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Abstract

We study the statistical properties of the electric pygmy dipole resonance in four different isotones
with neutron numbeN = 82. These nuclei aﬂ%gBa, 1ggCe,lgc2]Nd, 143Sm. The data set comprises
184 levels with spin and parity™ = 1~ and their ground stat®(E1) transition strengths. The
statistics are found to be “mixed”, i.e., in between the predictions of random matrix theory for
correlated and uncorrelated spectra. Moreover, we calculate spectra and transition strengths in
the quasiparticle phonon model (QPM). We compare experimental and theoretical findings. The
incompleteness of the data sets and its impact on the results is discussed. A consistent picture emerges
which yields an improved understanding of the statistical properties of the pygmy resonance.
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1. Introduction

Low-energy electric dipole strength concentrated around 5-7 MeV in stable heavy
nuclei has been studied for a long time [1], but its nature and systematic features remain a
subject of discussion. This strength is commonly termed pygmy dipole resonance (PDR)
since it is small compared to the E1 strength in the excitation energy region of the isovector
giant dipole resonance (GDR). Most of the hitherto existing experimental information is
restricted to gross properties of the mode, but the variation of its width, total strength and
centroid energy are poorly understood.

Beyond resolving the long-standing problem of its structure, clarifying the nature of the
PDR is important for a further number of reasons. Strongly excited soft E1 modes have also
been observed in exotic, very neutron-rich isotopes (see, e.g., [2-4]), and it is an obvious
guestion whether the underlying mechanism generating these modes is the same as for
nuclei close to and in the valley of stability. Furthermore, the PDR is typically located close
to particle threshold. This has importantraphysical implications because the thermal
equilibrium of (v, n) and(n, y) reactions in explosive nucleosynthesis scenarios [5,6] can
be considerably modified. Finally, since the low-lying E1 strength significantly influences
the nuclear dipole polarizability through theversely energy-weighted sum rule [7], its
particular nature must be understood quantitatively.

A variety of models—with partly conflicting conclusions—exists for a theoretical
interpretation of the PDR, ranging from hydrodynamical descriptions [8,9], neutron excess
surface density oscillations [10-12], fluid-dyn&al approaches [13—15] to local isospin
breaking in heavy nuclei by clustering [16]. Microscopically, non-relativistic [17,18] and
relativistic [19-21] random phase approxitioa (RPA) calculations predict a sizeable
isoscalar E1 mode well below the GDR. Fragmentation of the E1 strength in the region
of the PDR due to the coupling to complex configurations has been studied in [22—-26].

Recently, important experimental progsdgs been made by high-resolution measure-
ments of the fine structure of the PDR at various shell closures [22,27,28] using the nuclear
resonance fluorescence technique. For the cad¥¥@b, the comparison of experimental
results and model calculations suggests [22] that the mode is due to surface neutron density
vibrations, but some features of the low-energy E1 response seem also to be determined by
transverse excitations characterized by toroidal transition current distributions [29].

Here, we pursue an alternative approach to shed light on the nature of the PDR. We
investigate its statistical properties by employing random matrix theory (RMT). This
theory, originally developed by Wigner and Dyson, is capable of describing spectral
statistics in a unifying way for a rich variety of systems (for a review see [30]). In nuclear
physics, a number of studies (see, e.qg., [30—36]) address the question what kind of statistics
is to be expected in different regions of the spectra. Roughly speaking, one can distinguish
correlated, uncorrelated, and mixed bebavidepending on the excitation energy, mass
number and on collective or single-particle character. Even though the complexity of
the nuclear many-body problem does not always allow for an easy interpretation of the
findings, general trends could be identified.

In a recent study, it was possible to draw conclusions from the spectral statistics
on features of a particular excitation mectsam [35]. This investigation was concerned
with J™ = 1T states excited by the orbital magnetic dipole scissors mode. The present
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work builds upon the insights gained in [35]. Here, we focus on the PDR in four stable
N = 82 semimagic nuclei. Receaxperiments [28,37] proviala large data ensemble on

the energies of * = 1~ states and their ground-state transition strengths. However, both
data sets are still incomplete because of limited experimental sensitivity with respect to the
detection of weak transitions. On the other hand, fairly complete theoretical calculations,
which should be compared to the data, are available within the microscopic quasiparticle
phonon model (QPM) which provides a successful description of the PB%f.

Statistical analysis of nuclear data is generally hampered by the problem of missing
levels. This is so because the number of levels accessible in an experiment is lower than
and the resolution is not as good as, e.g., in laser spectroscopic measurements for atoms
and molecules. Iy spectroscopic studies on excited heavy nuclei there is always a finite
detector threshold, and individual transiti@mnetimes cannot be resolved experimentally.
Thus, the present example is intended to serve as a model study. We show how to combine
experimental and theoretical information to still obtain a consistent interpretation of the
statistical measures for a specific excitation mode.

The paper is organized as follows. In Sections 2 and 3, respectively, the experimental
data and the model calculations are brieflytsked. In Section 4, we extract statistical
measures for the individual nuclei from the experimental and the theoretical data and
compare them with RMT predictions. In Section 5 we construct and analyse a data
ensemble by combining the data for all four nuclei. We discuss our results in Section 6
and conclude in Section 7.

2. Experimental data

From recent high-resolution photon scattg experiments 28,37] at the brems-
strahlung facility [38] of tle superconducting Darmstadt electron linear accelerator
S-DALINAC [39], a large data set on E1 excitationsih= 82 nuclei has been compiled.

The data, totalling 184 excited™ = 1~ states with excitation energies arB(E1)
excitation strengths, consist of 70 excitations 1itfBa, 48 excitations int*°Ce, 30
excitations in142Nd, and 36 excitations if**Sm. An overview over the experimental
B(E1) strength distributions is shown in Fig. 1. This data set will serve as the data base
for statistical analyses of the spectral correlations and strengths distributions. As can be
seen from the figure, there is a clear concentratio®@1) strength below the particle
threshold which represents the PDR in thése- 82 nuclei. The lowest E1 excitation in
each nucleus at energies between 3 and 4 MeV is known to be a two-phostatd which
arises due to the coupling of the low-lying collective quadrupole and octupole vibrations
[40]. Because of its particular regular colle@istructure, this E1 excitation has been left
out in the following analyses and is not included in the level numbers given above.

Due to limited statistics and a non-resonant physical background in the spectra, there
is a finite detection limit below which excitations cannot be observed. For experiments at
the S-DALINAC, the detection threshold (while being generally energy-dependent) turns
out to be flat over a wide energy interval so that a constant cut-off represents a good
approximation. The value of the detection threshold for a given E1 transition has been
Bin(ED) ~ 1 x 10732 fm?2.
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Fig. 1. Experimental strengths versus energy for the /w 82 nuclei studied (data from [28,37]).

In order to understand one further property of the detection limit present in the
experiments, we recall thahé experimental signal in phmt scattering experiments
[41,42]is proportional to the energy-integrated cross section

Ifznz(hc>22J~|—l Iol'y

Ex) 20o+1 T

for a specific decay bra into the final statgf. The excitation energy of the excited level

is denoted byEx, J andJp represent the angular momentum of the excited and the ground
state (in our case 1 and 0), respectively, &pcdnd " indicate the partial decay widths of

the excited state into the ground state (0) and the final sfjteThe total widthI” is the

sum of all partial widths. An unambuous determination of the decay widkh and the
transition strengttB(E1) from Ip is only possible if all decay branches are known. For the
vast majority of the observed excitations, only one decay branch to the ground state has
been observed, and for the further analysis thus I'p is assumed. Other decay branches
were included in the analysis only if they have been observed experimentally. Transitions
to low-lying states as, e.qg., tth Atates can be observed quite sensitively, and fast decays
to high-lying states are not very likely due to the low transition energies. Therefore, the

1)



J. Enderset al. / Nuclear Physics A 741 (2004) 3-28 7

uncertainty of the dipole excitation strengths can be estimated to be only of the order of
a few percent. For the simple, but very frequent cAse Iy, the B(E1) values can be
determined directly from the measured cross sectipnga

B(ED _4[MeV] Iy
—2.486x 10 : )
[€2fm?] x Ex [eVh]

The multipole order of the excitations has been determined to be 1 from angular
distribution measurements. The photon scatteexperiments at the S-DALINAC utilize
unpolarized bremsstrahlung in the entranchannel so that a determination of the
multipole character of the resonantly scattered photons is only possible using a Compton
polarimeter [43]. However, the polarization sensitivity is very small above 4 MeV, and
parity information for excited states is only available for some statés8Ba from an
earlier experiment using a composite Euroball-Cluster detector [24]. However, a photon
scattering experiment at the 6 facility using linearly polarized photons in the entrance
channel [44] has not only confirmed the results of [24] but has unambiguously shown that
the majority of the states i#*®Ba plotted in the upper part of Fig. 1 are indegtl= 1~

states. Neither microscopic model calculations nor other experiments in this mass and
energy region have reveal@d1 strength, but it cannot be excluded that for a few very
weak excitations the assignment E1 might be not correct. On the basis of the observationsin
138R3 it is thus fairly safe, however, to assume that the electric dipole strength distribution
shown for the otheWV = 82 nuclei#%Ce, 142Nd, and!44Sm is indeed predominantly of
electric nature.

(2)

3. Quasiparticle phonon model calculations

We briefly discuss the salient features of the quasiparticle phonon model (QPM) [45].
The Hamiltonian of the model includes a mean field for protons and neutrons, monopole
pairing, and the residual interaction in a separable form. At the first stage, the Hamiltonian
is diagonalized within a set of two-quasiparticleyp? (or particle-hole) configurations
in even-even nuclei. To this end, the quasiparticle RPA (QRPA) equations are solved.
Solutions of these equations are referred to as phonons. They are treated as quasi-bosons
with quantum numbera”™. Among them one finds collective phonons corresponding
to collective low-lying states and giant resonances, and furthermore a large number of
practically pure gp excitations.

At the second stage, the wave functions of the excited states are expanded in terms of all
one-phonon states with the sainfeand of complex configurations. The latter are obtained
by combining different one-phonon configuratid@é, /\’272, ..., of fixed quantum numbers
AT giving then-phonon components of the wave function, [)éf.l ® )32’2 ® - QA .

The model Hamiltonian is now diagonalized in the space of the one-phonon and the
complex configurations. The diagonalization yields eigenenergies of excited states and the
weights with which the different components of the configuration space contribute to the
wave function of each eigenstate state.

Since the model Hamiltoan contains only one-bodgnd two-body pieces and is
already pre-diagonalized on the first stage, the couplings in the model space become
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hierarchical, coupling one- and two-, two- and three-, etc. phonon configurations. The
matrix elements of these couplings are calculated microscopically employing the internal
fermion structure of the phonoasd the nuclear Hamiltonian.

An important feature of the excitation process should be emphasized: the one-body
operator of an external electromagnetic field leads from the ground state, which is a
phonon vacuum, to an excited state exclusively via the one-phonon components of the
wave functions. The matrix elements for direct excitation of two-phonon components from
the ground state are about two orders of magnitude smaller as compared to the excitation
of one-phonon components and can thus be neglected in the presence of one-phonon
configurations. The only exception is the lowe$t dtate which is of almost pure two-
phonon natur@Zf ® 37 13- and has been omitted from the analyses of experimental data.

If the calculation is performd within a sufficiently lege configuration space, the
density of complex configurations is muctyher than the one-phonon ones. Accordingly,
most of the excited states carry only a small fraction of one-phonon components in their
excitation strength. In other words, the coupling to the complex configurations leads to the
fragmentation of the electromagnetic strength of the QRPA calculation over many excited
states.

In many cases it is sufficient to only work within the boson picture of the phonons,
neglecting their internal fermion structure. This implies that the interactions between two-
and two-, three- and three-, etc. phonon configurations are neglected since they arise from
Pauli principle corrections. Such an approximation cannot be applied in our particular case,
since it leads to large degeneracies which totally spoil the level statistics. For two- and
two-phonon interaction we are able to accoumtdach matrix elements and we therefore
restrict the modelspace to one- and two-phostates and diagonalize the Hamiltonian in
this space.

In the actual calculations of the dipole strength distribution below the threshold in
N = 82 isotones, we have included in oundel space phonons witultipolarity and
parity ranging from T to 9. A typical size of the configuration space up to 8.0 MeV
is then about 300 states. The neglect of three and more phonon states implies that the
results do not reflect the statistical propertieslbipossible excited states available in the
examined energy interval. For the reasons given above, the electromagnetic spectrum is
however well accounted for in the truncatedael space, and we therefore expect that the
resulting levels to have statistical properties close to those observed in the experimental
(y,v") studies. The model parameters for ttaculations have been adjusted for the
case of'3®Ba following a well-established procedure (see, e.g., [46]) and the same single
particle spectrum, strength of monopole pairing and residual interaction has been used for
all nuclei. The only variable parameter was the strength of the isoscalar residual interaction
for A =1~ phonons which is needed to put the spurious isoscalatdte exactly at zero
energy in each nucleus.

The results for theB(E1) strength distribution for 1 states below 8.5 MeV in the
N = 82 isotones are presented in Fig. 2. Especially the dependence of the integrated
electromagnetic strength in the studied energy region as function of the proton number is
much weaker in these calculations than expenitally observed (see Fig. 1). Furthermore,
the total strength seems to be shifted to higher energies compared to the experiment.
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Fig. 2. QPM strengths versus energy for the foue 82 nuclei studied.

For the subsequent statistical analysis we organize the theoretical spectra (Fig. 2) in two
data sets:

o the full set of states~ 300) for the studied energytigrval in each nucleus obtained
within a complete one- and two-phonon basis,

e asubset of the states for which we cut away the weak transitions in such a way that the
remaining numbers of transitions agree with those of the experiment. This cut-off is
directly related to the experimental sensitivity limit. The latter data set will be refered
to as “truncated QPM” and the weakestrisdions included there are comparable in
size to the experimental detection threshold of 3€? fm? quoted above.

4, Statistical measures

After unfolding the data in Section 4.1, we work out the spacing distributions, the
number variances and the strength distributions in Sections 4.2—4.4, respectively.
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Fig. 3. Integrated level densiti@é(E) together with a fit of the expression in Eq. (7) to the experimental data.

4.1. Unfolding the spectra and transition strengths

To compare statistical properties of the experimental data with the predictions from
random matrix theory [30,47-49] all effects due to the level density have to be removed
properly from the experimental and theoretical data. This rescaling of the energy levels
E;,i=1,23,... and the corresponding transition streng®sEl), i =1,2,3,... IS
referred to as “unfolding”. The stick spectrum or spectral function is obtained by putting
a s function at the positiorE; of every level. Its integral up to a certain enerfyis the
staircase function (Figs. 3 and 4)

N(E):Z@(E—Ei). (3

It is decomposed into an averagemooth part and a fluctuating pai,(E) = Naw(E) +
Niuc(E), such that the integral d¥juc(E) is zero. New, dimensionless energy variables
are defined by

€i = Nav(Ej). (4)
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Fig. 4. Integrated level densitie8 (E) together with a fit of the expression in Eq. (7) to the QPM data. The
inflection point of the staircase function visible in Fig. 3 is shifted to the right here, i.e., to higher energies.

This mapping ensures that the level density;ini =1, 2, 3, ... is a constant. If the total
level number is sufficiently large and the fluctuating pért £) does not vary too strongly,
the density of levels at the energigsshould be unity by construction. For our data this
condition is not met. The level density in tlke will be a constant different from unity.
This is so because for our data the quantity(E) deviates significantly fronV (E) at the
upper and lower ends of the spectrum and thus the difference between the largest unfolded
level €;,,., and e; is different fromimax — 1 as it should be for correct normalization
of the spacings to unity. We will divide out this constant by hand to ensure the correct
normalization. We emphasize that this adjustment does not change the correlation patterns,
it simply puts them on the correct scale.

To unfold the transition strengths, we apply the procedure given in [50]. The measured
transition strength in

B;(ED

= 5
Y= Bavi (ED) ®)
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is divided by a mean value which is obtained by the smoothing

3, Bj(ED exp—(e; — €))%/8)
> exp(—(e —€j)?/8)

around the corresponding unfolded enetgyFor further details, see the discussion in
[50]. We notice that all transitions considered here are transitions to the ground state, as
discussed above.

The crucial step in the unfolding is the appropriate determination of the averaged,
smooth partVay(E) of the staircase function. In many cases, such as the spectra of, e.g.,
microwave resonators [51] or molecules [52], one has some analytical understanding [53]
of Nay(E), at least as far as the functional form is concerned. Unfortunately, information
of this kind is lacking in the present case. However, we know that/the- 1~ pygmy
resonances exist only in a certain region of the spectrum, confined by a lower and an upper
bound. This can be seen in Fig. 1. Thus, the level density of these states alone must exhibit
a hump. Its integral, the corresponding staircase function, should have an inflection point.
A convenient choice is the function

a
Nl = oo E = b0 ©
wherea, b, ¢, andd are fit parameters to be determini®r every spectrum individually.
All staircase functions, experimental and theoretical, are well described by this function.
We notice that, in particular, polynomial fit functions give considerably less suitable fits.
However, the results of Section 4 seem to be stable with respect to different unfolding
procedures, unless the data are overfitted with functions containing too many parameters.

The experimental staircase functions together with the fit of Eq. (7) are shown in Figs. 3
(experiment) and 4 (QPM). A comparison of Figs. 3 and 4 shows that the experimental
integrated level densities saturate in the measured excitation energy range, while the
calculated ones still increase, with a slight indication of saturation at the highest energies.
This is partly due to the fact that the energy centroid of the predi¢tee: 1~ states is
somewhat higher than that of the experimental ones.

Bav,i (El) = (6)

d, (7)

4.2. Spacingsdistributions

The nearest neighbor spacings distributiBts) measures the probability density to
find two adjacent levels separated by a distanicethe unfolded spectrum. In case of fully
correlated energy levels, one expects the Wigner surmise

P(s) = %s exp(—%sz), (8)

which reflects the repulsion of levels. On the other hand, if correlations are lacking
completely, one should find the Poisson law,

P(s) = exp(—s). (9)

In random matrix theory, a system which is invariant under time reversal and free of
Kramers degeneracies can be modeled by real symmetric matrices with random entries.



J. Enderset al. / Nuclear Physics A 741 (2004) 3-28 13

1.2

| LI L LIS L L B B B B B

'*Ba (Exp)

0.8

/v

P(s)

0.4

0.0

/

0.8

P(s)

0.4

0.0

‘IITI]II‘T

1“2Ng (Exp)

60

/I

0.8

0.4

T I
LA L B B L B

“*Sm (Exp)

0.0

0.8

0.4

0.0 v b e b by T
0.5 1.0 1.5 2.0 2.5 3.0

©
o
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If no basis is distinguished, the correlations are at a maximum strength and one has the
Gaussian orthogonal ensemble (GOE) of random matrices [30,47,49]. The corresponding
spacing distribution is very close to the Wigner surmise. There are no correlations if the
matrices are diagonal. This yields the Poisson law.

The nearest neighbor spacings distributions (NNSD) of the four experimental spectra
are shown in Fig. 5. The statistics are in between the Wigner surmise and the Poisson law.
This is referred to as intermediate or “mixed” statistics. While the distributions for Ce and
Nd are very close to the Poisson law, Ba and Sm exhibit a certain degree of level repulsion.
For the QPM the corresponding spacings distributions look rather similar, as displayed in
Fig. 6. The case of Ce is still close to the Poisson law, while the other nuclei follow neither
purely the Wigner surmise nor the Poisson law.

We have, however, to face the problem of missing levels in the experimental data.
We expect that the truncation of the QPM data, as described in Section 3, models this
effect at least qualitatively. The nearestighbor spacings distriltions for the truncated
QPM spectra are also presented in Fig. 6. The distributions are moved closer towards the
Poisson law. However, due to the relatively small level numbers, one cannot clearly decide
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which theoretical data set yields a better agreement with the experimentally found nearest
neighbor spacings distributions.

Depending on the details of the dynamics, many possible scenarios exists for mixed
systems. In the literature, one often employs the purely phenomenological Brody
distribution [57]

24w 14+ " 24w 4w Lo

which interpolates between GOE or Wigner—Dyson statistics (8){ferl) and Poisson
statistics (9) (fok = 0). Values of the transition parameteibetween 0 and 1 correspond

to mixed statistics. Fitting the Brody distribution to the data, we obtain values fas

given in Table 1. However, one has to remark the following: the high complexity of
the nuclear many-body problem leads to many different excitation modes, to a variety
of collective, single-particle and even combined excitations. Purely collective ones are
regular and thus give Poisson statistics. Nevertheless, in a more realistic description, the
collective excitations are approximations to coherent single-particle motion. Thus, the fact
that all excitations are ultimately rooted imgie-particle motion couples all of them with
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Table 1
Brody parameters for all spacings distributions dis-
cussed in this section

Experiment QPM  Truncated QPM

13883 0.6 0.2 0.1
140ce 0.0 0.0 0.0
142Nd 0.0 0.5 0.2
144sm 0.2 0.6 0.0

one another. In an appropriate energy sasne could model that in terms of matrices
assembled of several blocks, all coupled with one another. This would be similar to the
models put forward by Bohigas et al. in [58]. The level statistics resulting from such

a model would depend in a non-trivial way on several parameters characterizing these
blocks. In summary, the Brody parameter is to coarse a measure and cannot give a deeper
understanding for the complicated structure of the many-body system.

4.3. Number variances

While the NNSD gives information about the level statistics on short scales of one
or two mean level spacings, the level number variaB@éL) probes larger scales @f
mean level spacings. In the absence of correlations, one simpl#@s = L, which is
Poisson’s error law. If GOE-type-of correlations are pres&ifi(L) is suppressed in an
asymptotically logarithmic fashion [30,47,49]. As our spectra are relatively short, we can
work out the level number variance only up to abaut 6.

The experimental level number variancE$(L) are shown in Fig. 7. The strongest
spectral correlations are found for Ba and Nd. These nuclei yield level number variances
closest to the GOE prediction. Remarkably, no correlations are seen for Ce where
we find Poisson statistics. The nucleus Sm shows intermediate behavior. We notice
that these findings are not in contradiction to those for the nearest neighbor spacings
distributions. They vyield additional information about larger scales in the spectra. The
level number variances for the QPM are displayed in Fig. 8. A striking overshoot over
the Poissonian behavior is seen. While the missing-level effect should lead to uncorrelated,
i.e., Poissonian, behavior, the overshoot nhestiue to an additional clustering of states.
Such a clustering occurs, e.g., when collective one-particle—one-hole states act as doorway
states for more complex configurations. The QPM results can be interpreted in such a way
and we return to this point later. The clustering effects, however, disappear in the truncated
QPM, as shown in the right panel of Fig. 8. The level number variances now come closer
to the Poissonian behavior.

A critical discussion addressing the role of the missing levels is in order. As is well
known, even in cases where the fractipof observed transitions relative to all transitions
is close to unity, sizeable deviations from tttee correlation patterns for the complete
spectra can be found. The truncation procedure applied above is probably a realistic way
of taking the missing level effect into account. Various methods to estimate the observed
fraction have been worked out for correlated sequences [54,55]. Unfortunately, we cannot
utilize them fully as they are based on assamption about the statistical fluctuation
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properties of the complete sequence. Determining these properties, however, is the aim
of our work. We apply the expression derived in [55], that, in principle, allows one to
estimate the observed fractigh of a correlated sequence by fitting a theoretical result

to the experimental number variances. Underassemption that the complete sequence
shows GOE behavior and that a fractifiof the levels has been observed, the experimental
number variance should be

S2,o(L) = (L= /)L + f2530e(L/)). (11)

Performing a fit of this expression in the intervakQL < 2 to the experimental data, we
obtain for the four nucleifga = 0.5, fce = 0.0, fng = 0.3, and fsm = 0.2. However, as

Eqg. (11) basically interpolates between the GOE and the Poisson prediction, the result
of our fits simply reflect the fact that the experimentally fousd(L) shows some
intermediate statistics in the case of Ba and is close to Poisson in the case of the other
nuclei. But it should be stressed again that we do not know whether the underlying
assumption, i.e., GOE behavior, is valid here.
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4.4, Transition strength distributions

Random matrix theory also makes a prediction about the wave function statistics. In the
case of GOE correlations, the wave function components or, equivalently, their squares
follow a Gaussian or Porter—Thomas distribution, respectively. In the Poisson case no
unigue statement can be made. In the trivial case of a diagonal random matrix, the wave
functions are the Cartesian basis vectors and the distribution should consist of three sharp
peaks at 0 and at1. However, the experiment yields no direct information about the
wave function. One measures the transitions strengths. We follow the discussion in [56]
to obtain a qualitative understanding of theirtdlsution. The transitions strengths are the
squares of the transition matrix elements. The latter {eadlO (E1)|u;) wherey; andu ¢
are the initial and final states a{(E1) is the transition operator. Representigel) by
some fixed matrix in the random matrix model, one can work out the transitions strength
distribution if the distribution of the wave functions components is known. Here, a line of
arguing is used similar to the derivation of the central limit theorem. For large level number,
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one expects asymptotically a Gaussian for the distribution of the transition matrix elements,
if the distributions of the wave functions components have finite moments. However, for
that conclusion to hold, the matrix representing the operat@1) should have entries
almost everywhere, i.e., it should not contain too many zeros. In any case, one sees that the
distribution P(y) of the normalized transition strengthsas defined in Eqg. (5), is of the
Porter-Thomas type,

1
P(y) = Nea exp(—y/2), (12)

if the distributions of the wave functions components is Gaussian. Moreover, it should
approach this distribution more or less, even if the distribution of the wave function
components is strongly non-Gaussian or even sharp. Thus, from the shape of the transition
strength distribution, a clear conclusion about the spectral correlations cannot be drawn.

Nevertheless, an advantage of this distribution is that it is, statistically speaking, just
a probability density and not a correlation function, implying that it is less sensitive to
missing levels. As the loss of weak transitions typically corresponds to a random removal
of levels from the spectra, it yields a certain truncation of the strengths distribution. This
is easy to handle in the analyses, and one can estimate how the missing levels modify the
theoretical distribution. If the transitions below a certain strength are not observed, the
transition strength distribution reads [54,59]

0, y < Yo,
P(y)={ &=/ _1_ > vo. (13)
o) V2 Y70
Here,y andyg denote the strengths and the minimum observed strength in units of the
meanobserved strength,
B(E1 Bmi
y=—2CY g yo= —Bmin
Bav,obs(El) Bav,obs(El)
Both numbers can directly be deduced from the data setsyd-erO one recovers the
Porter-Thomas distribution. The observed fractjoitself if given by the integral

(14)

f= / Pyo(y)dy. (15)
Yo

For comparison with data it is useful to work out the distributida) for the logarithm

z=Ilog;py (16)

of the normalized strength, instead of the distributi(y) itself.

As a first step, we tested Eq. (13) and the loss of weak transitions with synthetic
data. This is displayed in Fig. 9. We find that the model gives a good description of
the truncation as long as the observed fractjoris not too small. Fig. 10 shows the
experimental strength distributions in comparison with the Porter—Thomas distribution
(Eq. (12)) and its modification given by Eq. (13). In Fig. 11, one sees the transition
strengths distributions for the full and the truncated QPM data, respectively. The truncation
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Fig. 9. Synthetic Porter—Thomas (PT) disttibdi data with different “observed fractions’ of transitions
(histograms) in comparison to the Porter-Thomagibigion and the modified Porter-Thomas distribution of
Eq. (13). Note, that the curves of the modified Peftdiomas distribution start at those valueg tfat correspond

to the smallest observed transition strength. Fer 1.00 the result of Eq. (13) is identical with the Porter-Thomas
curve. Forf = 0.25 one obtains a situation that resembles the mxmatal results (Fig. 10), indicating that in
the experiment one indeed is dealing with incomplete sequencgs=d.1.

of the QPM leads to strength distributions peaked similar to the experimental ones, as
seen in Fig. 11. Importantly, these distributions are also similar to the ones in Fig. 9.
However, we emphasize again that the occurrence of the Porter—Thomas distribution or
distributions consistent with its truncated versions (13) for the transition strength does not
directly indicate the presence or absence of correlations in the spectra.

5. Dataensemble

We use the data sets of the four individual nuclei discussed in Section 4 to construct a
data ensemble. It contains 180 spacings originating from four spectra with 184 levels and
184 transition strengths for both the experiment and the truncated QPM. The full QPM
data ensemble comprises about 1200 levels and strengths.
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The NNSDs show similar behavior for experiment, QPM, and truncated QPM, as
displayed in Fig. 12. In all cases the distribution is close to Poisson, with some remnants of
level repulsion in the experiment and the full QPM. These remnants are mainly limited to
a lowered probability in the first bin. The transition strength distribution is Porter—Thomas
for the QPM and significantly deviates from Porter—Thomas in the experiment and for the
truncated QPM data, as seenin Fig. 13. Howdbesse deviations look rather similar. All in
all, the truncation of the QPM leads to qualitative agreement with experiment. The spacing
distribution for the data ensemble agrees slightly better with the result for the non-truncated
QPM, but this could be a coincidence within the statistical significance of our analysis. For
the transition strengths, qualitative agreement between calculation and experiment can be
achieved by truncation of the weak states in the QPM data sets.

6. Discussion

The four N = 82 isotones individually and their combined data ensemble exhibit
intermediate, i.e., “mixed”, spectral fluettion properties in between GOE and Poisson
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statistics. Furthermore, all experimental transition strength distributions are quite different
from Porter—Thomas. The full QPM data sets show strength distributions that are close to
Porter—-Thomas, i.e., GOE statistics, while their spectral statistics are still in between the
Poisson and the GOE prediction. The statistics of the QPM calculation qualitatively match
the experimental findings after properly truncating levels and strengths belonging to weak
transitions. This truncation employs a realistic estimate for the experimental detection
threshold. This illustrates the severeness of the missing level effect.

Importantly, the full, i.e., non-truncated, QPM data are incomplete, as well. This
is because the present QPM calculation does not take in to account 3 and higher
phonon configurations. Performing 3-phonon-QPM calculations one obtains aSdit 10
transitions per nucleus. However, the statistical properties of these calculated transitions
would be unrealistic, because it is prohibitivelifficult to correctly irclude the interaction
among the 3-phonon configurations. As the spectral correlations are most severely altered
by missing a large fraction of levels, the truncation to a 2-phonon QPM does not affect the
nearest neighbor spacings distribution significantly.
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Since the level numbers are about 50 per nucleus in the experiment and about 300 in
the QPM, we have to face the possibility that we see less than 10 percent of the transitions
in the experiment and less than 30 percent in the QPM. Thus, all data sets analyzed here
are incomplete. Nevertheless, the QPM chltion as performed, seems to properly match
the experimental situation. This is borne out by the qualitative agreement between the
experimental and the theoretical nearest neighbor spacings distribution.

A striking overshoot over the Poisson behavior is seen in the long-range statistical
measures, i.e., in the level number variance for the full, non-truncated QPM data, as already
mentioned above. Zooming into the QPM strength function versus energy in Fig. 14 helps
to gain a qualitative understanding of this effect. One sees groups of states, clustered around
a few states carrying large strength. Tldew states are those stemming from the first
stage of the QPM calculation. At the second stage, they act like doorway states for the
coupling to more complex configurations. This explains why Fig. 14 can be viewed as
consisting of various superimposed Lorentzians around the few doorway states. The level
density is influenced similarly. This leads to a bumpy structure on top of the averaged,
smooth partNa(E) of the staircase function and, thus, to the overshoot in the level
number variance. To illustrate this, we consider a synthetically generated spectrum of
uncorrelated levels whose level number variance is known t&bd.) = L. We now
convolute it with a sum of Lorentzians whose widths is comparable to their distances. For
simplicity, we choose equidistant Lorentzians. The resulting level number variance shows
the expected overshoot, as displayed in Fig. 15. We can draw an interesting conclusion
from this qualitative discussion. In Fig. 16, the fluctuating pétic(E) is shown for the
QPM spectra. It is clearly not a simple oscillation as in our qualitative example with the
Lorentzians, but it exhibits sizable variations. One is tempted to interpret them as non-
statistical variations of the level density due to the presence of doorway-type-of states.
If so, this would state a nice confirmation that the QPM calculation catches the physics
mechanism in a realistic way. Although we should not overstretch such a conclusion, it is
worthwhile to remark that it would be consistent with the findings for all four nuclei.

All in all we are able to construct a consistent interpretation of the observed quantities
in the following way: it is rather likely that thé&/ = 82 nuclei show a behavior that is in
between Poisson and GOE or close to GOE statistics, but different for each nucleus. As
we miss at least 90 percent (experiment) 6rpercent (QPM) of the levels, the spectral
properties are in any case close to Poisson with some remnants of level repulsion. On
the other hand, one would probably not see these remnants of level repulsion in these
incomplete sequences, if the full sequences were not correlated. As most of the correlations
are lost because of this missing of a large fraction of levels, there is not a big difference
between QPM f ~ 0.3) and experiment{ ~ 0.1). For the strength distributions the
situation is different. These do not contamfidrmation about correlations and the loss of the
weak transitions—that constitutes a random lofsigvels in the spectra—results only in a
truncation of the strength distributions below a certain threshold. While the QPM strengths
are close to Porter—Thomas statistics, the truncated QPM and the experiment deviate from
it. This can be described within the model of Eq. (13) and is shown in Fig. 9. As the
distribution of the transition strengths does not allow a direct conclusion on the distribution
of the wave function components, it is not very sensitive to the spectral correlations. Thus,
it is no contradiction to the spectral statistifound that the distriliion of the transition
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strengths is always consistent with a truncated Porter—Thomas distribution. However, we
learn from the strengths that experimental and QPM results agree, even though we cannot
deduce information about the statistical properties from the strengths.

How do our results fit into the general picture emerging from previous studies
[30-36,60] of statistical properties in nuclear spectra? In general, low-lying purely
collective excitations show a predominantly uncorrelated behavior as described by Poisson
statistics, while non-collective excitations yield a correlated behavior as described by GOE
statistics. Famous examples are, on the one hand, the “nuclear data ensemble” [32] of
high-lying compound nuclear resonances which show very clean GOE statistics and, on the
other hand, high-spin states near the yrast line [34] which yield Poisson behavior. There are
naturally also examples where the statistical properties are in between Wigner-Dyson and
Poissonian behavior indicating the coexistence between chaotic and regular motion in the
nuclear many-body problem. A most recentexde for such mixed behavior is provided
by the distribution of the ratios of the excitation energies of certdira@d 4" states in
nuclei [36]. The role of the excitation energy is subtle. In the odd—odd nuéfausGOE
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behavior was found down to the ground state [31]. This proves that the GOE character of
the correlations cannot simply be attributed to the energy region in the spectra.

7. Conclusion

In summary, we analyzed the statistical properties of E1 excitations inNotr82
nuclei in the energy range between 4 and 8 MeV, the region of the so-called pygmy
resonance. The experimental data, although very incomplete, show remnants of spectral
correlations. We thus conclude that the full realistic spectra ought to exhibit strong
correlations that are GOE-like or close to GOE. In an identical analysis of the statistical
properties of E1 strength distributions from a QPM calculation, results are found that
are consistent with the exparéental findings. In a recent dgais of the magnetic dipole
scissors mode in heavy deformed nuclei statistical properties compatible with the Poisson
case were found. This provided an independent proof for the collective nature of this
particular excitation mechanism [35]. Importantly, these states are very low-lying. The
present contribution extends those studies of a particular excitation mechanism into a
region of higher excitation energy. As the density of states quickly grows with excitation
energy, more states will be available at higher energies to couple to possibly present
collective doorway states. This results in correlated spectra, largely independent of the
underlying collective or non-collective structure of the mode. Our experimental and
theoretical results are consistent with such an interpretation.
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