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Abstract

Analyses of a modified BCS (MBCS) theory performance at finite temperatures in the Picket Fence
Model (PFM) for light and heavy systems are presented. Both symmetric, Ω = N (N particles on Ω

doubly-degenerate levels), and asymmetric, Ω �= N , versions of the PFM are considered. Quantities de-
termined exactly from particle–hole symmetry of the symmetric PFM are calculated in the MBCS. They
are found in significant deviation from the exact values starting from far below the critical temperatures of
the conventional BCS. Consequences of the MBCS prediction that heating generates a thermal constituent
of the pairing gap, are discussed. The question of thermodynamical consistency of the MBCS is also ad-
dressed.
© 2009 Elsevier B.V. All rights reserved.

PACS: 21.60.-n; 24.10.Pa; 24.60.-k; 24.60.Ky
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1. Introduction

A modified BCS (MBCS) theory for treating pairing correlations in atomic nuclei at finite tem-
peratures [1,2] has been recently tested [3] in the Picket Fence Model (PFM) in which N particles
are distributed over Ω doubly-degenerate levels. The PFM with N = Ω is usually considered in
the literature.
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The MBCS predicts a smooth decreasing behavior for a pairing gap as temperature T in-
creases up to some TM when the theory suddenly breaks down. It was reported [3,4] that adding
one extra level (Ω = N +1) extends the MBCS applicability to much higher temperatures. Stud-
ies of the model in Ref. [5] notified that the exceptional behavior of the MBCS pairing gap
is limited to the Ω = N + 1 case only. Here we provide a more systematic study for Ω �= N

examples in the PFM. This is done in Section 3.
In Section 4, we address the key question of the article: what is the range of temperatures

where the MBCS provides a reasonable description. For that, we examine some quantities which
are known exactly in the N = Ω PFM because of symmetry. In Section 5, the MBCS prediction
that not only the pairing force but also the heating itself generates the pairing gap, is discussed.
In Section 6 we investigate the thermodynamical consistency of the MBCS.

2. Introduction to the MBCS approach

In the MBCS treatment of the pairing problem at finite temperature, in addition to the canon-
ical Bogoliubov transformation from particle creation a

†
jm and annihilation ajm operators to

quasiparticle operators {α†
jm,αjm}:

α
†
jm = uja

†
jm − vjajm̃,

αjm̃ = ujajm̃ + vja
†
jm, (1)

a secondary temperature-dependent Bogoliubov transformation to new bar-quasiparticles {ᾱ†
jm,

ᾱjm}:
ᾱ

†
jm = √

1 − njα
†
jm + √

njαjm̃,

ᾱjm̃ = √
1 − njαjm̃ − √

njα
†
jm (2)

and a new ground state |0̄〉, a vacuum for the bar-quasiparticles, are introduced. The index
jm corresponds to the level of a spherically symmetric mean field with quantum numbers
j ≡ [n, l, j ], projection m, and energy εj . Tilde in Eqs. (1), (2) and below means time rever-
sal operation: αjm̃ = (−1)j−mαj−m. Thermal quasiparticle occupation numbers nj = 1/(1 +
exp (Ej/T )) are functions of a quasiparticle energy Ej and temperature T .

Combining transformations (1) and (2) one obtains Bogoliubov transformation from particle
to bar-quasiparticle operators:

ᾱ
†
jm = ūj a

†
jm − v̄j ajm̃,

ᾱjm̃ = ūj ajm̃ + v̄j a
†
jm (3)

where

ūj = uj

√
1 − nj + vj

√
nj ,

v̄j = vj

√
1 − nj − uj

√
nj . (4)

Minimization of the pairing Hamiltonian cannot depend on whether coefficients of the unitary
transformation are written with bar in Eq. (3) or without it in Eq. (1). Accordingly, applying
Eq. (3) one should obtain the same equations and solutions as in the BCS(T = 0) theory (which
uses Eq. (1)) but in bar-variables. They are the pairing gap equations:
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N = 2
∑
j

(j + 1/2) v̄2
j ,

�̄ = G
∑
j

(j + 1/2) ūj v̄j (5)

solving which one determines a Fermi surface energy ĒF and a pairing gap �̄, and analytical
expressions for eigen-energies:

Ēj =
√

(εj − ĒF )2 + �̄2 (6)

and eigen-vectors:

ūj =
√

1

2

(
1 + εj − ĒF

Ēj

)
,

v̄j =
√

1

2

(
1 − εj − ĒF

Ēj

)
. (7)

The MBCS founders suggest to solve Eqs. (5) for obtaining ĒF and �̄ but at the same time
to associate expressions (6), (7) with α

†
jm|0〉 states instead of the MBCS eigen-states ᾱ

†
jm|0̄〉, i.e.

to use

Ej =
√

(εj − ĒF )2 + �̄2 (8)

and

uj =
√

1

2

(
1 + εj − ĒF

Ej

)
,

vj =
√

1

2

(
1 − εj − ĒF

Ej

)
(9)

as in the conventional BCS. Coefficients {ūj , v̄j } are calculated from Eq. (4). Eqs. (4), (5), (8),
(9) form the complete set of the MBCS equations.1 It is essential to keep in mind that this set of
the MBCS equations was not obtained analytically (as, e.g., the BCS equations). It was written
down in analogy to the BCS equations as far as the pairing Hamiltonian in terms of bar- and
Bogoliubov quasiparticles look formally the same. Inconsistency in this analogy is that solutions
of the eigen-problem for the pairing Hamiltonian are attributed to non-eigen-states α

†
jm|0〉 in the

MBCS.
Expressions for physical observables (like the system energy, etc.) are obtained in the MBCS

by formal replacement of the {uj , vj } coefficients in corresponding BCS(T = 0) expressions by
the {ūj , v̄j } coefficients.

3. MBCS pairing gap in PFM systems with Ω = N and Ω �= N

The PFM or Richardson model is widely used as a test model for the pairing problem. It is the
pairing Hamiltonian applied to a system of N fermions distributed over Ω equidistant levels. All

1 Bar on top of ĒF and �̄ is omitted below.
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levels are doubly degenerate for spin up and down. The levels below (above) the Fermi surface
will be referred to as holes (particles) and labeled by “−i” (“i”). Their single particle energies
are ε−i = (0.5 − i) MeV for holes and εi = (−0.5 + i) MeV for particles, where i = 1, 2, . . .

(i.e. εi = −ε−i ). In all calculations presented below (except for the ones in Fig. 5(c), (d) and
Fig. 7(a), the pairing strength parameter G is adjusted so that the pairing gap � equals 1 MeV at
zero temperature.

When the number of particles N in the PFM is not big, the pairing Hamiltonian can be diag-
onalized exactly. Comparison in [6] of particle occupation numbers and specific heat in MBCS
predictions to the same quantities obtained from an exact solution for the N = Ω = 10 system
reveal substantial deviations. It has been argued [3,4] that the cause of deviations is a limited
number of levels in the system. Below, we compare MBCS predictions to exact results which
do not require the Hamiltonian diagonalization but based on internal particle–hole symmetry of
the PFM with N = Ω (to be referred to as the conventional PFM). Due to this symmetry, at any
temperature and for any number of particles N :

(a) the energy of the Fermi surface EF equals exactly 0 MeV:

EF ≡ 0; (10)

(b) the quasiparticle energies Ei for particles and holes should be degenerate:

Ei =
√

(εi − EF )2 + �2 ≡
√

(ε−i − EF )2 + �2 = E−i (11)

because of (10);
(c) the particle occupation probabilities (Bogoliubov ui and vi coefficients) are related as:

ui =
√

1

2

(
1 + εi − EF

Ei

)
≡

√
1

2

(
1 − ε−i − EF

E−i

)
= v−i (12)

because of (10), (11);
(d) the thermal quasiparticle occupation numbers ni and quasiparticle-number fluctuations

δNi = √
ni(1 − ni) should be equal for particles and holes with the same i:

ni ≡ n−i and δNi ≡ δN−i (13)

because of (11).

Of course, an asymmetric version of the PFM with Ω = N + k (where k = −N/2 + 1,

. . . ,−1,1, . . . ,∞) may be considered as well but Eqs. (10)–(13) are not valid for it.
The first test of the MBCS performance in the conventional PFM with N = Ω = 10 re-

vealed that at T ≈ 1.75 MeV the system undertakes a phase transition which manifests itself
as a sharp simultaneous increase in the pairing gap, a sharp decrease of the system energy and
a discontinuity in the specific heat CV (this phase transition was defined in [6] as a superfluid –
super-superfluid phase transition). This critical temperature was denoted as TM in Refs. [3,4]. It
was found that TM linearly increases with the number of particles N in the conventional PFM.
It was also reported that enlarging the space by one more level, Ω = N + 1, restores the MBCS
applicability to much higher temperatures even for N � 14 systems [3,4].

Fig. 1 plots the MBCS pairing gap for N = 14 particles and Ω = N + k levels with k chang-
ing from −4 to 50 (solid curves). Indeed, the MBCS gap is small and almost constant above
the critical temperature Tc of the conventional BCS when the example of extended configura-
tion space with k = 1, is considered. However, when one more extra level is added to the PFM
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Fig. 1. MBCS pairing gap � for the system of N = 14 particles on Ω = N +k levels (solid curves). The BCS pairing gap
is plotted by the dashed curve. The k values are indicated in an oval at each curve. The conventional critical temperature
Tc is shown by the vertical arrow.

(k = 2) the MBCS pairing gap sharply drops to negative value at TM = 2.15 MeV and its ab-
solute value starts to grow as a function of T . With an additional enlarging of the configuration
space (k = 3,4, . . .), the MBCS pairing gap behavior remains similar to k = 2 example with TM

becoming smaller as k increases. On the other side, in the case of the conventional PFM (k = 0)
and reduced configuration space (k = −1,−2, . . .), the MBCS gap starts to grow above some TM

which becomes again smaller as |k| increases.
The pairing gap of the conventional BCS theory is shown in Fig. 1 by the dashed curve for

comparison. It is impossible to visually distinguish the results when k value changes from −4 to
50.

We have performed additional calculations for the asymmetric PFM with N changing from 6
to 100. The results look similar to the ones in Fig. 1. In all these examples, there exists only a
single case k = 1 with exceptionally large TM which grows almost linearly with N . For all other
k values, the MBCS breaks down at much lower TM . The critical temperature TM systematically
decreases with increasing of the |k − 1| value.

From the systematic analysis of the MBCS pairing gap behavior in the PFM we conclude that:

(1) the MBCS predictions are very sensitive to details of the single particle spectrum employed;
(2) the MBCS predicts two typical scenarios for the system evolution with heating. As tem-

perature increases, the system undertakes either (a) a superfluid – super-superfluid phase
transition (examples with k � 0 in Fig. 1) or (b) a phase transition from a superfluid phase
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Fig. 2. MBCS predictions for the ratios of quasiparticle-number fluctuations δNi/δN−i in different (N,Ω) systems. The
exact result δNi/δN−i ≡ 1 in figures (a), (c), (d) is shown by the dotted line. The conventional critical temperature Tc is
shown by the vertical arrow.

with a positive gap to another superfluid phase but with a negative gap2 (examples with
k > 1 in Fig. 1). In both the cases, the MBCS predicts that above some critical temperature
the pairing gap |�| starts to grow;

(3) for each number of particles N , there exists a single exceptional case with the number of
PFM levels Ω = N + 1 for which the MBCS mimics the thermal behavior of the average
pairing gap in Ref. [7] where the normal – superfluid phase transition is washed out and
above Tc the gap remains rather small but positively finite.

4. Applicability of the MBCS at finite temperature

A criterion of the MBCS applicability has been suggested in Refs. [3,4]. According to it, the
quasiparticle-number fluctuations δNi should be symmetric with the respect to the Fermi surface.
The conventional PFM with its particle–hole symmetry, see Eqs. (11), (13), is an ideal system to
determine the temperature range where the MBCS predictions are most accurate.

Fig. 2 presents the ratios δNi/δN−i , for different levels i which are plotted by different line-
types. The deviation of these ratios from 1 is a measure of the asymmetry in the quasiparticle-
number fluctuations which quantifies on the level of violation of the criterion the MBCS appli-
cability. The results are presented for (a) light, N = 10, (c) medium, N = 30, and (d) heavy,
N = 100, systems. The exact result, Eq. (13), is given by the dotted line. For comparison, we
also provide in Fig. 2(b) an example with Ω = N + 1.

2 In the BCS, the gauge is fixed by a convention that u and v coefficients of the canonical Bogoliubov transformation are
real and positively defined. It leads to always positive BCS pairing gap. The same convention is used in the MBCS. The
pairing gap turning negative in MBCS predictions indicates that some processes play more important role in generating
the gap than the pairing force (see below).
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Fig. 3. MBCS predictions for the ratios of quasiparticle energies (E−i /Ei) in different N = Ω systems. The exact result
(E−i /Ei) ≡ 1 is shown by the dotted line. The conventional critical temperature Tc is shown by the vertical arrow.

The temperature dependence of the ratios δNi/δN−i is almost the same for all systems in
Fig. 2. The asymmetry in δNi sets in at T ≈ 100 keV, it rapidly grows, reaching its maximum
in the vicinity of Tc, and then drops down again. A correlation between the magnitude of the
deviation and the energy of a particle/hole pair relative to the Fermi surface is observed.

Only the lightest system, N = 10, in Fig. 2 reaches the temperature TM below 2.5 MeV. At this
temperature, the asymmetry in δNi also slightly increases but the effect is very modest compared
to what we witness at lower temperatures. Our results in Fig. 2 demonstrate that the criterion of
the MBCS applicability in [3,4] does not explain the MBCS breaking down above TM because it
is violated even stronger at lower temperatures where the MBCS pairing gap looks reasonable at
first glance.

Let us briefly check how other properties of the conventional PFM, Eqs. (10)–(13), are ful-
filled in the MBCS predictions. Since the quantities δNi and ni in Eq. (13) are closely related,
the behavior of the ratios ni/n−i is very similar to the one of δNi/δN−i in Fig. 2. The strongest
deviation of ni/n−i from 1 takes place near Tc and reaches the value of 25.

The accuracy of the MBCS predictions for the quasiparticle energies, Eq. (11), and for the par-
ticle occupation probability, Eq. (12), with i = 1 is examined in Fig. 3 and Fig. 4(a), respectively.
Fig. 4(b) shows the calculated Fermi surface energy as a function of temperature for different
particle numbers. Except for small temperatures (T � 100 keV) the Fermi surface energy devi-
ates from zero expected from Eq. (10). Furthermore, the results in light and heavy systems are
very similar, at least qualitatively. While the accuracy in description of the δNi and ni quantities
in the MBCS predictions improves at higher temperatures, this is not the case for the quantities
in Figs. 3 and 4.

The results in Figs. 2–4 indicate that as soon as heating starts to play a role, the MBCS fails to
describe genuine properties of the conventional PFM. Deviations from the exact results are very
strong and almost independent of the particle number N .
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Fig. 4. MBCS predictions for (a) ratios (v−1/u1) and (b) the energy of the Fermi level EF in N = Ω = 10, 30, and
100 systems. The exact results (a) (v−1/u1) ≡ 1 and (b) EF ≡ 0 for these systems are shown by dotted lines. The
conventional critical temperature Tc is shown by the vertical arrow.

5. MBCS pairing gap: Quantal and thermal constituents

Since the criterion of the MBCS applicability in Refs. [3,4] is violated much stronger at lower
temperature than at TM and above, an alternative explanation of the breakdown temperature TM

is needed. Below, we analyze the MBCS pairing gap. Substituting (3) into (5), Eq. (5) for the
MBCS gap can be rewritten as the sum of two terms � = �q + δ�. The first of them:

�q = G
∑
j

(j + 1/2)(1 − 2nj )uj vj , (14)

looks similar to the pairing gap of the conventional BCS and referred in [3] as a quantal part. The
second one:

δ�h = G

holes∑
j

(j + 1/2)
(
v2
j − u2

j

)√
nj (1 − nj ) for holes, (15)

δ�p = G

part.∑
j

(
j + 1/2

)(
v2
j − u2

j

)√
nj (1 − nj ) for particles, (16)

represents an extra thermal part.
Fig. 5 presents the MBCS gap for (a) light and (b) heavy PFM systems by the thick solid

curve. The �q part of it is shown by the thin solid curve, it quickly drops to almost zero above Tc.
The additional thermal part for holes (particles) is plotted by the dashed (dot-dashed) curve. The
quantity δ�h is always positive (vi > ui ) and the quantity δ�p is always negative (ui > vi ); their
absolute values increase with temperature.

In the conventional BCS, pairing is generated by the pairing force. As temperature increases
the thermal scattering of nucleons becomes stronger and stronger and finally destroys the pairing
at Tc. The MBCS suggests a different picture, where the heating itself generates an extra ther-
mal constituent of the pairing gap: positive for holes and negative for particles. The heavier the
system, the stronger a thermal pairing gap may be generated. A similar phenomenon takes place
in calculations with realistic single particle spectra (see Fig. 5(c) and (d) where the pairing gap
behavior in 120Sn is presented for neutrons and protons, respectively).

In a magic nuclear system the pairing strength is too weak to generate pairing. Nevertheless,
the MBCS predicts that the heating should develop the pairing gap at finite T even in such a case
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Fig. 5. MBCS pairing gap (thick solid curve) for the PFM systems with (a) N = 14, Ω = 15 and (b) N = Ω = 100 and in
a calculation with a realistic single particle spectrum for 120Sn: (c) neutron and (d) proton systems. This gap is the sum
of a �q , Eq. (14), (particles plus holes – thin solid curve) and extra thermal (holes – dashed curve, particles – dot-dashed
curve) parts. The conventional critical temperature Tc is shown by the vertical arrow.

[cf. Eqs. (15)–(16)]. An example of the pairing induced by heating in such a system is shown in
Fig. 5(d).

The BCS T = 0 solution evolves as temperature increases. Its evolution in the MBCS involves
two almost linearly growing functions δ�h and −δ�p which should cancel each other with a
high accuracy in a large temperature interval.3 At TM the balance between these two terms is
broken and the MBCS equations find another, more preferable, solution:

(a) if k � 0, the system undertakes a first-order phase transition. The new solution which de-
velops at T � TM , is characterized by a smaller system energy and a sudden increase of the
Fermi level energy and the pairing gap (see, e.g., Fig. 2 in [6]);

(b) if k > 1, the system undertakes a second-order phase transition. The new solution has smaller
value of |δ�h + δ�p|. This phase transition is very similar to the superfluid – normal phase
transition of the conventional BCS. But since the normal phase is not allowed in the MBCS
(see [6]), the model predicts a phase transition of a superfluid state with a positive gap to
another superfluid state with a negative gap.

We conclude that phase transitions of unknown types in the MBCS predictions at TM are
consequences of the thermal mechanism of pairing in this theory.

3 Independently from the physical content of the thermal gap in the MBCS, one finds from Eqs. (12)–(16) that δ�h ≡
−δ�p for the conventional PFM and the cancellation between these two terms should be exact at any T . This does not
happen in MBCS predictions because the MBCS theory violates Eqs. (12), (13), see above.
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Fig. 6. MBCS predictions for (a), (b) the pairing gap, (c), (d) the energy of the Fermi level, and (e), (f) particle number
fluctuations in the two-level model (the level degeneracy is 20). The number of particles N is 18 and 22 (left column) and
10 and 30 (right column): smaller N – thick lines, larger N – thin lines. Dashed and dot-dashed lines in (a), (b) present
�q and (δ�p + δ�h) components of �, respectively. Dotted lines in (e), (f) plots particle number fluctuations in the
conventional BCS. The conventional critical temperature Tc is shown by the vertical arrow.

A two-level model is another widely used model for testing the pairing problem. It is the
PFM with Ω = 2 and a degeneracy K for each level. The systems with a number of particles
N = K −k and N = K +k (k is an integer value smaller than K) are particle/hole mirror systems
and should have exactly the same solutions. Figure 6 presents the MBCS predictions for such
mirror systems in calculations with parameters: K = 20, ε±1 = ±0.5 MeV, and �T =0 = 1 MeV.
The calculations are performed for k = ±2 (left column) and k = ±10 (right column). The results
for k < 0 and k > 0 are plotted by thick and thin lines, respectively.

The MBCS pairing gap is presented in Fig. 6(a), (b) by solid lines while its �q and
(δ�p + δ�h) components are plotted by dashed and dot-dashed lines, respectively. The equiva-
lence of the mirror systems in Fig. 6 is broken by the MBCS at finite temperatures. Disagreement
becomes more sizable as k increases. The MBCS gap � is almost constant in these examples. Its
thermal constituent (δ�p +δ�h) behaves differently from what has been detected in Fig. 5 where
this sum (the difference between thick and thin lines in Fig. 5) remains very small up to high
temperatures. When the Fermi level is above ε1 in the two-level model, there is no cancellation
between δ�p and δ�h and both levels give positive contribution. The temperature dependence
of the Fermi level energy is shown in Fig. 6(c), (d). Remember, thick and thin lines in Fig. 6(c),
(d), representing mirror systems, should be symmetric against EF = 0 (dotted-line).

The pairing induced by heating in systems with finite number of particles is discussed in
the literature (see, e.g., Refs. [7–9]). However, this phenomenon is revealed by methods which
exactly fix the number of particles in a finite system. The fixed number of particles is neces-
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sary to take properly into account strong fluctuations of the order parameter (the pairing gap in
the present case) which are important in systems with small number of particles. That is why
the pairing correlations at finite temperature are considered in [7–9] in the canonical ensemble.
The MBCS method conserves the particle number only on average like the conventional BCS
method and the particle number fluctuations

√〈|N2|〉 − 〈|N |〉2 is its inherent feature. Fig. 6(e),
(f) presents this quantity for the two-level model. At the T > Tc these fluctuations in the MBCS
are even larger than in the conventional BCS. In our opinion, the only origin of temperature-
induced pairing in the MBCS is the inconsistency in writing down the method equations (see
Section 2).

6. Thermodynamic consistency of the MBCS theory

We now investigate the thermodynamic consistency of the MBCS observables by considering
the system entropy. Different entropy-like quantities in nuclear physics: the thermodynamical
entropy

Sth =
T∫

0

1

τ
· ∂Etot

∂τ
dτ, (17)

the single particle entropy (also referred to as the quasiparticle entropy in [10])

Ssp = −
∑
j

(2j + 1)
[
nj lnnj + (1 − nj ) ln(1 − nj )

]
, (18)

and the information entropy have been studied in [11,12]. It has been established that all of them
“coincide for strong enough interaction . . . in the presence of a mean field” [12].

Fig. 7(a) presents the quantities SBCS
th and SBCS

sp (squares and crosses, respectively) for the
N = Ω = 10 PFM within the conventional BCS. It is not possible to visually distinguish between

Fig. 7. MBCS predictions for the thermodynamical entropy Sth, Eq. (17), and the single particle entropy Ssp, Eq. (18) in
different light and heavy, symmetric and asymmetric PFM systems. Note the logarithmic y scale.
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them. The same is true for other PFM systems being considered and also in the case of a more
realistic calculation in 120Sn [5].

The quantities SMBCS
th and SMBCS

sp predicted by the MBCS model are plotted in Fig. 7 by
dashed and solid lines, respectively. In this figure, we present different light and heavy, symmetric
and asymmetric PFM systems. But in fact, the results do not depend on the number of particles
N and levels Ω in the investigated temperature range. Thus, the N = Ω = 10 PFM system may
be considered as a typical example. Notice that SMBCS

th and SMBCS
sp are very different from each

other up to an order of magnitude.
For the N = Ω = 10 PFM system, the exact solution is available [13]. The system entropy

Sexact
th from this solution is plotted by circles in Fig. 7(a). One finds for T > 100 keV:

Sexact
th ≈ SBCS

th
∼= SBCS

sp ≈ SMBCS
sp � SMBCS

th . (19)

In passing we note that the quantities SMBCS
th and SMBCS

sp are compared to Sexact
sp in Refs. [3,

10]. Unfortunately, the way Sexact
sp is calculated produces the results which conflict with the third

law of thermodynamics4 and, accordingly, wrong.5

We conclude that the system energy Etot which enters Eq. (17) and the system entropy Eq. (18)
are thermodynamically inconsistent quantities in the MBCS model. In another words, the MBCS
expressions for the system energy (e.g., in the form of Eq. (25) in [3]) and entropy conflict to
each other from the point of view of thermodynamics.

7. Conclusions

In this article we have investigated the validity of the MBCS model. The model performance
is examined within the PFM to determine possible ranges of its applicability.

We confirm that there exists a single example of the PFM (with the number of levels Ω equal
to the number of particles N plus one) in which the MBCS produces the thermal behavior of
the pairing gap similar to the one of a macroscopic theory up to rather high temperatures. On
the other hand, we demonstrate that in all other examples of the PFM with Ω �= N the theory
predicts phase transitions of unknown types at a much lower temperature.

The conventional PFM with Ω = N possesses internal particle–hole symmetry. Thus, some
quantities in the model are known exactly. We have tested the MBCS predictions for these quan-
tities and find significant deviations starting from very low temperatures.

A particular prediction of the MBCS is that heating generates a thermal constituent of the
pairing gap in contrast to the generally accepted picture of the pairing phenomenon in nuclei to
result from specific particle–particle interaction. We point out that this constituent of the MBCS
pairing gap is responsible for phase transitions of unknown types. It also leads to a strong sensi-
tivity of the theory predictions to tiny details of single particle spectra and is therefore unphysical.
Finally, we point out that the MBCS is a thermodynamically inconsistent theory.

4 “. . . at absolute zero, any part of the body must be in a definite quantum state – namely the ground state . . . the
entropy of the body – the logarithm of its statistical weight – is equal to zero” (§23, p. 66 in [14]).

5 The author of [3,10] confused interacting particles (which have occupation probabilities for holes fh < 1 and particles
fp > 0 at T = 0) and noninteracting “quasiparticles” (with occupation probabilities nh(p) ≡ 0 at T = 0). Particle/hole
levels are not eigen-states of the pairing Hamiltonian, their occupation numbers do not obey Fermi–Dirac distribution
and because of that, they cannot be used in Eq. (18) which represents the free Fermi-gas combinatorics.
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