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Abstract

We study the statistical properties of the electric pygmy dipole resonance in four different is
with neutron numberN = 82. These nuclei are138

56Ba,140
58Ce,142

60Nd, 144
62Sm. The data set comprise

184 levels with spin and parityJπ = 1− and their ground stateB(E1) transition strengths. Th
statistics are found to be “mixed”, i.e., in between the predictions of random matrix theo
correlated and uncorrelated spectra. Moreover, we calculate spectra and transition stren
the quasiparticle phonon model (QPM). We compare experimental and theoretical finding
incompleteness of the data sets and its impact on the results is discussed. A consistent picture
which yields an improved understanding of the statistical properties of the pygmy resonance.
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1. Introduction

Low-energy electric dipole strength concentrated around 5–7 MeV in stable h
nuclei has been studied for a long time [1], but its nature and systematic features re
subject of discussion. This strength is commonly termed pygmy dipole resonance
since it is small compared to the E1 strength in the excitation energy region of the iso
giant dipole resonance (GDR). Most of the hitherto existing experimental informat
restricted to gross properties of the mode, but the variation of its width, total streng
centroid energy are poorly understood.

Beyond resolving the long-standing problem of its structure, clarifying the nature o
PDR is important for a further number of reasons. Strongly excited soft E1 modes hav
been observed in exotic, very neutron-rich isotopes (see, e.g., [2–4]), and it is an o
question whether the underlying mechanism generating these modes is the sam
nuclei close to and in the valley of stability. Furthermore, the PDR is typically located
to particle threshold. This has important astrophysical implications because the therm
equilibrium of(γ,n) and(n, γ ) reactions in explosive nucleosynthesis scenarios [5,6]
be considerably modified. Finally, since the low-lying E1 strength significantly influe
the nuclear dipole polarizability through the inversely energy-weighted sum rule [7],
particular nature must be understood quantitatively.

A variety of models—with partly conflicting conclusions—exists for a theoret
interpretation of the PDR, ranging from hydrodynamical descriptions [8,9], neutron e
surface density oscillations [10–12], fluid-dynamical approaches [13–15] to local isosp
breaking in heavy nuclei by clustering [16]. Microscopically, non-relativistic [17,18]
relativistic [19–21] random phase approximation (RPA) calculations predict a sizeab
isoscalar E1 mode well below the GDR. Fragmentation of the E1 strength in the r
of the PDR due to the coupling to complex configurations has been studied in [22–2

Recently, important experimental progress has been made by high-resolution meas
ments of the fine structure of the PDR at various shell closures [22,27,28] using the n
resonance fluorescence technique. For the case of208Pb, the comparison of experimen
results and model calculations suggests [22] that the mode is due to surface neutron
vibrations, but some features of the low-energy E1 response seem also to be determ
transverse excitations characterized by toroidal transition current distributions [29].

Here, we pursue an alternative approach to shed light on the nature of the PD
investigate its statistical properties by employing random matrix theory (RMT).
theory, originally developed by Wigner and Dyson, is capable of describing sp
statistics in a unifying way for a rich variety of systems (for a review see [30]). In nu
physics, a number of studies (see, e.g., [30–36]) address the question what kind of s
is to be expected in different regions of the spectra. Roughly speaking, one can disti
correlated, uncorrelated, and mixed behavior, depending on the excitation energy, m
number and on collective or single-particle character. Even though the complex
the nuclear many-body problem does not always allow for an easy interpretation
findings, general trends could be identified.

In a recent study, it was possible to draw conclusions from the spectral sta

on features of a particular excitation mechanism [35]. This investigation was concerned
with Jπ = 1+ states excited by the orbital magnetic dipole scissors mode. The present
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work builds upon the insights gained in [35]. Here, we focus on the PDR in four s
N = 82 semimagic nuclei. Recent experiments [28,37] provide a large data ensemble o
the energies ofJπ = 1− states and their ground-state transition strengths. However,
data sets are still incomplete because of limited experimental sensitivity with respect
detection of weak transitions. On the other hand, fairly complete theoretical calcula
which should be compared to the data, are available within the microscopic quasip
phonon model (QPM) which provides a successful description of the PDR in208Pb.

Statistical analysis of nuclear data is generally hampered by the problem of m
levels. This is so because the number of levels accessible in an experiment is low
and the resolution is not as good as, e.g., in laser spectroscopic measurements fo
and molecules. Inγ spectroscopic studies on excited heavy nuclei there is always a
detector threshold, and individual transitionssometimes cannot be resolved experimenta
Thus, the present example is intended to serve as a model study. We show how to c
experimental and theoretical information to still obtain a consistent interpretation o
statistical measures for a specific excitation mode.

The paper is organized as follows. In Sections 2 and 3, respectively, the experim
data and the model calculations are briefly sketched. In Section 4, we extract statistic
measures for the individual nuclei from the experimental and the theoretical dat
compare them with RMT predictions. In Section 5 we construct and analyse a
ensemble by combining the data for all four nuclei. We discuss our results in Sec
and conclude in Section 7.

2. Experimental data

From recent high-resolution photon scattering experiments [28,37] at the brems
strahlung facility [38] of the superconducting Darmstadt electron linear accele
S-DALINAC [39], a large data set on E1 excitations inN = 82 nuclei has been compile
The data, totalling 184 excitedJπ = 1− states with excitation energies andB(E1)
excitation strengths, consist of 70 excitations in138Ba, 48 excitations in140Ce, 30
excitations in142Nd, and 36 excitations in144Sm. An overview over the experiment
B(E1) strength distributions is shown in Fig. 1. This data set will serve as the data
for statistical analyses of the spectral correlations and strengths distributions. As
seen from the figure, there is a clear concentration ofB(E1) strength below the particl
threshold which represents the PDR in theseN = 82 nuclei. The lowest E1 excitation
each nucleus at energies between 3 and 4 MeV is known to be a two-phonon 1− state which
arises due to the coupling of the low-lying collective quadrupole and octupole vibra
[40]. Because of its particular regular collective structure, this E1 excitation has been
out in the following analyses and is not included in the level numbers given above.

Due to limited statistics and a non-resonant physical background in the spectra
is a finite detection limit below which excitations cannot be observed. For experime
the S-DALINAC, the detection threshold (while being generally energy-dependent)
out to be flat over a wide energy interval so that a constant cut-off represents a

approximation. The value of the detection threshold for a given E1 transition has been
Bth(E1) ≈ 1× 10−3 e2 fm2.
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Fig. 1. Experimental strengths versus energy for the fourN = 82 nuclei studied (data from [28,37]).

In order to understand one further property of the detection limit present in
experiments, we recall that the experimental signal in photon scattering experimen
[41,42] is proportional to the energy-integrated cross section

If = π2
(

h̄c

Ex

)2 2J + 1

2J0 + 1

Γ0Γf

Γ
(1)

for a specific decay branch into the final statef . The excitation energy of the excited lev
is denoted byEx, J andJ0 represent the angular momentum of the excited and the gr
state (in our case 1 and 0), respectively, andΓ0 andΓf indicate the partial decay widths
the excited state into the ground state (0) and the final state (f ). The total widthΓ is the
sum of all partial widths. An unambiguous determination of the decay widthΓ0 and the
transition strengthB(E1) from Γ0 is only possible if all decay branches are known. For
vast majority of the observed excitations, only one decay branch to the ground sta
been observed, and for the further analysis thusΓ = Γ0 is assumed. Other decay branch
were included in the analysis only if they have been observed experimentally. Tran

+
to low-lying states as, e.g., the 21 states can be observed quite sensitively, and fast decays
to high-lying states are not very likely due to the low transition energies. Therefore, the



der of

gular
e
he
mpton
and

hoton
ce
n that

ss and
ery
tions in
ution
f

) [45].
opole

tonian
s
olved.
i-bosons
ing
ber of

s of all
ned
s

d the
nd the

to the
J. Enders et al. / Nuclear Physics A 741 (2004) 3–28 7

uncertainty of the dipole excitation strengths can be estimated to be only of the or
a few percent. For the simple, but very frequent caseΓ = Γ0, the B(E1) values can be
determined directly from the measured cross sectionsI0 via

B(E1)

[e2 fm2] = 2.486× 10−4 [MeV]
Ex

· I0

[eVb] . (2)

The multipole order of the excitations has been determined to be 1 from an
distribution measurements. The photon scattering experiments at the S-DALINAC utiliz
unpolarized bremsstrahlung in the entrance channel so that a determination of t
multipole character of the resonantly scattered photons is only possible using a Co
polarimeter [43]. However, the polarization sensitivity is very small above 4 MeV,
parity information for excited states is only available for some states in138Ba from an
earlier experiment using a composite Euroball-Cluster detector [24]. However, a p
scattering experiment at the HIγ S facility using linearly polarized photons in the entran
channel [44] has not only confirmed the results of [24] but has unambiguously show
the majority of the states in138Ba plotted in the upper part of Fig. 1 are indeedJπ = 1−
states. Neither microscopic model calculations nor other experiments in this ma
energy region have revealedM1 strength, but it cannot be excluded that for a few v
weak excitations the assignment E1 might be not correct. On the basis of the observa
138Ba it is thus fairly safe, however, to assume that the electric dipole strength distrib
shown for the otherN = 82 nuclei140Ce, 142Nd, and144Sm is indeed predominantly o
electric nature.

3. Quasiparticle phonon model calculations

We briefly discuss the salient features of the quasiparticle phonon model (QPM
The Hamiltonian of the model includes a mean field for protons and neutrons, mon
pairing, and the residual interaction in a separable form. At the first stage, the Hamil
is diagonalized within a set of two-quasiparticle, 2qp, (or particle-hole) configuration
in even-even nuclei. To this end, the quasiparticle RPA (QRPA) equations are s
Solutions of these equations are referred to as phonons. They are treated as quas
with quantum numbersλπ . Among them one finds collective phonons correspond
to collective low-lying states and giant resonances, and furthermore a large num
practically pure 2qp excitations.

At the second stage, the wave functions of the excited states are expanded in term
one-phonon states with the sameλπ and of complex configurations. The latter are obtai
by combining different one-phononconfigurationsλ

π1
1 , λ

π2
2 , . . . , of fixed quantum number

λπ giving then-phonon components of the wave function, i.e.[λπ1
1 ⊗ λ

π2
2 ⊗ · · · ⊗ λπn

n ]λπ .
The model Hamiltonian is now diagonalized in the space of the one-phonon an
complex configurations. The diagonalization yields eigenenergies of excited states a
weights with which the different components of the configuration space contribute
wave function of each eigenstate state.
Since the model Hamiltonian contains only one-bodyand two-body pieces and is
already pre-diagonalized on the first stage, the couplings in the model space become
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hierarchical, coupling one- and two-, two- and three-, etc. phonon configurations
matrix elements of these couplings are calculated microscopically employing the in
fermion structure of the phononsand the nuclear Hamiltonian.

An important feature of the excitation process should be emphasized: the one
operator of an external electromagnetic field leads from the ground state, whic
phonon vacuum, to an excited state exclusively via the one-phonon components
wave functions. The matrix elements for direct excitation of two-phonon components
the ground state are about two orders of magnitude smaller as compared to the ex
of one-phonon components and can thus be neglected in the presence of one-
configurations. The only exception is the lowest 1−

1 state which is of almost pure two
phonon nature[2+

1 ⊗ 3−
1 ]1− and has been omitted from the analyses of experimental d

If the calculation is performed within a sufficiently large configuration space, th
density of complex configurations is much higher than the one-phonon ones. According
most of the excited states carry only a small fraction of one-phonon components in
excitation strength. In other words, the coupling to the complex configurations leads
fragmentation of the electromagnetic strength of the QRPA calculation over many e
states.

In many cases it is sufficient to only work within the boson picture of the phon
neglecting their internal fermion structure. This implies that the interactions between
and two-, three- and three-, etc. phonon configurations are neglected since they ari
Pauli principle corrections. Such an approximation cannot be applied in our particula
since it leads to large degeneracies which totally spoil the level statistics. For two
two-phonon interaction we are able to account for such matrix elements and we therefo
restrict the modelspace to one- and two-phononstates and diagonalize the Hamiltonian
this space.

In the actual calculations of the dipole strength distribution below the thresho
N = 82 isotones, we have included in our model space phonons withmultipolarity and
parity ranging from 1± to 9±. A typical size of the configuration space up to 8.0 M
is then about 300 states. The neglect of three and more phonon states implies t
results do not reflect the statistical properties ofall possible excited states available in th
examined energy interval. For the reasons given above, the electromagnetic spec
however well accounted for in the truncated model space, and we therefore expect that
resulting levels to have statistical properties close to those observed in the experi
(γ, γ ′) studies. The model parameters for thecalculations have been adjusted for t
case of138Ba following a well-established procedure (see, e.g., [46]) and the same
particle spectrum, strength of monopole pairing and residual interaction has been u
all nuclei. The only variable parameter was the strength of the isoscalar residual inte
for λπ = 1− phonons which is needed to put the spurious isoscalar 1− state exactly at zer
energy in each nucleus.

The results for theB(E1) strength distribution for 1− states below 8.5 MeV in th
N = 82 isotones are presented in Fig. 2. Especially the dependence of the inte
electromagnetic strength in the studied energy region as function of the proton num

much weaker in these calculations than experimentally observed (see Fig. 1). Furthermore,
the total strength seems to be shifted to higher energies compared to the experiment.
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Fig. 2. QPM strengths versus energy for the fourN = 82 nuclei studied.

For the subsequent statistical analysis we organize the theoretical spectra (Fig. 2
data sets:

• the full set of states (∼ 300) for the studied energy interval in each nucleus obtaine
within a complete one- and two-phonon basis,

• a subset of the states for which we cut away the weak transitions in such a way t
remaining numbers of transitions agree with those of the experiment. This cut
directly related to the experimental sensitivity limit. The latter data set will be ref
to as “truncated QPM” and the weakest transitions included there are comparable
size to the experimental detection threshold of 10−3 e2 fm2 quoted above.

4. Statistical measures
After unfolding the data in Section 4.1, we work out the spacing distributions, the
number variances and the strength distributions in Sections 4.2–4.4, respectively.
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Fig. 3. Integrated level densitiesN(E) together with a fit of the expression in Eq. (7) to the experimental da

4.1. Unfolding the spectra and transition strengths

To compare statistical properties of the experimental data with the predictions
random matrix theory [30,47–49] all effects due to the level density have to be rem
properly from the experimental and theoretical data. This rescaling of the energy
Ei , i = 1,2,3, . . . and the corresponding transition strengthsBi(E1), i = 1,2,3, . . . is
referred to as “unfolding”. The stick spectrum or spectral function is obtained by pu
a δ function at the positionEi of every level. Its integral up to a certain energyE is the
staircase function (Figs. 3 and 4)

N(E) =
∑

i

Θ(E − Ei). (3)

It is decomposed into an averaged, smooth part and a fluctuating part,N(E) = Nav(E) +
Nfluc(E), such that the integral ofNfluc(E) is zero. New, dimensionless energy variab
are defined by
εi = Nav(Ei). (4)
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Fig. 4. Integrated level densitiesN(E) together with a fit of the expression in Eq. (7) to the QPM data.
inflection point of the staircase function visible in Fig. 3 is shifted to the right here, i.e., to higher energies

This mapping ensures that the level density inεi, i = 1,2,3, . . . is a constant. If the tota
level number is sufficiently large and the fluctuating partNfl(E) does not vary too strongly
the density of levels at the energiesεi should be unity by construction. For our data t
condition is not met. The level density in theεi will be a constant different from unity
This is so because for our data the quantityNav(E) deviates significantly fromN(E) at the
upper and lower ends of the spectrum and thus the difference between the largest u
level εimax and ε1 is different from imax − 1 as it should be for correct normalizatio
of the spacings to unity. We will divide out this constant by hand to ensure the co
normalization. We emphasize that this adjustment does not change the correlation p
it simply puts them on the correct scale.

To unfold the transition strengths, we apply the procedure given in [50]. The mea
transition strength in
yi = Bi(E1)

Bav,i(E1)
(5)
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is divided by a mean value which is obtained by the smoothing

Bav,i(E1) =
∑

j Bj (E1)exp(−(εi − εj )
2/8)∑

j exp(−(εi − εj )2/8)
(6)

around the corresponding unfolded energyεi . For further details, see the discussion
[50]. We notice that all transitions considered here are transitions to the ground st
discussed above.

The crucial step in the unfolding is the appropriate determination of the aver
smooth partNav(E) of the staircase function. In many cases, such as the spectra of
microwave resonators [51] or molecules [52], one has some analytical understandin
of Nav(E), at least as far as the functional form is concerned. Unfortunately, inform
of this kind is lacking in the present case. However, we know that theJπ = 1− pygmy
resonances exist only in a certain region of the spectrum, confined by a lower and an
bound. This can be seen in Fig. 1. Thus, the level density of these states alone must
a hump. Its integral, the corresponding staircase function, should have an inflection
A convenient choice is the function

Nav(E) = a

1+ exp((E − b)/c)
+ d, (7)

wherea, b, c, andd are fit parameters to be determined for every spectrum individually
All staircase functions, experimental and theoretical, are well described by this fun
We notice that, in particular, polynomial fit functions give considerably less suitable
However, the results of Section 4 seem to be stable with respect to different unf
procedures, unless the data are overfitted with functions containing too many param

The experimental staircase functions together with the fit of Eq. (7) are shown in F
(experiment) and 4 (QPM). A comparison of Figs. 3 and 4 shows that the experim
integrated level densities saturate in the measured excitation energy range, wh
calculated ones still increase, with a slight indication of saturation at the highest en
This is partly due to the fact that the energy centroid of the predictedJπ = 1− states is
somewhat higher than that of the experimental ones.

4.2. Spacings distributions

The nearest neighbor spacings distributionP(s) measures the probability density
find two adjacent levels separated by a distances in the unfolded spectrum. In case of ful
correlated energy levels, one expects the Wigner surmise

P(s) = π

2
s exp

(
−π

4
s2

)
, (8)

which reflects the repulsion of levels. On the other hand, if correlations are la
completely, one should find the Poisson law,

P(s) = exp(−s). (9)
In random matrix theory, a system which is invariant under time reversal and free of
Kramers degeneracies can be modeled by real symmetric matrices with random entries.
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Fig. 5. Nearest neighbor spacings distributions for the fourexperimental spectra (histograms) compared to R
predictions (solid lines) for a Poisson and a GOE behavior, respectively.

If no basis is distinguished, the correlations are at a maximum strength and one h
Gaussian orthogonal ensemble (GOE) of random matrices [30,47,49]. The corresp
spacing distribution is very close to the Wigner surmise. There are no correlations
matrices are diagonal. This yields the Poisson law.

The nearest neighbor spacings distributions (NNSD) of the four experimental s
are shown in Fig. 5. The statistics are in between the Wigner surmise and the Poiss
This is referred to as intermediate or “mixed” statistics. While the distributions for Ce
Nd are very close to the Poisson law, Ba and Sm exhibit a certain degree of level rep
For the QPM the corresponding spacings distributions look rather similar, as displa
Fig. 6. The case of Ce is still close to the Poisson law, while the other nuclei follow ne
purely the Wigner surmise nor the Poisson law.

We have, however, to face the problem of missing levels in the experimental
We expect that the truncation of the QPM data, as described in Section 3, mode
effect at least qualitatively. The nearest neighbor spacings distributions for the truncated

QPM spectra are also presented in Fig. 6. The distributions are moved closer towards the
Poisson law. However, due to the relatively small level numbers, one cannot clearly decide
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Fig. 6. Left: Nearest neighbor spacings distributions for the four QPM spectra showing similar properties
observed for the experimental data in Fig. 5. Right: Nearest neighbor spacings distributions for the four trunca
QPM spectra.

which theoretical data set yields a better agreement with the experimentally found n
neighbor spacings distributions.

Depending on the details of the dynamics, many possible scenarios exists for
systems. In the literature, one often employs the purely phenomenological B
distribution [57]

Pω(s) = (1+ ω) ·
[
Γ

(
2+ ω

1+ ω

)]1+ω

· sω exp

{
−

[
Γ

(
2+ ω

1+ ω

)]1+ω

s1+ω

}
(10)

which interpolates between GOE or Wigner–Dyson statistics (8) (forω = 1) and Poisson
statistics (9) (forω = 0). Values of the transition parameterω between 0 and 1 correspon
to mixed statistics. Fitting the Brody distribution to the data, we obtain values forω as
given in Table 1. However, one has to remark the following: the high complexit
the nuclear many-body problem leads to many different excitation modes, to a v
of collective, single-particle and even combined excitations. Purely collective one
regular and thus give Poisson statistics. Nevertheless, in a more realistic descripti

collective excitations are approximations to coherent single-particle motion. Thus, the fact
that all excitations are ultimately rooted in single-particle motion couples all of them with
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Table 1
Brody parametersω for all spacings distributions dis-
cussed in this section

Experiment QPM Truncated QPM
138Ba 0.6 0.2 0.1
140Ce 0.0 0.0 0.0
142Nd 0.0 0.5 0.2
144Sm 0.2 0.6 0.0

one another. In an appropriate energy basis, one could model that in terms of matric
assembled of several blocks, all coupled with one another. This would be similar
models put forward by Bohigas et al. in [58]. The level statistics resulting from
a model would depend in a non-trivial way on several parameters characterizing
blocks. In summary, the Brody parameter is to coarse a measure and cannot give a
understanding for the complicated structure of the many-body system.

4.3. Number variances

While the NNSD gives information about the level statistics on short scales o
or two mean level spacings, the level number varianceΣ2(L) probes larger scales ofL
mean level spacings. In the absence of correlations, one simply hasΣ2(L) = L, which is
Poisson’s error law. If GOE-type-of correlations are present,Σ2(L) is suppressed in a
asymptotically logarithmic fashion [30,47,49]. As our spectra are relatively short, w
work out the level number variance only up to aboutL = 6.

The experimental level number variancesΣ2(L) are shown in Fig. 7. The stronge
spectral correlations are found for Ba and Nd. These nuclei yield level number var
closest to the GOE prediction. Remarkably, no correlations are seen for Ce
we find Poisson statistics. The nucleus Sm shows intermediate behavior. We
that these findings are not in contradiction to those for the nearest neighbor sp
distributions. They yield additional information about larger scales in the spectra
level number variances for the QPM are displayed in Fig. 8. A striking overshoot
the Poissonian behavior is seen. While the missing-level effect should lead to uncorr
i.e., Poissonian, behavior, the overshoot mustbe due to an additional clustering of stat
Such a clustering occurs, e.g., when collective one-particle–one-hole states act as d
states for more complex configurations. The QPM results can be interpreted in such
and we return to this point later. The clustering effects, however, disappear in the tru
QPM, as shown in the right panel of Fig. 8. The level number variances now come
to the Poissonian behavior.

A critical discussion addressing the role of the missing levels is in order. As is
known, even in cases where the fractionf of observed transitions relative to all transitio
is close to unity, sizeable deviations from thetrue correlation patterns for the comple
spectra can be found. The truncation procedure applied above is probably a realis
of taking the missing level effect into account. Various methods to estimate the obs

fraction have been worked out for correlated sequences [54,55]. Unfortunately, we cannot
utilize them fully as they are based on an assumption about the statistical fluctuation
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Fig. 7. Number variances with statistical uncertainty (plotted in form of an error band) for the experimental
compared to Poissonian respectively GOE behavior.

properties of the complete sequence. Determining these properties, however, is t
of our work. We apply the expression derived in [55], that, in principle, allows on
estimate the observed fractionf of a correlated sequence by fitting a theoretical re
to the experimental number variances. Under theassumption that the complete sequen
shows GOE behavior and that a fractionf of the levels has been observed, the experime
number variance should be

Σ2
Exp(L) = (1− f )L + f 2Σ2

GOE(L/f ). (11)

Performing a fit of this expression in the interval 0< L < 2 to the experimental data, w
obtain for the four nucleifBa = 0.5, fCe = 0.0, fNd = 0.3, andfSm = 0.2. However, as
Eq. (11) basically interpolates between the GOE and the Poisson prediction, the
of our fits simply reflect the fact that the experimentally foundΣ2(L) shows some
intermediate statistics in the case of Ba and is close to Poisson in the case of th

nuclei. But it should be stressed again that we do not know whether the underlying
assumption, i.e., GOE behavior, is valid here.
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Fig. 8. Left: Number variances for the QPM data showinganti-correlations, which indicate a clustering of leve
in the spectra. Right: The number variances for the truncated QPM are close to Poissonian behavior for all f
nuclei.

4.4. Transition strength distributions

Random matrix theory also makes a prediction about the wave function statistics.
case of GOE correlations, the wave function components or, equivalently, their sq
follow a Gaussian or Porter–Thomas distribution, respectively. In the Poisson ca
unique statement can be made. In the trivial case of a diagonal random matrix, the
functions are the Cartesian basis vectors and the distribution should consist of thre
peaks at 0 and at±1. However, the experiment yields no direct information about
wave function. One measures the transitions strengths. We follow the discussion
to obtain a qualitative understanding of their distribution. The transitions strengths are t
squares of the transition matrix elements. The latter read〈uf |O(E1)|ui〉 whereui anduf

are the initial and final states andO(E1) is the transition operator. RepresentingO(E1) by
some fixed matrix in the random matrix model, one can work out the transitions str

distribution if the distribution of the wave functions components is known. Here, a line of
arguing is used similar to the derivation of the central limit theorem. For large level number,
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one expects asymptotically a Gaussian for the distribution of the transition matrix elem
if the distributions of the wave functions components have finite moments. Howeve
that conclusion to hold, the matrix representing the operatorO(E1) should have entrie
almost everywhere, i.e., it should not contain too many zeros. In any case, one sees
distributionP(y) of the normalized transition strengthsy, as defined in Eq. (5), is of th
Porter–Thomas type,

P(y) = 1√
2πy

exp(−y/2), (12)

if the distributions of the wave functions components is Gaussian. Moreover, it s
approach this distribution more or less, even if the distribution of the wave fun
components is strongly non-Gaussian or even sharp. Thus, from the shape of the tra
strength distribution, a clear conclusion about the spectral correlations cannot be dr

Nevertheless, an advantage of this distribution is that it is, statistically speaking
a probability density and not a correlation function, implying that it is less sensitiv
missing levels. As the loss of weak transitions typically corresponds to a random re
of levels from the spectra, it yields a certain truncation of the strengths distribution
is easy to handle in the analyses, and one can estimate how the missing levels mo
theoretical distribution. If the transitions below a certain strength are not observe
transition strength distribution reads [54,59]

P(y) =



0, y < y0,
exp(−y/2)

erfc
(√ y0

2
) · 1√

2πy
, y � y0. (13)

Here,y andy0 denote the strengths and the minimum observed strength in units o
meanobserved strength,

y = B(E1)

Bav,obs(E1)
and y0 = Bmin

Bav,obs(E1)
. (14)

Both numbers can directly be deduced from the data sets. Fory0 = 0 one recovers th
Porter–Thomas distribution. The observed fractionf itself if given by the integral

f =
∞∫

y0

Py0=0(y) dy. (15)

For comparison with data it is useful to work out the distributionP(z) for the logarithm

z = log10y (16)

of the normalized strength, instead of the distributionP(y) itself.
As a first step, we tested Eq. (13) and the loss of weak transitions with syn

data. This is displayed in Fig. 9. We find that the model gives a good descripti
the truncation as long as the observed fractionf is not too small. Fig. 10 shows th
experimental strength distributions in comparison with the Porter–Thomas distrib

(Eq. (12)) and its modification given by Eq. (13). In Fig. 11, one sees the transition
strengths distributions for the full and the truncated QPM data, respectively. The truncation
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Fig. 9. Synthetic Porter–Thomas (PT) distributed data with different “observed fractions”f of transitions
(histograms) in comparison to the Porter–Thomas distribution and the modified Porter–Thomas distribution
Eq. (13). Note, that the curves of the modified Porter–Thomas distribution start at those values ofz that correspond
to the smallest observed transition strength. Forf = 1.00 the result of Eq. (13) is identical with the Porter–Thom
curve. Forf = 0.25 one obtains a situation that resembles the experimental results (Fig. 10), indicating that
the experiment one indeed is dealing with incomplete sequences off ≈ 0.1.

of the QPM leads to strength distributions peaked similar to the experimental on
seen in Fig. 11. Importantly, these distributions are also similar to the ones in F
However, we emphasize again that the occurrence of the Porter–Thomas distribu
distributions consistent with its truncated versions (13) for the transition strength do
directly indicate the presence or absence of correlations in the spectra.

5. Data ensemble

We use the data sets of the four individual nuclei discussed in Section 4 to cons
data ensemble. It contains 180 spacings originating from four spectra with 184 leve

184 transition strengths for both the experiment and the truncated QPM. The full QPM
data ensemble comprises about 1200 levels and strengths.
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Fig. 10. Experimental strength distributions (histograms) together with a normal Porter–Thomas distribution a
a distribution that describes the missing of the weak transition (Eq. (13)).

The NNSDs show similar behavior for experiment, QPM, and truncated QPM
displayed in Fig. 12. In all cases the distribution is close to Poisson, with some remna
level repulsion in the experiment and the full QPM. These remnants are mainly limi
a lowered probability in the first bin. The transition strength distribution is Porter–Tho
for the QPM and significantly deviates from Porter–Thomas in the experiment and f
truncated QPM data, as seen in Fig. 13. However,these deviations look rather similar. All
all, the truncation of the QPM leads to qualitative agreement with experiment. The sp
distribution for the data ensemble agrees slightly better with the result for the non-trun
QPM, but this could be a coincidence within the statistical significance of our analysi
the transition strengths, qualitative agreement between calculation and experiment
achieved by truncation of the weak states in the QPM data sets.

6. Discussion
The four N = 82 isotones individually and their combined data ensemble exhibit
intermediate, i.e., “mixed”, spectral fluctuation properties in between GOE and Poisson
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Fig. 11. Left: Strength distributions for the QPM results together with a Porter–Thomas distribution and
Porter–Thomas distribution modified to incorporate themissing of the weak transitions (Eq. (13)). These t
curves (almost) perfectly coincide. Right: Strength distributions for the truncatedQPM (histograms) togethe
with a normal Porter–Thomas distribution and a modified one that describes the missing of the weak transiti
(Eq. (13)).

statistics. Furthermore, all experimental transition strength distributions are quite dif
from Porter–Thomas. The full QPM data sets show strength distributions that are c
Porter–Thomas, i.e., GOE statistics, while their spectral statistics are still in betwe
Poisson and the GOE prediction. The statistics of the QPM calculation qualitatively m
the experimental findings after properly truncating levels and strengths belonging to
transitions. This truncation employs a realistic estimate for the experimental det
threshold. This illustrates the severeness of the missing level effect.

Importantly, the full, i.e., non-truncated, QPM data are incomplete, as well.
is because the present QPM calculation does not take in to account 3 and
phonon configurations. Performing 3-phonon-QPM calculations one obtains about 13 E1
transitions per nucleus. However, the statistical properties of these calculated tran
would be unrealistic, because it is prohibitivelydifficult to correctly include the interaction
among the 3-phonon configurations. As the spectral correlations are most severely

by missing a large fraction of levels, the truncation to a 2-phonon QPM does not affect the
nearest neighbor spacings distribution significantly.
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Fig. 12. Spacings distributions for the data ensemble constructed from all four nuclei. Experiment, QPM, and
truncated QPM show a behavior that is close to Poisson (with some remnants of level repulsion in the experim
and the full QPM). The lack of spectral correlations indicates that the number of missing levels is large.

Fig. 13. Strength distributions for the data ensembleconstructed from all four nuclei. The QPM spectru

shows good agreement with Porter–Thomas statistics,while experiment and truncated QPM deviate from the
Porter–Thomas statistics, but in a similar way.
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Since the level numbers are about 50 per nucleus in the experiment and about
the QPM, we have to face the possibility that we see less than 10 percent of the tran
in the experiment and less than 30 percent in the QPM. Thus, all data sets analyz
are incomplete. Nevertheless, the QPM calculation as performed, seems to properly ma
the experimental situation. This is borne out by the qualitative agreement betwe
experimental and the theoretical nearest neighbor spacings distribution.

A striking overshoot over the Poisson behavior is seen in the long-range stat
measures, i.e., in the level number variance for the full, non-truncated QPM data, as a
mentioned above. Zooming into the QPM strength function versus energy in Fig. 14
to gain a qualitative understanding of this effect. One sees groups of states, clustered
a few states carrying large strength. These few states are those stemming from the fi
stage of the QPM calculation. At the second stage, they act like doorway states
coupling to more complex configurations. This explains why Fig. 14 can be view
consisting of various superimposed Lorentzians around the few doorway states. Th
density is influenced similarly. This leads to a bumpy structure on top of the aver
smooth partNav(E) of the staircase function and, thus, to the overshoot in the
number variance. To illustrate this, we consider a synthetically generated spectr
uncorrelated levels whose level number variance is known to beΣ2(L) = L. We now
convolute it with a sum of Lorentzians whose widths is comparable to their distance
simplicity, we choose equidistant Lorentzians. The resulting level number variance
the expected overshoot, as displayed in Fig. 15. We can draw an interesting con
from this qualitative discussion. In Fig. 16, the fluctuating partNfluc(E) is shown for the
QPM spectra. It is clearly not a simple oscillation as in our qualitative example wit
Lorentzians, but it exhibits sizable variations. One is tempted to interpret them as
statistical variations of the level density due to the presence of doorway-type-of s
If so, this would state a nice confirmation that the QPM calculation catches the ph
mechanism in a realistic way. Although we should not overstretch such a conclusio
worthwhile to remark that it would be consistent with the findings for all four nuclei.

All in all we are able to construct a consistent interpretation of the observed qua
in the following way: it is rather likely that theN = 82 nuclei show a behavior that is
between Poisson and GOE or close to GOE statistics, but different for each nucle
we miss at least 90 percent (experiment) or 70 percent (QPM) of the levels, the spect
properties are in any case close to Poisson with some remnants of level repulsi
the other hand, one would probably not see these remnants of level repulsion in
incomplete sequences, if the full sequences were not correlated. As most of the corre
are lost because of this missing of a large fraction of levels, there is not a big diffe
between QPM (f ≈ 0.3) and experiment (f ≈ 0.1). For the strength distributions th
situation is different. These do not contain information about correlations and the loss of
weak transitions—that constitutes a random lossof levels in the spectra—results only in
truncation of the strength distributions below a certain threshold. While the QPM stre
are close to Porter–Thomas statistics, the truncated QPM and the experiment devia
it. This can be described within the model of Eq. (13) and is shown in Fig. 9. A
distribution of the transition strengths does not allow a direct conclusion on the distrib

of the wave function components, it is not very sensitive to the spectral correlations. Thus,
it is no contradiction to the spectral statistics found that the distribution of the transition
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Fig. 14. Enlargement of Fig. 2, where a clustering of thelevels can be seen, which leads to the anti-correla
effect observed in the number variances shown in Fig. 8.

Fig. 15. Number variance for an uncorrelated sequence of random numbers, the density of which has b
modified in an oscillating way. As the smooth function fitted to the staircase function (inset) does not tak

oscillations into account, the unfolded spectrum shows anti-correlations in the number variance instead of the
expected Poisson statistics (full line). This explains the behavior seen in Fig. 8.
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Fig. 16. Spectral fluctuationsfor the QPM spectra, i.e.,Nfluc = N(E) − Nav(E), clarifying that not all of the
structure ofN(E) is described by the fit of Eq. (7).

strengths is always consistent with a truncated Porter–Thomas distribution. Howev
learn from the strengths that experimental and QPM results agree, even though we
deduce information about the statistical properties from the strengths.

How do our results fit into the general picture emerging from previous stu
[30–36,60] of statistical properties in nuclear spectra? In general, low-lying p
collective excitations show a predominantly uncorrelated behavior as described by P
statistics, while non-collective excitations yield a correlated behavior as described by
statistics. Famous examples are, on the one hand, the “nuclear data ensemble”
high-lying compound nuclear resonances which show very clean GOE statistics and
other hand, high-spin states near the yrast line [34] which yield Poisson behavior. Th
naturally also examples where the statistical properties are in between Wigner–Dys
Poissonian behavior indicating the coexistence between chaotic and regular motion
nuclear many-body problem. A most recent example for such mixed behavior is provide

by the distribution of the ratios of the excitation energies of certain 2+ and 4+ states in
nuclei [36]. The role of the excitation energy is subtle. In the odd–odd nucleus26Al, GOE
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behavior was found down to the ground state [31]. This proves that the GOE chara
the correlations cannot simply be attributed to the energy region in the spectra.

7. Conclusion

In summary, we analyzed the statistical properties of E1 excitations in fourN = 82
nuclei in the energy range between 4 and 8 MeV, the region of the so-called p
resonance. The experimental data, although very incomplete, show remnants of s
correlations. We thus conclude that the full realistic spectra ought to exhibit s
correlations that are GOE-like or close to GOE. In an identical analysis of the stat
properties of E1 strength distributions from a QPM calculation, results are found
are consistent with the experimental findings. In a recent analysis of the magnetic dipole
scissors mode in heavy deformed nuclei statistical properties compatible with the P
case were found. This provided an independent proof for the collective nature o
particular excitation mechanism [35]. Importantly, these states are very low-lying
present contribution extends those studies of a particular excitation mechanism
region of higher excitation energy. As the density of states quickly grows with excit
energy, more states will be available at higher energies to couple to possibly p
collective doorway states. This results in correlated spectra, largely independent
underlying collective or non-collective structure of the mode. Our experimental
theoretical results are consistent with such an interpretation.
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