However

the statistics of the data and the number of data points does not allow to determine all

six parameters. Therefore the free parameters were restricted to αE2M2 and αM1E3 that

are expected to dominate the value of Γγγ/Γγ according to our calculation in the frame-

work of the Quasiparticle-Phonon Model (QPM) (see supplementary table 2 and Fig. 1).

In this calculation the value of Γγγ/Γγ considering αE2M2 and αM1E3 only, deviates by

only ∼ 10% from the full branching ratio Γγγ/Γγ. The parameters αM2E2(ω), αE3M1(ω),

αM3E1(ω) and αE1M3(ω) are expected from nuclear theory to have a minor influence on

the branching ratio. In the following they were assumed to be zero. Then supplementary
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equation (13) reduces then to Eq. (1) of the letter

d5Γγγ

dωdΩdΩ′ =Aqq(α
2
E2M2, s)+

Aod(α
2
M1E3, s) + Ax(αE2M2 · αM1E3, s),

(18)

with

Aqq(α
2
E2M2, s) =

ωω′

96π3
·

{

(

P ′
4(E2M2, ω′ω)2 + P ′

4(M2E2, ω′ω)2
)

·
(

36

25
+

36

245
P2(cos θ12) +

16

1225
P4(cos θ12)

)

+ P ′
4(E2M2, ω′ω)P ′

4(M2E2, ω′ω) · 2
(

12

25
P1(cos θ12) +

36

175
P3(cos θ12)

)}

,

Aod(α
2
M1E3, s) =

ωω′

96π3
·

{

(

P ′
4(M1E3, ω′ω)2 + P ′

4(E3M1, ω′ω)2
)

·
(

12

7
− 3

14
P2(cos θ12)

)

+ (P ′
4(M1E3, ω′ω)P ′

4(E3M1, ω′ω)) · 2 9

14
P3(cos θ12)

}

,

Ax(αE2M2 · αM1E3, s) =
ωω′

(2Ii + 1)π

2

(4π)2
·

{

(P ′
4(E3M1, ω′ω)P ′

4(E2M2, ω′ω) + P ′
4(M1E3, ω′ω)P ′

4(M2E2, ω′ω)) ·

2

√

3

5

(

72

35
P1(cos θ12)−

2

35
P3(cos θ12)

)

+ (P ′
4(M1E3, ω′ω)P ′

4(E2M2, ω′ω) + P ′
4(E3M1, ω′ω)P ′

4(M2E2, ω′ω)) ·

2

√

3

5

6

7
P2(cos θ12)

}

.

(19)

Due to the assumption αM2E2(ω) = αE3M1(ω) = αM3E1(ω) = αE1M3(ω) = 0 each

P ′
J(S

′L′, SL, ω′ω) in supplementary Eq.( 19) has just one contributing α-parameter.

The two fit-parameters αE2M2 and αM1E3 were determined by a simultaneous fit of

the data shown in Fig. 4a and the 144◦ data point from Fig. 4b. The 72◦ data point in

Fig. 4b was not included, since it corresponds to the data in Fig. 4a, which were already

included in the fit.

It should be remarked that the assumption En−Ei ≫ Ei for approximating ω through

its average value 0.5E0 in supplementary Eq. (17) is not fully justified for the transition

of interest for the states that are lowest in energy for a given spin quantum number In.

8
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For example Ei = 661.66 keV and En −Ei = 590 keV for the lowest 7/2+ state of 137Ba.

The systematic errors that are introduced to the values given in Tab. 1 through this

approximation are estimated to be of the order of ∼10%.
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Jπ En (MeV) SL B(SL) (e2fm2L)
exp. calc. exp. calc.

1/2+ 0.283 0.176 E2 125 94

11/2− 0.661 0.198 M4 0.98·103 1.11·103
7/2+ 1.251 1.432 E2 520 519

5/2+ 1.294 1.184 M1 0.15·10−2 0.14·10−2

Supplementary Table 1: Low lying states in 137Ba and their decay transitions to the 3/2+

ground state as predicted by the QPM in comparison to data.
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Supplementary Figure 1: Results of our QPM calculations: shown are the running sums

of the various matrix elements αS′L′SL defined in supplementary Eq. 17. The final values

are the ones at 20 MeV, which are listed in supplementary table 2. Several contributions

were to small to be visible un-scaled and the ordinate values should be multiplied by the

given factors.
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1 2  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

Jπ(|n�) S ′L′ SL αS′L′SL Jπ(|n�) S ′L′ SL αS′L′SL

(e2 fm4/MeV) (e2 fm5/MeV)

9/2+ M3 E1 −2.63 9/2− E3 E2 16.54

7/2− M2 E2 −2.52 7/2− E3 E2 −37.49

5/2+ M1 E3 9.47 7/2+ E2 E3 353.35

9/2− E3 M1 −0.58 5/2+ E2 E3 −997.46

7/2+ E2 M2 42.60

5/2− E1 M3 0.28

Supplementary Table 2: Results of QPM calculations: final parameters αS′L′SL as defined
in supplementary Eq. 17. The γγ-decay is mainly determined by αE2M2 and αM1E3. The
non-stretched (electric only) transitions, shown in the right-hand part, have very minor
influence on the results and were not used.
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W W W. N A T U R E . C O M / N A T U R E  |  1 3

SUPPLEMENTARY INFORMATION RESEARCH

J ξ = (S ′
1L

′
1S1L1) · (S ′

2L
′
2S2L2) aξ0 aξ1 aξ2 aξ3 aξ4 aξ5

4 M1E32 12
7

− 3
14

4 M1E3 ·M2E2
144

√
3

5

35
−4

√
3

5

35

4 M1E3 ·M3E1 144
49

3
49

4 M1E3 · E1M3 9
7

4 M1E3 · E3M1 9
7

4 M1E3 · E2M2
12
√

3

5

7

4 M1E3 · E2E3 3
√
15
7

4 M1E3 · E3E2
√
15
7

4 M2E22 36
25

36
245

16
1225

4 M2E2 ·M3E1
144

√
3

5

35
−4

√
3

5

35

4 M2E2 · E1M3
12
√

3

5

7

4 M2E2 · E2M2 24
25

72
175

4 M2E2 · E3M1
12
√

3

5

7

4 M2E2 · E2E3 48
35

12
35

4 M2E2 · E3E2 36
49

− 8
49

4 M3E12 12
7

− 3
14

4 M3E1 · E1M3 9
7

4 M3E1 · E2M2
12
√

3

5

7

4 M3E1 · E3M1 9
7

4 M3E1 · E2E3 24
√
15

49
−3

√
15

49

4 M3E1 · E3E2
9
√

3

5

7
−4

√
3

5

7

Supplementary Table 3: The coefficients aξl of the Legendre polynomials in supplementary

Eq. (13) for the case of an 11/2- to 3/2+ transition. The symbol ξ stands for a full

set of parameters {S ′
1L

′
1S1L1S

′
2L

′
2S2L2}. For instance, M1E32 means S ′

1 = S ′
2 = 1,

L′
1 = L′

2 = 1, S1 = S2 = 0, L1 = L2 = 3. For not listed combinations of ξ the value

of aξl = 0. All fully stretched J = 4, and E2E3 and E3E2 (J = 4, 5) were included.

Continues in table 4.

13



SUPPLEMENTARY INFORMATION

1 4  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

J ξ = (S ′
1L

′
1S1L1) · (S ′

2L
′
2S2L2) aξ0 aξ1 aξ2 aξ3 aξ4 aξ5

4 E1M32 12
7

− 3
14

4 E1M3 · E2M2
144

√
3

5

35
−4

√
3

5

35

4 E1M3 · E3M1 144
49

3
49

4 E1M3 · E2E3 −9
√

3

5

7

4
√

3

5

7

4 E1M3 · E3E2 −24
√
15

49
3
√
15

49

4 E2M22 36
25

36
245

16
1225

4 E2M2 · E3M1
144

√
3

5

35
−4

√
3

5

35

4 E2M2 · E2E3 −36
49

8
49

4 E2M2 · E3E2 −48
35

−12
35

4 E3M12 12
7

− 3
14

4 E3M1 · E2E3 −
√
15
7

4 E3M1 · E3E2 −3
√
15
7

4 E2E32 36
35

−27
98

8
245

4 E2E3 · E3E2 384
245

−1
5

− 4
49

4 E3E22 36
35

−27
98

8
245

5 E2E32 44
35

11
49

− 4
735

5 E2E3 · E3E2 704
245

22
315

4
441

5 E3E22 44
35

11
49

− 4
735

Supplementary Table 4: Continued from supplementary table 3.
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