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Abstract

Low-energy E1-transitions in spherical nuclei forbidden in the ideal boson picture are consid-
ered. For that the internal fermion structure of nuclear excitations is taken into account. Several
examples of such transitions calculated within the Quasiparticle Phonon Model are considered
and the role of dipole core polarization is discussed. It is shown that transition probabilities of an
order of 10−3 W.u. observed experimentally are well described by this model. c© 1998 Elsevier
Science B.V.
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1. Introduction

The electric dipole response of the nucleus at low excitation energies occupies a
special place in nuclear structure. There is no collective one-particle1one-hole (1p1h)
isoscalar 1− state, as the well-known 2+

1 and 3−1 states. This kind of a state corresponds
to the spurious center of mass motion [1] and several approaches have been developed
to exclude it in a realistic calculation [2]. The lowest known 1− state has a two-
phonon [2+

1 ⊗ 3−1 ]1− nature [3] while the first one-phonon 1− states in the model
calculations appear above 5 MeV in heavy spherical nuclei. Direct excitation of two-
phonon states from the ground state by the electromagnetic field is possible only due to
the internal fermion structure of phonons [4] but it is strongly hindered as compared to
the excitation of one-phonon states. The excitation of low-lying two-phonon (isoscalar)
1− states is additionally hindered by the isovector nature of the E1-operator (it is
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purely isovector only when N = Z). The same is valid for the E1-transitions between
isoscalar low-lying excited states because the transitions between their main one-phonon
components are also forbidden if one treats phonons as ideal bosons. It is confirmed
by the systematics [5,6] that the B(E1) value varies from 10−4 to 10−6 W.u. for
low-energy E1-transitions. This should be compared to the values from 1 to 100 W.u.
for the low-lying transitions of other multipolarities. Nevertheless, a new generation of
HPGe detectors with great improvement of the detection limits [7] makes it possible to
investigate such weak E1-transitions [3].

From a theoretical point of view microscopic studies of these hindered low-energy
E1-transitions are of interest because they allow us to look inside the fermion structure
of nuclear vibrations and provide a sensitive test of existing nuclear models. The B(E1)
values, obtained recently, are the result of a delicate interplay between isoscalar and
isovector modes in the structure of low-lying excited states. A study carried out within
the Quasiparticle Phonon Model (QPM) [8] will be summarized in the present paper.
In Section 2 the main features of this theoretical approach are presented. The analysis
of the numerical results is given in Section 3.

2. Theoretical treatment of low-energy E1-transitions

Let us follow the so-called boson mapping procedure and introduce 1p1h-creation
operator Q+

λµi as a superposition of a bi-linear forms of the quasiparticle creation α+
jm

and annihilation αjm operators

Q+
λµi = 1

2

n,p∑
τ

∑
jj′

{
pλi
jj′[α

+
j α

+
j′]λµ − (−1)λ−µϕλijj′[αj′αj]λ−µ

}
, (1)

where jm denote a single-particle level of the average field for neutrons (or pro-
tons) and the notation [. . .]λµ means coupling to the total momentum λ with pro-
jection µ: [α+

j α
+
j′]λµ =

∑
mm′ C

λµ
jmj′m′α

+
jmα

+
j′m′ ; the quantity Cλµ

jmj′m′ is the Clebsch1
Gordan coefficient. Quasiparticles themselves are the result of the linear Bogoliubov
transformation from the particle creation a+

jm and annihilation ajm operators: a+
jm =

ujα
+
jm + (−1)j−mvjαj−m. In the QPM, quasiparticle energies and Bogoliubov’s coeffi-

cients uj and vj are obtained by solving the BSC equations. The following notation for
the combinations of Bogoliubov’s coefficients will be used: u(±)

jj′ = (ujvj′±vjuj′); v(±)
jj′ =

(ujuj′ ± vjvj′).
Taking into account the fermion structure of the operator (1) their commutation

relations read

[Qλµi, Q
+
λ′µ′i′] =

δλ,λ′δµ,µ′δi,i′

2

∑
jj′

[pλi
jj′p

λi′

jj′ − ϕλijj′ϕλi
′

jj′]

−
∑
jj′j2
mm′m2

α+
jmαj′m′

{
pλi
j′j2

pλ′i′

jj2
Cλµ
j′m′j2m2

Cλ′µ′

jmj2m2
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−(−)λ+λ′+µ+µ′ϕλijj2
ϕλ
′ i′

j′j2
Cλ−µ
jmj2m2

Cλ′−µ′
j′m′j2m2

}
. (2)

The first term of Eq. (2) corresponds to the ideal boson approximation while the second
one takes into account the internal fermion structure of operator (1). The second term is
important in considering multi-phonon states which violate the Pauli principle. The basis
generated by the operator (1) is constructed by diagonalizing the QPM Hamiltonian
which includes an average field, monopole pairing and a residual interaction in a separa-
ble form on the set of one-phonon states [8]. This procedure yields the RPA equations,
and solving these equations one obtains the energy spectrum and the internal structure
of the operator (1), i.e. the coefficients pλi

jj′ and ϕλijj′ for any multipolarity λ under con-
sideration. The index i in the definition of the operator (1) gets the meaning of the RPA
root number. The majority of the RPA eigenstates are practically pure two-quasiparticle
excitations. But some of them posses the properties of collective vibrations. The last are
usually called as phonons. Indeed, there is no definite criteria in nuclear structure for
a boarder between collective, weakly collective and non-collective excitations. To unify
all types of 1p1h excitations we will refer below to all of them as phonons. 1

The main advantage of the QPM is that making use of a separable form of the residual
interaction it allows easily to go beyond the one-phonon approximation and take into
account a coupling between one- and multi-phonon configurations. It is well known that
the boson mapping gives rise to two main problems in considering multi-phonon states
as compared to the second-RPA treatment [9,10] of the same problem. The first is an
admixture of spurious states which violate the Pauli principle. The second is related to
the fact that the set of pure n-phonon states is mathematically non-orthonormal if the
internal fermion structure of phonons is taken into account (see Refs. [11,12] for more
details). To avoid these problems we introduce an orthonormal set of excited states
with angular momentum J and projection M in even1even nuclei as a mixture of two-,
four-, six-quasiparticle, etc configurations keeping the phonon’s imaging in the following
way: 2

Ψν(JM) =


∑
i

Ri(Jν)Q+
JMi +

∑
λ1 i1
λ2 i2

Pλ1 i1
λ2i2

(Jν)
[
Q+
λ1µ1i1

× Q+
λ2µ2i2

]
JM

+
∑
λ1i1λ2 i2
λ3 i3I

T λ1i1λ2i2I
λ3i3

(Jν)
[[
Q+
λ1µ1i1

× Q+
λ2µ2i2

]
IK
× Q+

λ3µ3i3

]
JM

+ . . .

Ψ0 ,

(3)

1 We understand that some authors may not agree with this evolution of terminology. In fact, there is no big
confrontation in terminology since the properties of the states under consideration in the present paper are
mainly determined by collective RPA states.

2 We limited Eq. (3) to three-phonon terms as would be used in realistic calculations presented below. The
wave function of the ground state Ψ0 is considered as a phonon vacuum.
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and use the internal fermion structure of phonons in the calculation of the norm of
the wave function (3). This means that the exact commutation relations (2) between
phonon operators and exact commutation relations between phonon and quasiparticle
operators[

αjm, Q
+
λµi

]
=
∑
j′m′

pλi
jj′C

λµ
jmj′m′α

+
j′m′ ,[

α+
jm, Q

+
λµi

]
= (−1)λ−µ

∑
j′m′

ϕλijj′C
λ−µ
jmj′m′αj′m′ (4)

are applied. The explicit form for the norm of the wave function of excited states in
the case when the coupling between one- and two-phonon configurations is taken into
account can be found in Ref. [8]. It includes overlap matrix elements between different
two-phonon components〈[

Qλ′2 i
′
2
× Qλ′1 i

′
1

]
J
|
[
Q+
λ1 i1
× Q+

λ2 i2

]
J

〉
=
〈[
bλ′2 i′2 × bλ′1 i′1

]
J
|
[
b+
λ1 i1
× b+

λ2 i2

]
J

〉
+ KJ(λ′2i

′
2λ
′
1i
′
1|λ1i1λ2i2) ,

where b+
λi is the ideal boson operator. The quantities K can also be found in Ref. [8].

The experience of realistic calculations shows that the so-called diagonal approximation,
KJ(λ′2i

′
2λ
′
1i
′
1|λ1i1λ2i2) = KJ(λ1i1λ2i2)δλ1i1,λ′1 i

′
1
δλ2 i2,λ′2 i

′
2
, provides good accuracy. Within

this approximation the normalization condition for states (3) reads [13]

〈Ψν(JM) | Ψν(JM)〉

=
∑
i

[Ri(Jν)]2 + 2
∑
λ1i1
λ2i2

[
Pλ1 i1
λ2 i2

(Jν)
]2 [

1 + 1
2K

J(λ1i1λ2i2)
]

+6
∑
λ1 i1λ2 i2
λ3 i3I

[
Tλ1i1λ2i2I
λ3i3

(Jν)
]2
CJ
I (λ1i1, λ2i2, λ3i3) = 1 ,

where

CJ
I (λ1i1, λ2i2, λ3i3) = 1 + 3

2K
I(λ1i1λ2i2)

+ 1
2K

I(λ1i1λ2i2)
∑
I′

U2(λ1λ2Jλ3; I, I ′)KI′(λ2i2λ3i3) .

The quantities U stand for the Jahn coefficients [14].
The matrix elements of the coupling between different configurations included in the

wave function in Eq. (3) are calculated within QPM on a microscopic footing without
any free parameters making use the internal fermion structure of phonons in Eq. (1)
and the model Hamiltonian. Using the exact phonon1phonon (2) and quasiparticle1
phonon (4) commutation relations in calculation of the energy, 〈Ψν(JM)|H|Ψν(JM)〉,
of excited states (3) results in two types of the Pauli principle corrections. The first
effect means some renormalization of the matrix elements of interaction between n- and



474 V.Yu. Ponomarev et al. / Nuclear Physics A 635 (1998) 4701483

(n+ 1)-phonon configurations as compared to the technique when the pair of operators
α+α is projected onto the space of the phonon operators and then the boson algebra
is applied. Usually, this effect is marginal for collective configurations. Another, more
important, role of the Pauli principle corrections is related to the interaction between
n- and n-phonon configurations (with n > 2), known as anharmonicity effect. It means
a shift by energy of the n-phonon state from the sum of unperturbed phonon energies.
The last effect is allowed for consistently in the present approach as a result of keeping
the information on the internal fermion structure of phonons. In realistic calculation
presented below these ingredients are taken into account in the diagonal approximation
as discussed above for the norm of the wave function for the same reasons.

It may be argued that the boson mapping with keeping the fermion information of
the phonon images at all stages of transformations gives no advantage as compared to
the n-particle1n-hole (npnh) approach since, mathematically, a direct correspondence
between two methods can be established only if the full basis of n-phonon states is used.
This is not true because many npnh configurations interact very weakly with others and
as a result practically do not mix with them. It allows a sufficient truncation of multi-
phonon configurations in the wave functions (3) based on their physical properties with
good accuracy for the components important for the subject of research.

Diagonalizing the model Hamiltonian on the set of wave functions (3) we obtain the
spectrum of nuclear excitation with a definite value J (the index ν gets the meaning
of the order number) and the structure of each excited state, i.e. the coefficients R, P
and T . Below we will also use the following notation for the states of Eq. (3): we will
denote by λπi the state with the main one-phonon component, λπi ≡ Q+

λπi, (the last is
degenerated by energy for different µ in spherical nuclei) and by [λπi ⊗λ′π

′

i′ ]L the state
with the main two-phonon component [λπi× λ′π′ i′]L.

The one-body operator of electric transition has the form

M(Eλµ) =
n,p∑
τ

e(λ)
τ

∑
jj′
mm′

(−1)j
′+m′ 〈j||Eλ||j′〉√

2λ+ 1
Cλµ
jmj′m′a

+
jmaj′−m′ , (5)

where 〈j||Eλ||j′〉 ≡ 〈j||iλYλrλ||j′〉 is a reduced 1p1h transition matrix element and e(λ)
τ

are effective charges for neutrons and protons. It can be written in terms of quasiparticle
and phonon operators as follows:

M(Eλµ) =
n,p∑
τ

e(λ)
τ

∑
jj′

〈j||Eλ||j′〉√
2λ+ 1

{
u(+)
jj′

2

∑
i

(pλi
jj′ + ϕλijj′)

×(Q+
λµi + (−)λ−µQλ−µi) + v(−)

jj′

∑
mm′

Cλµ
jmj′m′(−)j

′+m′α+
j′m′αj′−m′

}
.

(6)

The first term of Eq. (6) corresponds to one-phonon exchange between initial and
final states and only transitions described by this term are allowed when phonons are
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treated as ideal bosons. Since some of the phonons are collective ones, this term is
responsible for enhanced transitions between the ground and the collective one-phonon
states, e.g. 0+

g.s. → 2+1 and 0+
g.s. → 3−1. The same is true for the decay of the collective

two-phonon states into the one-phonon states: [2+1 × 2+1]0+,2+,4+ → 2+1, etc. The
reduced probability for the one-phonon exchange transition is a function of the phonon
amplitudes p and ϕ

B(Eλ, 0+
g.s. → λπi) = |〈Qλi|M(Eλ)|0+

g.s.〉|2

=

∣∣∣∣∣∣
n,p∑
τ

e(λ)
τ

∑
j1j2

1
2 〈j1||Eλ||j2〉u(+)

j1j2

(
pλi
j1j2

+ ϕλij1j2

)∣∣∣∣∣∣
2

. (7)

The amplitudes pλi
j1j2

and ϕλij1j2
are proportional to 〈j1||iλYλRλ(r)||j2〉 where Rλ(r) is the

radial formfactor of our residual interaction. If one uses Rλ(r) = rλ, Eq. (7) indicates
that all elements of the sum have the same signs for excitation of the 2+1 and 3−1
states, i.e. collective excitation with coherent contribution of all 1p1h-configurations
takes place.

The Eλ-transitions between multiphonon initial Ji and final Jf states are allowed in the
ideal boson picture only when a more complex state includes a phonon of multipolarity
λ and other phonons are the same in the both states. Then, the transition matrix element

〈Qλnin . . . Qλ2i2Qλ1 i1 ||M(Eλ)||Q+
λiQ

+
λ1i1
Q+
λ2i2

. . . Q+
λnin
〉3 0 ,

while for transitions between other states, although allowed by spin and parity, the
transition matrix element equals zero within this approximation. To describe these “for-
bidden” transitions, we need to go beyond the ideal boson picture and take into account
the internal fermion structure of phonons and the fermion nature of the electromagnetic
operator in Eq. (5).

The second term in Eq. (6) allows Eλ-transitions between configurations with the
same number of phonons or between the ones which differ by an even number of
phonons. For example, the reduced probability of direct excitation of the two-phonon
state [λπ1

1 i1 × λ
π2
2 i2]λπ from the ground state (the phonon vacuum) has the form

B(Eλ; 0+
g.s. → [λπ1

1 i1 × λ
π2
2 i2]λπ) = (2λ1 + 1)(2λ2 + 1)

×

∣∣∣∣∣∣
n,p∑
τ

e(λ)
τ

∑
j1j2j3

v(−)
j1j2
〈j1||Eλ||j2〉

{
λ2 λ1 λ

j1 j2 j3

}(
pλ2i2
j2j3

ϕλ1i1
j3j1

+ pλ1i1
j3j1

ϕλ2i2
j2j3

)∣∣∣∣∣∣
2

. (8)

and for transitions between the one-phonon states we get

B(Eλ, λπ1
1 i1 → λπ2

2 i2) = (2λ2 + 1)

×

∣∣∣∣∣∣
n,p∑
τ

e(λ)
τ

∑
j1j2j3

v(−)
j1j2
〈j1||Eλ||j2〉

{
λ1 λ2 λ

j1 j2 j3

}(
pλ1i1
j2j3

pλ2i2
j3j1

+ ϕλ1i1
j2j3
ϕλ2i2
j3j1

)∣∣∣∣∣∣
2

. (9)
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Eqs. (8) and (9) are obtained by making use of the commutation relations between
the quasiparticle and phonon operators (4) and their hermitian conjugates. The matrix
element for transitions between the two-phonon states [λπ1

1 i1 × λ
π2
2 i2]λ′π′ and [λπ3

3 i3 ×
λπ4

4 i4]
λ′′π
′′ is very complex and not presented here. Its first order term is very similar

to the one for transitions between the one-phonon states λπ1
1 i1 and λπ4

4 i4 and may be
obtained by assuming that the fermion structure of one phonon is “frozen”, i.e., assuming
that λπ2

2 i2 ≡ λ
π3
3 i3. The next second order term is smaller and it is not taken into account

in the present calculations.
An expression for the “forbidden” Eλ-transitions between the states which differ by

an odd number of phonons can be derived by applying the fermion representation for
the Eλ-operator in Eq. (5) and commutation relations of Eq. (4). Then, one gets

B(Eλ, [λπ1
1 i1 × λ

π2
2 i2]λπ3

3
→ λπ4

4 i4) = (2λ1 + 1)(2λ2 + 1)(2λ4 + 1)

×
∣∣∣∣ n,p∑
τ

e(λ)
τ

∑
j1j2
j′j′′

u(+)
j1j2
〈j2‖M(Eλ)‖j1〉

∑
J

(−1)J


j2 j1 λ

j′′ j′ λ4

λ1 λ2 J


×
[(

pλ1 i1
j1j′

pλ2i2
j2j′′

pλ4i4
j′′j′ + φλ1 i1

j1j′
φλ2i2
j2j′′

φλ4i4
j′′j′

)
δJ,λ3

+
(
pλ1 i1
j1j′

φλ2i2
j2j′′

φλ4i4
j′′j′ + φλ1 i1

j1j′
pλ2i2
j2j′′

pλ4i4
j′′j′

)
(2 J + 1)

{
λ λ4 λ3

λ1 λ2 J

}]∣∣∣∣2 . (10)

Examples of such transitions are the E1-transitions [2+1 × 3−1]1− → 2+1 or [3−1×
3−1]2+,4+ → 3−1. In the ideal boson approach only collective E3-transitions between
these states are allowed while realistic calculations indicate that, although hindered, the
E1-decay of these two-phonon states is preferable [15].

Eqs. (8), (9), and (10) can be generalized for the transitions between more complex
configurations. The phonon amplitudes and the reduced matrix elements of the Eλ-
transitions in these equations belong to different multipolarities making “random” the
sign of different elements in the sums. It results in destructive interference between
different elements. The calculations indicate [4,13,15117] that all transitions of Eqs. (8),
(9), (10) are of the same order of magnitude and 213 orders of magnitude weaker than
the collective transitions of Eq. (7). Thus, in the presence of collective electromagnetic
transitions of the same multipolarity the “forbidden” transitions under consideration are
negligibly weak and can be omitted in the calculation. This is true for E2- or E3-
transitions at low energies. But it is not the case for the E1-transitions in the low-energy
region where no collective 1− states exist as discussed above. The number of “forbidden”
E1-transitions between low-lying states is numerous. In Fig. 1 we schematically present
by thin lines only the ones which take place between the ground state, one-phonon 2+1
and 3−1 states and two-phonon multiplets made of 2+1 and 3−1 phonons; collective
decay of GDR (Giant Dipole Resonance) into the ground state is shown by thick line
in this figure. Many of these transitions are not known from experiment at the present
time but some of them have been systematically studied for different mass regions and
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Fig. 1. The E1-transitions between the ground state, one-phonon 2+1, 3−1 states and two-phonon multiplets
made of 2+1 and 3−1 phonons (thin lines). All these transitions are forbidden in the ideal boson picture.
Multiplets are degenerated by energy when coupling to other configurations is taken not into account. Allowed
within this approach decay of the GDR is shown by thick line.

will be considered below.
We have discussed above the collective and the “forbidden” Eλ-transitions between

pure one- and multi-phonon states. If we take into account the coupling between these
configurations and describe excited states by the wave function (3), different matrix
elements in Eqs. (7), (8), (9), (10) contribute to the transition between the initial
Ji and final Jf states with weighting factors R, P and T for the different components.
It also means that interference effects are possible and in some cases they play an
important role as discussed below. The actual calculations of the properties of low-lying
states in nuclei not far from the closed-shell indicates that a contribution of three-phonon
configurations to the structure of these states is not large. On the other hand, a coupling
to these configurations sufficiently improves the description of the energy of the states
with the main two-phonon component. For these reasons, we have included the three-
phonon terms in the wave function (3) but omitted transitions from these terms in
calculation of the decay properties of the states under consideration.

3. Analysis of some low-energy E1-transitions

Making use of the elements discussed above we have calculated some of these “forbid-
den” E1-transitions in 120Sn, 144Nd and 144Sm for which experimental data are available.
The QPM Hamiltonian includes several fitting parameters. As an average field we have
used the Woods1Saxon potential with the parameters from Refs. [16,18]; the value of
the constant matrix element for the monopole pairing is also presented in these papers.
The parameters of the residual interaction were obtained in the following way. The
strength of the residual interaction for Jπ = 2+ and 3− was adjusted to reproduce the
properties (excitation energy and B(Eλ) value, known from experiment) of the 2+

1 and
3−1 states in the calculation with the wave function in Eq. (3). In this calculation the first
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2+ and 3− phonons have energies somewhat above the experimental values but due to
the coupling to complex configurations, the lowest states are shifted down to the correct
position. For the dipole strength the conditions were to exclude the spurious center of
mass motion and to achieve the correct position of the GDR centroid. Although several
phonons of each multipolarity have been included in the present calculations, the most
important are the collective 2+1 and 3−1 phonons and also phonons which form the
GDR. This is because other (non-collective) phonons have larger excitation energies
than 2+1 and 3−1 ones, also they carry much less B(Eλ)-strength and couple weaker
to other configurations due to their non-collective nature.

Let us at first consider the direct excitation of the lowest 1− state from the ground
state. This transition is known in many nuclei from the late seventies [19]. Since the
energy of the first 1− state is close to the sum of energies of the 2+

1 and 3−1 states it
was proposed [20] that the lowest 1− state was a member of the two-phonon multiplet
[2+

1 ⊗3−1 ]. A renewed interest in the properties of this state has been recently shown up
in Nuclear Resonance Fluorescence (NRF) experiments with a new generation of HPGe
detectors [3]. Comparing the values of the E2-transitions 2+

1 → 0+
g.s. and 1−1 → 3−1 , the

experimental evidence of two-phonon nature of the lowest 1− has been achieved [21].
This state was also observed in the (n, n′γ) reaction and inelastic scattering of protons
and α-particles [3,22128].

Theoretically, the properties of the low-lying 1− states and especially the E1-transitions
have been studied in the framework of different nuclear models [4,17,27130] after the
first paper by Vogel and Kocbach [20]. Considering the lowest 1− state as a pure two-
phonon one, the theoretical calculations overpredicted the B(E1) value for this state. To
improve the situation it was suggested [1] that renormalized values of effective charges
for E1-transitions should be used according to

e(E1)
eff = − 1

2e

(
τz −

N − Z
A

)
(1 + χ) . (11)

This takes phenomenologically into account a core polarization due to the coupling of
the first 1− state to GDR. The parameter χ was estimated in a static limit [31] and its
typical value was obtained as χ ∼ −0.7 for heavy nuclei. In our approach we are able
to avoid the use of this additional parameter by including explicitly the GDR phonons
into the model wave function of Eq. (3).

The results of our calculations of the excitation energies and the B(E1) values for
the lowest 1− states along selected nuclei are presented in Table 1 in comparison
with experimental data. Since the energies of the first 2+ and 3− phonons are above
experimental values, as discussed above, the energy of the pure two-phonon configuration
[2+1 × 3−1]1− is also higher than the one from the experiment. The three-phonon
configurations in the model wave function sufficiently improve the agreement. These
configurations are also responsible for some strength fragmentation of the two-phonon
configuration under consideration over several 1− states. In semi-magic nuclei, 120Sn
and 144Sm, this fragmentation is not large and the first 1− state carries 94% and 95%
of this two-phonon configuration, respectively. But the fragmentation increases in the
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Table 1
Excitation energies and B(E1) values for first 1− states in 120Sn, 144Sm and 144Nd. Calculations are performed
with wave function (3). Columns “Main” and “Polar.” give separate contribution for B(E1)-transition to two-
and one-phonon part of wave function, respectively; “Total” is the total transition when interference effect
between transitions in two previous columns is also taken into account

Ex (MeV) Main B(E1, 0+
g.s. → [2+

1 ⊗ 3−1 ]1−)
configuration (10−3 e2fm2)

Theory Exp. [2+1× 3−1]1− Theory Exp.

(%) Main Polar. Total

120Sn 3.29 3.271 [32] 94 12.2 2.1 7.2 7.6 [32]
144Sm 3.44 3.225 [25,26] 95 52.2 8.8 18.1 18.9 [25,26]
144Nd 2.57 2.185 [33] 82 51.6 21.8 6.3 7.2 [34]

non-magic nucleus 144Nd, and as a result, the [2+1× 3−1]1− configuration contributes
to the norm of the first 1− state with the weight of 82% while the 12% contribution is
given by the three-phonon configuration [[2+1×2+1]2+×3−1]1− . There are two main
reasons for the enhancement of the fragmentation. First, the collectivity of the lowest
phonons is larger in non-magic nuclei, which increases the coupling matrix elements
between different configurations. Second, the energies of these phonons are smaller and
this decreases the energy gap between the lowest one- and two-; two- and three-phonon
configurations and enhances the mixing.

In the column “Main” of Table 1 the B(E1) value for the transition to the two-
phonon component [2+1 × 3−1]1− of the wave function (3) of the first 1− state is
presented. It equals to |P 2+1

3−1(1−1) · 〈[2+1× 3−1]1− |M(E1)|0+
g.s.〉|2. As has been men-

tioned above, it overestimates the experimental value (the last column). The inclusion
of the GDR phonons in the model wave function improves the agreement. Since GDR
is located more than 10 MeV higher, its admixture to the lowest 1− state is very
weak: |RGDR(1−1)| < 0.5% in the present calculation. But the large value of the col-
lective one-phonon exchange matrix element 〈GDR|M(E1)|0+

g.s.〉 leads to the fact that

|P 2+1
3−1(1−1) · 〈[2+1 × 3−1]1− |M(E1)|0+

g.s.〉|2 and |RGDR(1−1) · 〈GDR|M(E1)|0+
g.s.〉|2

are the values of the same order of magnitude. The last value, core polarization effect,
is presented in the column “Polar.” of Table 1. When the interference effect between the
transitions to two- and one-phonon components of this state wave function is taken into
account, we obtain the final result given in the column “Total”. For the lowest 1− state
the interference has a destructive character and brings the final result in good agreement
with experimental findings. According to the numerical results in Table 1, it is possible
to calculate the parameter χ in Eq. (11) which has to be used if coupling to GDR is
not taken into account. We obtain the values −0.34, −0.41 and −0.65 for 120Sn, 144Sm,
144Nd, respectively.

The first 1− state may decay by E1-transitions not only into the ground state but also
into the 2+

1 state (see, Fig. 1). The results of our calculation for the second transitions
are presented in Table 2. Since the lowest 1− state is mainly of the two-phonon nature
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Table 2
B(E1) values for some E1-transitions between excited states in 120Sn, 144Sm and 144Nd. Column “Main” is
the contribution of transition between one-phonon components of the 3−1 and 2+

1 states for the 3−1 → 2+
1

decay; “Polar.” is polarization effect; “Total” is the total transition when interference effect between transitions
in two previous columns is also taken into account

B(E1, Ji → Jf) (10−3 e2fm2)

[2+
1 ⊗ 3−1 ]1− → 2+

1 [3−1 ⊗ 3−1 ]2+ → 3−1 3−1 → 2+
1

Theory Exp. Theory Exp. Theory Exp.

Main Polar. Total

120Sn 0.08 1 0.93 1 3.7 0.34 1.8 2.02 [35]
144Sm 0.76 0.61 [25,26] 1.71 1.20 [25,26] 24 6.2 5.9 5.0 [36]
144Nd 3.4 4.25 [33] 0.52 1 13.5 3.36 3.38 1.77 [33]

and the 2+
1 state is practically a one-phonon state, the main term responsible for this

transition is the one: 〈2+1|E1|[2+1× 3−1]1−〉 described by Eq. (10). This is the case
for the semi-magic nuclei 120Sn and 144Sm. The structure of the lowest 2+ and 1−

states in 144Nd is more complex than that of the semi-magic nuclei because of the
collectivity of the 2+1 phonon. It results in that the one-phonon component exhausts
88% of the norm of the wave function. The two-phonon components [2+1 × 2+1]2+

and [2+1 × 4+1]2+ largely contribute to the structure of the 2+
1 state. Also, several

configurations contribute the structure of the 1−1 state. Because of that the transition
probability is influenced by the matrix elements: 〈[2+1× 2+1]2+ |E1|[2+1× 3−1]1−〉,
〈[2+1× 4+1]2+|E1|[2+1× 3−1]1−〉. Experimental values of B(E1; 1−1 → 2+

1 ) are very
different for 144Sm and 144Nd. The calculations reproduce the experimental tendency. 3

The GDR core polarization is marginal for the B(E1; [2+
1 ⊗ 3−1 ]1− → 2+

1 ) value,
because of the following reason. In principle, an influence of the GDR may occur
via some admixture of the two-phonon [GDR × 2+1]1− configuration in the wave
function of the lowest 1− state. But this admixture is much weaker as compared to
the admixture of the GDR itself in the wave function of this state. The energy gap
between the [GDR × 2+1]1− and [2+1 × 3−1]1− configurations is very big while
the coupling matrix between them is small. In general, the coupling between different
two-phonon configurations is much weaker as compared to their coupling to one- and
three-phonon configurations. The first coupling is responsible for an anharmonicity effect
which produces a shift of these configurations of about 100 keV in heavy nuclei [37].
On the other hand, the coupling between one- and two-phonon configurations leads to
fragmentation of the one-phonon configuration strength over a few MeV.

Similar arguments for the GDR core polarization are also valid for the E1-decay
of the [3−1 ⊗ 3−1 ]2+,4+ states into the 3−1 state. Our calculations for the E1-transition
[3−1 ⊗ 3−1 ]2+ → 3−1 are presented in Table 2. For this transition in addition to the term

3 The contribution of the matrix element of Eq. (10) to B(E1) value was not taken into account in the
calculations presented in Refs. [17,34].
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〈3−1|E1|[3−1×3−1]2+〉 in Eq. (10) there are also some admixtures from the transition
matrix elements 〈3−1|E1|2+1〉 in Eq. (9) and 〈[2+1 × 3−1]3−|E1|[3−1 × 3−1]2+〉.
The second matrix element contributes due to an admixture of the one-phonon 2+1
component in the wave function of the [3−1 ⊗ 3−1 ]2+ state; and the third one, to two-
phonon [2+1 × 3−1]3− configuration in the wave function of the 3−1 state. All three
matrix elements in this paragraph are of the same order of magnitude. Thus, their
contribution to the transition probability depends on the value of the amplitudes R and
P of the wave function (3). In the case of 120Sn the first matrix element has a weighting
factor R1(3−1) · P 3−1

3−1 (2+ν) ∼ 1 while two other matrix elements are weighted with

factors R1(3−1) · R1(2+ν) � 1 and P 3−1
2+1 (3−1) · P 3−1

3−1 (2+ν) � 1, respectively. For
144Sm and 144Nd the two-phonon component

[
3−1× 3−1

]
2+ is shared between several

states [17]. In Table 2 we have presented the transition for the state with the maximum
contribution of the

[
3−1× 3−1

]
2+ component in the structure. It has recently been

suggested that the transition [3−1 ⊗ 3−1 ]2+ → 3−1 should be used to identify the two-
phonon octupole vibrations in 208Pb in the NRF experiment [15].

The GDR core polarization may play an important role for E1-transitions between two
excited states with the main one-phonon configurations. An example of such a transition
is the decay of the 3−1 state into the 2+

1 state. As for the decay of the [2+
1 ⊗3−1 ]1− state

into the ground state, we have for this transition a competition between weak “forbidden”
〈2+1|E1|3−1〉 matrix element, which has a weighting factor R1(3−1)·R1(2+1) ∼ 1, and
two collective 〈[GDR×3−1]2+ |E1|3−1〉 and 〈2+1|E1|[GDR×2+1]3−〉 matrix elements
with small weighting factors R1(3−1) · P 3−1

GDR(2+1)� 1 and R1(2+1) · P 2+1
GDR(3−1)�

1, respectively. The results of our calculations of the 3−1 → 2+
1 decay are presented in

Table 2. Separate contributions of transitions between one-phonon components of the 3−1
and 2+

1 states and between one- and two-phonon configurations, [GDR×low-lying state],
are shown in columns “Main” and “Polar.”, respectively.

4. Summary

The low-energy E1-transitions in spherical nuclei between the ground and excited
states and between excited states are considered. The transitions are allowed by spin
and parity but forbidden in the ideal boson picture. It is shown that the transitions can
be quantitatively described making use of the internal fermion structure of phonons.
The GDR core polarization is taken into account and its influence on the transitions is
calculated on microscopic footing. The contribution of the GDR leads to a sufficient
reduction of the transition probability. It is in agreement with the phenomenological
renormalization of effective charge for the quantitative description of low-energy E1-
transitions.
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