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Abstract: Excited states in even Nd isotopes, up to excitation energies of 3-4 MeV, were investigated 

in proton- and deuteron-scattering experiments performed with high-energy resolution. More than 

300 transitions were studied. For several new excited states spin and parity assignments have been 

suggested. Reduced transition probabilities were extracted for natural-parity states from O+ up to 

6*. The experimental strength distributions have been compared with the predictions of the 

interacting boson model (IBM) and of the quasi-particle-phonon model (QPM). The octupole 

transition probabilities are well described in both models as produced by the fragmentation of the 

f-boson or of E3 phonons. IBM-sdf calculations seem to account also for the transitions to the 

low-lying I.- states. Quadrupole and hexadecapole distributions are well described in the QPM. 
The leading configurations are due to 6-8 low-lying one-phonon states. The two- and three-phonon 

states play an important role especially in 14”Nd. The failure of IEM quadrupole and hexadecapolc 

calculations ctearly points out the need of jntrodo~ing add~t~onat bosom tying at high excitation 

energies. QFM evatuations account also for other features of the experimentat data, as the E5 and 

E6 strength distributions and the isovector components. The limits ofthe two models are discussed. 

i 
NUCLEAR REACTIONS iJr.144.i4b.lqN.i-j(,Nd(p, p’), E =3@_5 Me\/; rddNd&,, p’), E ;; 

E 51 MeV; ~J*.,44,14~.,44,,sC~d(d, d’), E = 50.8 MeV, measured @(Et,, e), cr(&,, f?). 

iaZ.‘44,i4’.14X,‘sr’Nd deduced levels, J, n, B(h). Enriched targets. 

1. Introduction 

The family of stable even-even neodymium isotopes (Z =60, N = 82-90) is 
characterized by a fast transition from spherical to axial& deformed shapes and 
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provides, therefore, a sensitive testing ground for nuciear mode& as many properties 
are changing rapidly at the onset of deformation. For this reason, these nuclei have 
received special attention during the past years. Their low-lying states have been 
studied by different methods as reported in recent compilations ‘). 

Electric multipole transition strengths (EA-strengths) are currently used in assess- 
ing the validity of the different models. Experimental methods extensively used to 
determine dipole and quadrupole strengths are based on y-ray absorption or decay 
and on CouIomb-excitation measurements, Octupole, hexadecapoie and higher 
multipolarity transitions are better observed in inelastic-scattering experiments. The 
excitation of several final states in Nd isotopes has been recently observed in 
high-resolution electron-scattering experiments 2-4). The charge transition densities 
deduced from these experiments constitute a powerful and direct test of the nuclear 
wave functions. The strength of the different muitipolarities seems to be, in Nd 
isotopes as well as in other medium-mass nuclei, strongly fragmented5.6). For this 
reason detailed information on strength distributions, weak components included, 
is hard to obtain from the analysis of (e, e’) spectra, because of the radiative tail 
background. In contrast hadron-scattering data for transitions leading to excitation 
energies up to a few MeV, where the experimental spectra appear as ensembles of 
discrete lines, do not suffer from background originating from physical processes. 
Presently available data on E3 and E4 strength distributions have, therefore, been 
obtained mostly from hadron-scattering experiments and, in particufar, from (p, p’) 
experiment5 5-7). 

The present study is addressed to a better understanding of the level structure of 
these nuclei through the determination of transition strengths as obtained from 
proton and deuteron inelastic-scattering experiments. The experimental results are 
compared with theoretical predictions obtained from two different models: the 
quasi-particle-phonon model (QPM) **‘) and the interacting boson model (IBM) I”). 

2. Experimental method 

Differential elastic and inelastic cross sections have been measured for proton 
and deuteron scattering on iJ2~14d.‘46,‘*B~‘SoNd using momentum-analyzed beams from 
the KVI cyclotron. The incident energies were about 30.5 and 50.8 MeV, r~spe~tiveIy, 
for protons and deuterons. The ‘*‘Nd(p, p’) reaction has been studied also at 51 MeV. 
Enriched targets, with thicknesses of the order of I mg/cm’ have been used. Detailed 
information on the incident energy, on the highest excitation energy measured and 
on the target isotopic enrichment is given for each nucleus in table 1. 

The scattered particles were detected in the focal plane of the QMG/2 spectrograph 
with an energy resolution of 12-15 keV in (p, p’) and of 15-22 keV in (d, d’) experi- 
ments. The excitation energies were determined through the caIibration of the focal 
plane with known excitation energies. On the average the energy values quoted in 
the present paper have an uncertainty of less than 2 keV for states below 2.2 l%V 



TABLE 1 

Nd isotope masses, proton and deuteron incident energies, the highest measured 

excitation energy, E,,, , the isotopic enrichment of the targets and (e, e’) experiments 

considered in the analysis 

A E,, (MeV) Ed (MeV) E,,,;,, (Mev) Enrichment (%) (e, e’) data 

3 

142 30.3 50.9 5.560 95.6 ref. “) 

144 30.3; 51.0 51.1 3.658 96.6 ref. 27) 
146 30.7 50.7 3.760 97.0 ref. 4, 

148 30.5 50.5 3,250 96.3 1 1 
150 30.7 50.7 3.350 97.0 ref. -‘) 

“1 M.N. Harakeh, private communication. 

and a larger uncertainty, up to 4 keV, at higher energies, due to the lack of reference 
levels. 

Cross-section values have been derived from the yield in each energy peak. The 
accuracy in the cross-section normalization has been estimated to be of the order 
of 10%. This has been tested comparing the elastic-scattering cross sections for each 
nucleus and each projectile to optical-model predictions. The relative cross-section 
values shoutd have a slightty better accuracy for the different projectiles on the 
same target nucleus and a much better accuracy for transitions to different final 
states excited in the same reaction. Some weak transitions, leading to states lying 
in the proximity of other more strongly excited states, were detected only in proton 
scattering because of the better energy resolution. The weakest transitions detected 
have differential (p, p’) cross sections reaching, at the maximum of the angular 
distribution, a value of the order of lo-20 p,b/sr. These cross sections correspond 
to values of the coupling amplitudes PA, of about 0.008-0.010. 

3. Data mafysis 

3.1. SPUN-PARITY ASSIGNMENTS 

Spins and parities (I”) of the states excited by inelastic scattering can be obtained 
from the transferred angular momentum A, deduced from the comparison between 
experimental and calculated differential cross sections. In the present study coupled- 
channel (CC) calculations have been carried out in order to discriminate between 
one- and two-step excitations. The calculations have been performed with the code 
EXE I’), using the optical-model parameters of Becchetti and Greenlees “) and 
Daehnick ef nl. 13) for proton and deuteron scattering, respectively. 

A large part of the J” assignments has been obtained both from (p, p’) and (d, d’f 
angular distr~bu&ions without uncertainties. For some transitions the assignment was 
less straightforward. ~i~~u~t~es were encountered in the case of transitions of weak 
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intensity and not well resolved from neighbouring and stronger transitions. In some 

other cases a given transition appeared in the energy spectra as a well-resolved peak 

with a strong intensity, but the angular distribution did not show any characteristic 

diffraction pattern and does not indicate, therefore, any definite angular-momentum 

transfer. This result could be due to the presence of two or more overlapping levels. 

In such a case the J” is not given or one or two possible assignments are given 

between parentheses. Other difficulties, as discussed below, arise from uncertainties 

in the reaction mechanism and the transition form factors. 

The spin and parity assigned to each final state, as well as the coupling amplitudes 

used in CC calculations, /3:” and /3”,“, are given in tables 2-6. 

3.2. MULTIPOLE MATRIX ELEMENTS 

The transition matrix elements can be derived from the coupling amplitudes: 

where Z is the atomic number and V(r) and Vi:‘(r) are the real parts of the g.s. 

optical-model potential and of the transition potential, respectively. The reduced 

transition probabilities are obtained from the matrix elements: 

&(EA, Ji+ Jr) = 11\471,,(EA)12/(23i+ 1). Expression (I), which holds for A 2 2, gives 

the transition matrix elements in terms of transition potentials. According to the 

Satchler theorem r4), these matrix elements should be equal to the matrix elements 

of the transition mass-densities. As discussed by Bernstein et al. 15), eq. (1) is a 

“modified” form of the matrix elements, since their values are obtained using the 

atomic number Z instead of the mass number A. In the following the “modified” 

and the “non-modified” transition matrix elements are written as lii,,(Eh) and 

M,,(EA), respectively. The expressions that connect “modified” and “non-modified” 

quantities are given in refs. 5,6). Th e modified values make easier the comparison 

between data obtained from different measurements since the transition probabilities 

from hadron scattering become equal to the electromagnetic probabilities in absence 

of isovector contributions. The transition probabilities quoted in the present paper 

are the “modified” values as currently used in the literature. The different definitions 

of the matrix elements must be taken properly into account when transition prob- 

abilities from different experiments are compared with model predictions. 

Dropping the indication of the multipolarity, we indicate hereafter with M,,, I?,, 

and fid, the transition matrix elements deduced from (e, e’), (p, p’) and (d, d’) 

experiments, respectively. These quantities can be expressed in terms of the proton 

and neutron matrix elements and vice versa: 

(2) 
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TABLE 2 

Spectroscopic information deduced for 14*Nd from inelastic proton and deuteron scattering. Level energy, 

E,, spin-parity .I”, coupling parameters pf;” and pi”, and isoscalar transition probability k,(EA) (and 

error) are given for each level 

EX 
(MeV) J’ 

PRP dd 
PA 

&EA 1 
(W.U.) 

1.576 

2.084 

2.101 

2.209 

2.217 

2.244 

2.384 

2.438 

2.515 

2.549 

2.583 

2.736 

2.776 

2.846 

2.885 

2.975 

3.008 

3.045 

3.080 

3.126 

3.241 

3.295 

3.315 

3.408 

3.420 

3.499 

3.541 

3.576 

3.594 

3.632 

3.675 

3.707 

3.762 

3.783 

3.806 

3.834 

3.871 

3.897 

3.908 

3.923 

3.935 

3.983 

4.004 

4.076 

4.104 

4.127 

4.153 

2+ 

3- 

4+ 

(6+) 
0+ 

1- 

2+ 

4+ 

(I_) 

(l-) 
2+ 

(4+) 
1 -- 
2+ 

(6+) 
5- 

(33) 
2+ 

4+ 

2+ 

7- 

5- 

4+ 

6+ 

1- 

(7-) 

(7~) 
3- 

5- 

6+ 

6+ 

(33) 

(o+) 

(:I) 

(O+) 

0.08 IO 0.0900 14.0 (0.71) 

0.1270 0.1180 34.1 (1.4) 

0.0627 0.0640 15.9 (0.85) 

0.0260 0.0231 6.97 (0.50) 

0.0039 0.0046 0.22 (0.05) 

0.00 17 0.0024 0.10 (0.03) 

0.0238 0.0239 0.99 (0.07) 

0.0194 0.0180 1.26 (0.06) 

0.0025 0.0017 0.07 (0.02) 

0.0026 0.0019 0.11 (0.02) 

0.0180 0.0170 0.50 (0.04) 

0.0190 0.0145 0.82 (0.11) 

0.00 17 0.0019 0.09 (0.02) 

0.0387 0.0387 2.58 (0.14) 

0.0118 0.0077 0.77 (0.08) 

0.0560 0.0410 11.4 (0.71) 

0.0108 0.0108 0.29 (0.02) 

0.0173 0.0173 0.52 (0.04) 

0.0304 0.0281 3.07 (0.15) 

0.0105 0.0118 0.24 (0.02) 

0.0300 0.0173 12.3 (1.3) 

0.0140 0.0110 0.82 (0.08) 

0.0391 0.0354 4.87 (0.24) 

0.0310 0.0256 8.57 (0.71) 

0.0046 0.0040 0.42 (0.09) 

0.0200 0.0110 5.26 (0.71) 

0.0100 0.0092 2.06 (0.36) 

0.0364 0.0260 1.66 (0.17) 

0.0160 0.0148 1.49 (0.11) 

0.0122 1.36 (0.16) 

0.0084 0.64 (0.13) 

0.0255 0.0173 0.73 (0.07) 

0.0033 0.0031 0.10 (0.02) 

0.0235 0.0180 0.79 (0.07) 

0.0122 0.0112 0.49 (0.07) 

0.0030 0.0020 0.04 (0.02) 

(4-, 5-) 
0+ 0.0021 0.06 (0.01) 

(2-, 55) 
(I_) 0.0036 0.0033 0.26 (0.05) 

6+ 0.0187 3.19 (0.04) 

4+ 0.0150 0.0122 0.52 (0.06) 

4+ 0.0169 0.0117 0.53 (0.04) 

(55) 0.0126 0.80 (0.06) 

( 
=% J” 

MeV) ’ PE” dd PA 
&A) 
(W.U.) 

4.180 

4.201 

4.272 

4.285 

4.298 

4.326 

4.346 

4.383 

4.426 

4.456 

4.464 

4.48 1 
4.497 

4.515 

4.530 

4.550 

4.567 

4.581 

4.626 

4.638 

4.662 

4.688 

4.707 

4.725 

4.744 

4.752 

4.798 

4.838 

4.847 

4.862 

4.892 

4.908 

4.971 

4.993 

5.040 

5.054 

5.089 

5.102 

5.130 

5.145 

5.162 

5.172 

5.193 

5.228 

5.252 

5.266 

5.277 

(4+) 
2+ 

5- 

(.:I) 

6+ 

6’ 

l_ 

(3-) 
3- 

0.0110 0.36 (0.03) 

0.0164 0.0129 0.29 (0.04) 

0.0160 1.29 (0.14) 

0.0137 0.0124 0.38 (0.03) 

0.0140 0.99 (0.10) 

0.0256 0.0140 2.56 (0.35) 

0.0126 0.0077 0.77 (0.14) 

0.0015 0.0022 0.08 (0.02) 

0.0200 0.0126 0.39 (0.05) 

0.0102 0.0110 0.29 (0.03) 

(4+) 0.0126 0.0131 0.67 (0.06) 

2+ 0.0111 0.0090 0.14 (0.02) 

3- 0.0120 0.29 (0.04) 

0.0117 0.0105 0.19 (0.03) 

0.0100 0.14 (0.02) 

0.0175 0.0105 0.27 (0.03) 

0.0077 0.09 (0.02) 

0.0164 1.35 (0.14) 

0.0173 1.50 (0.07) 

0.0158 0.0130 0.41 (0.07) 

(O+) 0.003 1 0.09 (0.02) 

6+ 0.0164 2.45 (0.30) 

3- 0.02 16 0.0171 0.72 (0.06) 

(33) 0.0200 0.0142 0.49 (0.08) 

(334+) 

0.0102 0.0130 0.41 (0.04) 

4+ 0.0218 0.0167 1.08 (0.11) 

3- 0.0210 0.0130 0.41 (0.06) 

3- 

(O+, l_) 

(33) 
2+ 

(I-) 

(33) 

4+ 

2+ 

4+ 

2+ 

0.0316 0.0250 1.53 (0.14) 

0.0243 

0.0091 

0.0023 

0.0104 

0.0128 

0.0078 

0.0119 

0.0100 

0.0170 

0.0090 

0.0084 

0.0083 

0.71 (0.06) 

0.12 (0.02) 

0.09 (0.02) 

0.21 (0.03) 

0.3 1 (0.04) 

0.12 (0.02) 

0.43 (0.07) 

0.12 (0.02) 
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TABLE 2-continued 

dd 
PA 

&@A) E, 
(W.U.) (MeV) Jf” PE” dd PA 

&,@A) 
(W.U.) 

5.322 5.411 

5.332 3- 0.0128 0.32 (0.04) 5.496 

5.355 (2+, 33) 5.511 3- 0.0172 0.0171 0.72 (0.06) 

5.377 o+ 0.0030 0.0030 0.09 (0.02) 5.525 3- 0.0222 0.0175 0.75 (0.06) 

5.412 (O+, 1F) 5.552 

5.433 

The gs( Eh) values are given in Weisskopf single-particle unit ( W.U.): 

B ,p_u (EO) = A*” (e’ fmJ); B\r,, (El) = (3/64n)(1.2A”‘)” (e’ fmh); 

B ,_p u (EA) = [(2A +1)/47-r] [3/(A +3)]’ ( 1.2A”‘)2A (e’ fm’“), with A is ~2. 

The W.U. for EO and El are defined in refs. “,“), respectively. 

TABLE 3 

Same as table 2 for ‘@Nd 

-5 
(MeV) J; K” dd PA 

&WA) 
(M:V) J; PEP P: 

&Eh) 

(Wm.) (W.U.) 

0.696 2+ 0.1200 0.1180 24.0 (1.2) 

1.314 4+ 0.0600 0.0530 10.8 (1.0) 

2:+4+ 0.1450 0.1230 

1.510 3- 0.1255 0.1180 33.9 (1.7) 

1.561 2+ 0.0130 0.0140 0.34 (0.06) 

2:+2+ 0.1600 0.1900 

1.791 6+ 0.0200 0.0190 3.78 (0.35) 

2.073 2+ 0.0310 0.0330 1.87 (0.13) 

2:+2+ -0.0800 -0.0800 

2.093 5- 0.0548 0.0400 10.7 (1.0) 

2.109 4+ 0.0560 0.0520 10.4 (0.83) 

2.185 (10 0.0066 0.0066 0.98 (0.21) 

2.217 (6+) 0.03 10 7.78 (1.4) 

2.295 4+ 0.0097 0.0101 0.39 (0.04) 

2.327 (O+) 0.0028 0.0030 0.10 (0.02) 

2.367 2+ 0.0238 0.0241 1.00 (0.06) 

2.451 4+ 0.0232 0.0230 2.04 (0.19) 

2.527 2+ 0.0303 0.0300 1.55 (0.14) 

2.590 (l-) 0.0038 0.29 (0.06) 

2.606 

2.675 (O+) 0.0026 0.0024 0.06 (0.02) 

2.694 2+ 0.0105 0.0098 0.17 (0.02) 

2.717 (l_) 0.0032 0.0030 0.22 (0.04) 

2.779 3- 0.0560 0.0547 7.29 (0.70) 

2.833 3- 0.0231 0.0218 1.16 (0.12) 

2.898 2+ 0.0131 0.0105 0.19 (0.02) 

2.969 3- 0.0264 0.0200 0.97 (0.10) 

2.987 4+ 0.0280 0.0250 2.41 (0.22) 

3.026 5- 0.0220 0.0200 2.68 (0.24) 

3.049 0.0490 0.0440 13.0 (1.4) 
3.097 

‘.1-) 
(0 + 

3.130 1- 0.0029 0.0028 0.19 (0.04) 

3.180 (6+) 0.0260 0.0170 3.01 (0.42) 

3.214 3- 0.0098 0.0105 0.27 (0.03) 

3.240 (3_) 0.0080 0.0082 0.16 (0.03) 

3.289 

3.340 (:) 

0.0170 0.0140 0.48 (0.07) 

0.0152 0.0158 0.96 (0.15) 

3.382 (4+) 0.0148 0.0148 0.84 (0.10) 

3.401 5- 0.0190 1.77 (0.35) 

3.461 4+ 0.0128 0.0128 0.63 (0.11) 

3.493 5- 0.0224 0.0182 2.22 (0.19) 

3.522 2+ 0.0170 0.41 (0.08) 

3.555 2+ 0.0134 0.25 (0.04) 

3.658 3- 0.0164 0.56 (0.08) 
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0.454 2+ 0.1610 0.1580 42.9 (3.4) 
0.918 o+ 0.0034 0.12 (0.02) 
1.043 4+ 0.0450 0.0400 6.11 (0.27) 

2:+4+ 0.1890 0.1680 
1.190 3- 0.1438 0.1310 41.6 (2.0) 
1.376 1- 0.0085 1.76 (0.34) 
1.471 2’ 0.0360 0.0360 2.22 (0.12) 

2;+2+ 0.1080 0.1080 
1.517 5- 0.0570 0.0490 15.9 (1.0) 

2:+s- -0.134 -0.110 
3;+5- -0.141 -0.117 

1.572 (0’) 0.0030 0.0032 0.11 (0.02) 
I.695 (o+) 0.0028 0.08 (0.02) 
1.744 4+ 0.0678 0.0606 14.0 (0.68) 
1.780 6+ 0.0208 2.99 (0.72) 
1.787 ‘+ 

(h 
0.0173 0.0168 0.48 (0.09) 

1.917 0.0166 0.0144 0.79 (0.16) 
1.976 (2+) 0.0210 0.0190 0.62 (0.08) 
1.988 4+ 0.0418 0.0415 6.58 (0.34) 
2.027 I- 0.003 1 0.20 (0.04) 
2.069 2& 0.0186 1.66 (0.24) 

0.0610 

3,+s- 0.0087 

2.090 (o+) 0.0045 0.0050 0.26 (0.05) 
2.198 2+ 0.0114 0.010s 0.19 (0.02) 
2.225 1- 0.003 1 0.0035 0.25 (0.04) 
2.269 l- 0.003 1 0.0035 0.25 (0.04) 
2.335 3- 0.0560 0.0520 6.55 (0.41) 
2.453 2+ 0.0100 0.0100 0.17 (0.03) 
2.478 (2+) 0.0119 0.0111 0.21 (0.03) 
2.52s 3- 0.0410 0.0380 3.50 (0.20) 
2.552 4+ 0.0200 0.0173 1.14 (0.08) 
2.570 s- 0.0328 0.0280 5.20 (1.0) 
2.622 4+ 0.0189 0.0177 1.20 (0.11) 
2.665 2+ 0.0148 0.0158 0.43 (0.05) 
2.687 (3-f 0.0118 0.0100 0.24 (0.03) 

EX JI” PY dd PA 
&(Eh) 

MeVj (W.U.) 

2.705 
2.747 
2.807 
2.821 
2.847 
2.874 
2.887 
2.916 
2.932 
2.973 
3.005 
3.018 
3.095 
3.103 
3.150 
3.162 
3.209 
3.231 
3.249 
3.273 
3.285 
3.311 
3.355 
3.421 
3.435 
3.454 
3.472 
3.485 
3.503 
3.539 
3.567 
3.585 
3.616 
3.624 
3.676 
3.755 

(6+) 0.0170 0.0150 2.83 (0.34) 
5- 0.0270 0.0228 3.45 (0.30) 

3- 

(& 

0.0138 0.0134 0.43 (0.07) 
0.0282 0.0260 1.64 (0.15) 
0.0130 0.0140 0.34 (0.03 j 

5- 
4+ 
2+ 
5- 
3- 
4+ 
2+ 
6+ 
4+ 
4+ 

(4-1 
3- 

(6+) 
2+ 
4+ 

(:I) 
5- 
4+ 
4+ 
2+ 
5- 
2+ 
5- 
2+ 
5- 
2+ 

0.0240 
0.0243 
0.0141 
0.0235 
0.0125 
0.0158 
0.0077 
0.0148 
0.0158 
0.0141 

0.0212 
0.0223 
0.0141 
0.0189 

2.98 (0.30) 
1.90 (0.22) 
0.34 (0.03) 
2.37 (0.24) 
0.28 (0.05) 
0.72 (0.15) 
0.14 (0.02) 
1.51 (0.22) 
0.76 (0.08) 
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0.08 (0.02) 
1.92 (0.15) 
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0.72 (0.15) 

0.0130 
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0.0178 
0.0137 

(3) 

(4) 

The second relation (2) and eq. (3) are obtained taking into account the fact that 

at low incident energies the proton-neutron interaction is three times larger than 
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the proton-proton interaction. Finally, foilow~ng ref. I’), we can obtain the non- 
modified and the modified isoscalar and isovector matrix elements from the 
expressions: 

In comparing experimental and theoretical values one should remember that the 
ZBM-1 model does not d~stjngujsb between proton and neutron degrees of freedom 
and conse~u~nt~~ it cannot be used to caicutate I%&, MD and M, but only the A& 
values. These Iatier matrix elements can be compared directly with the experimental 
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6fd, values. QPM and IBM-2 calculations allow the evaluation of Mp and Mn and 

these matrix elements can be compared with the experimental results using eqs. (5) 

and (6). 

As shown below, the present study provides rather precise information on the 

isoscalar mass transition probabilities and a less accurate, but still significant 
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evaluation of the isovector components. The isoscalar mass transition probabilities, 

&(EA), have been obtained from (d, d’) cross sections. Their values are given, in 

Weisskopf single-particle units, in columns 5 and 10 of tables 2-6. In absence of 

(d, d’) data the &(EA) values have been obtained from the relation: 1\;I,(EA) = fid, - 

G,,/[l +(N -Z)/2A]. This expression can be deduced, assuming, as in a simple 

one-fluid collective model, that MP/ M,, = Z/N. As shown below (see also fig. 2), 

this expression is in good agreement with the average trend of the experimental 

results. The errors quoted for the &( EA) values are only those due to the uncertainty 

in the normalization of the calculated to the experimental cross sections. Other 

sources of errors, discussed in the next section, are difficult to estimate and are not 

included. 

3.3. ACCURACY OF CC CALCULATIONS 

Possible sources of errors in extracting the transition probabilities are: (i) uncer- 

tainties in the absolute normalization of the experimental cross sections; (ii) 

imprecisions in the relative normalization of the calculated to the experimental 

differential cross sections and (iii) uncertainties in model analysis. The latter concern 

mainly the assumptions on the transition form factors and on the role played by 

two-step processes. 

The uncertainties in the absolute cross sections give a negligible contribution to 

the uncertainty in n;r,,(EA) values. In fact the coupling parameters PF are deter- 

mined essentially by the relative value of the inelastic to the elastic cross sections 

(i.e. by the fraction of the flux drawn from the elastic into the inelastic channel). 

Their values are therefore not affected by relatively small changes in absolute cross 

section values. 

Uncertainties in the transition form factors can lead to inaccurate evaluations of 

the transition probabilities, because the ratio a(x, x’)/&(Eh) is affected by the 

radial dependence of the transition form factor. In the case of transitions with A 2 2, 

we have assumed a standard collective form factor given by a first derivative of the 

ground state (g.s.) potential. Such an assumption, when generalized to all transitions, 

is crude but not unjustified. The microscopic models produce transition densities 

with a large variety of radial shapes. However, if a realistic nucleon-nucleon 

interaction is folded into these densities, one usually obtains surface-peaked transi- 

tion potentials, which are nearly equivalent to a first derivative of the g.s. potential. 

As examples we consider here some potentials obtained by folding the Jeukenne- 

Lejeunne-Mahaux density-dependent effective interaction “) into transition 

densities evaluated in the framework of QPM. As shown in refs. *-“) this model 

gives a successful description to the transition charge densities obtained from 

Nd(e, e’) experiments. We can, therefore, assume with a high degree of confidence, 

that QPM evaluations well describe also the neutron transition densities. As shown 

in fig. 1, in the case of five low-lying 2+ states in ‘44Nd, the different transition 
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Fig. 1. Transitions to 2+ states in lUNd. Left part: proton (full curves) and neutron (dashed curves) 

transition densities obtained from QPM calculations. Right part: (p, p’) real part ofthe transition potentials 
obtained by a folding-model procedure. 
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densities display different radial distributions, often with a complex structure (left 
part of the figure). However, the transition potentials (right part) obtained from the 
same transition densities can be nearly always approximated by a first derivative of 
a Woods-Saxon potential. This result is due to several reasons: (i) in some cases 
the proton and neutron contributions from the interior of the nucleus cancel each 
other (levels at 1.57 and 2.11 MeV); (ii) the density dependence of the effective 
interaction reduces the inner part of the transition potential and leads, therefore, 
to a surface-peaked potential; (iii) residual inner tails or bumps in the transition 
potentials are usually much smaller than the peak at the nuclear surface and give, 
therefore, small contributions to the resulting cross section, also because the sensitiv- 
ity of the projectile to the interior of the nucleus is very small (deuterons) or reduced 
(protons). A first derivative shape of the transition form factor seems therefore to 
be a realistic assumption also in the framework of the QPM. 

Finally we have estimated the possible two-step contributions and their effects 
on the evaluation of transition strengths. In the excitation of vibrational or rotational 
nuclei, two-step processes can be particularly significant since they are connected 
to the structure of the target nucleus: the presence of two-phonon states or of 
rota-vibrations. The latter configurations could play a role in the case of “*Nd, 
while multi-phonon states could play a role for the other Nd isotopes. 

Large two-step contributions to inelastic cross sections arise only from the eoupling 
of the final state with a strong intermediate channel as the 2: or/and 3; channels. 
Evidence of two-step processes has been found in the transitions to states belonging 
to the g.s. rotational band in “‘Nd and to a limited number of transitions in 
144,i46,1*~Nd. The two-step contributions in these latter nuclei should be connected 
mainly to two-phonon components in the wave function of the final state: E2-E2 
two-phonon components in O+, 2+ and 4+ states and E2-E3 two-phonon components 
in l-, 3- and 5- states. In CC calculations the intensity of the two-step contributions 
(and therefore the two-phonon strength found in a transition) is determined by the 
coupling of the fina state to the intermediate state. The procedure used to determine 
these contributions has been extensively described in two recent papers in the case 
of negative-parity states ‘f, and of positive-parity states “) (E2-E3 and E2-E2 excita- 
tions, respectively). The explicit consideration of two-step contributions leads to a 
better accuracy in the evaluation of the strengths of the direct transitions. The 
estimate of the couplings between excited states in this procedure is ‘fess accurate. 
Within the limits of this lower accuracy it might be observed that the pj and pz 
values given in tables 3 to 5 for the second step generally do not exhaust the full 
strength predicted by the vibrational model 19$, thus suggesting a fragmentation of 
the two-phonon strength. A similar result was found for the E2-E3 strength in the 
excitation of the l-, 3- and S states in MO, Pd and Cd isotopes “). in contrast, in 
these latter nuclei the full EZ-E2 two-phonon strength was found in the 4: and 2: 
states as well as the full E2-E3 strength in the 2; and 4; states. This last result is 
particularly significant because the unnatural-parit~~ states are not coupled directly 
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to the g.s. by Eh operators and, therefore, the only possible mechanism for their 

excitation is a multi-step mechanism. In such a case the comparison between 

experimental and calculated cross sections gives the two-phonon strength without 

ambiguities and with a good accuracy. In the present experiment we do not find 

any clear indication for the excitation of unnatural-parity states. This result and the 

fact that the E2-E2 two-phonon strength seems to be not exhausted in the transitions 

to the 2: and 4: states indicate that the fragmentation of the two-phonon strengths 

in Nd isotopes is larger than that found in MO, Pd and Cd isotopes. A fragmentation 

of the two-phonon components is also predicted by the QPM. 

3.4. MONOPOLE AND DIPOLE TRANSITIONS 

The spin-parity assignment and the evaluation of transition matrix elements are 

particularly difficult in the case of monopole and dipole transitions. The main 

maximum in A = 0 and A = 1 angular distributions is located at small scattering 

angles, out of the angular range here explored. Moreover, the transition form factors 

differ from those for A 2 2 and are less known than for other multipolarities. The 

conservation of particle number and the translational invariance imply that EO and 

El transition densities must satisfy the following rules, respectively: 

c 
piF’( ~)r’ dr = 0, 

I 
p;,!)(r)r3 dr=O. (7) 

These rules imply that pi:‘(r) and pjf ‘(r) must have at least one node near the 

nuclear surface and the most prominent maximum inside the nucleus. This behaviour 

of the form factors has been also evidenced in charge transition densities obtained 

from (e, e’) experiments: O+ state at 2.976 MeV in 14*Nd [ref. *)I, l- states at 

1.379 MeV in ‘46Nd [ref. 4)], at 1.022 MeV in i4’Nd and at 0.850 MeV in lsoNd 

[ref. “)I. When these transition densities are folded with an effective density-depen- 

dent interaction, the resulting transition potential is generally quite similar to a 

second derivative of the g.s. potential. An example of these folding-model calcula- 

tions is given in fig. 4 of ref. ‘). We have assumed, therefore, a second-derivative 

form factor. 

The structure of the low-lying O+ and I- states enhances the two-step processes 

via the 2: and 3; states. In fact the wave functions of these states have large 

two-phonon components. These give rise to contributions to the inelastic cross 

sections through a direct second-order coupling with the g.s. which must be summed 

to the first order one-phonon coupling. Within the harmonic-vibrational model “) 

the second-order terms must have an amplitude equal to 60” = 0.63/3: and to p;’ = 

l.Ol&$, for Ot and l- states, respectively. The largest transition amplitudes have 

been found for the transitions leading to the l- state at 3.42 MeV in 14’Nd and to 

the 1; state in 144*‘46.‘48*‘50Nd. They are of the order of 0.01 and correspond to about 
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$ of the two-phonon strength. Smaller amplitudes have been found for the other 1.. 
states and the O+ states. This result indicates that the two-phonon strength is 
fragmented also in the ease of EO and El excitations. 

The 0’ and the 1.. states seem to be equally excited in proton and deuteron 
scattering, as expected for isoscalar excitations. Considering therefore that the 
isoscalar EO and El operators are of the second order, with the first-order terms 
leading to vanishing matrix elements as expressed by eq. (7), this implies that A, in 
eq. (l), must be replaced by (h +2) and an extra factor of f should appear in front 
of the integral. 

In the present study the transitions to 0’ and l- states have been analyzed by 
CC calculations, taking into account two-step processes and second-order terms. A 
second analysis has been performed by DWBA, considering only the direct coupling. 
The cross sections calculated with these two approaches have rather similar angular 
distributions if the DWBA calculations are performed using a second-derivative 
form factor and if the CC ~alcuIations are performed with the constraints on two-step 
and on second-order terms as given by the harmonic-vibrational model j9). The 
differences in coupling amplitudes obtained in the two analyses are also rather 
limited, being of the order of lo-20%. Only the results from DWBA calculations 
are given in tables 2-5, since in this case the parametrization is much simpler. The 
monopole traosit~Qns are not considered in the comparisons with model predictions, 
because of the ~~ee~ajnties found both in the experiment and in model calculations. 
Dipole transitions are only considered in IBM-1 cal&ulations. 

4.1. COMPARISONS BETWEEN DIFFERENT EXPERIMENTS 

A significant test of the accuracy of the method and of the actual errors in transition 
probabilities can be obtained comparing the results from (p, p’f reaction with those 
from (d, d’) or other data and with model evaluations. Most of the ratios R,$ = 
6&J 6&d have values between 02 and I .40. Fluctuations in Rh? values can be due 
to errors in the evaluation of matrix elements or to an effective dependence on the 
structure of the final state. In the one-~uid collective model iM,/ A$, = Z/ N and for 
eqs. (3) and (4): R, = 1+ (N -2)/2A. This implies that RN should be constant 
for the different isoscalar transitions in a given nucleus and should display a smooth 
mass dependence (1.077 for A = 142 and 1.100 for A = 150 in Nd isotopes). This 
mass dependence is shown in the upper part of fig. 2 by a full line. In QPM 
evaluations, the proton and neutron contributions to transition probabilities change 
with the final state. To have a first overview of the agreement between the different 
experiments and model predictions we catcutate the mean vatue of the ratio (R,) 
and its variance, (TV= The two dashed curves in fig. 2 give the QP?vl prediction for 
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Fig. 2. Ratios of transition matrix elements from different experiments: fp, p’) and (d, d’) (upper part), 

(d, d’) and (e, e’) (central and lowest parts). The full curves give collective model predictions. The dashed 

curves give upper and lower limits of QPM predictions (see text). 

the values of (I&,)* aR, respectively. The full points give the experimental (&) 

ratios obtained from the transition matrix elements of the transitions for which both 

(p, p’) and (d, d’) cross sections have been measured. Each point gives the mean 

value of the whole ensemble of transition matrix elements determined for a given 

nucleus. The error on the point gives the variance due to the fluctuation in I& 

values. It can be observed that the mean values of the QPM predictions are not far 

from the collective model prediction, that the experimental points lie within the 

limits predicted by QPM evaluations and that their values, as indicated by the error 
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bars, span an intervd Simikir to that predicted by QPM ~~a~~~t~o~s. This FeSuit 

might be atso due to the ~~~~~a~j~~ af (p, p’) and Cd, 6’) ex~e~irn~~~s and analyses. 
The similarity of the method to&d in fact result in reduced errors in the relative 
values of 1\;9,, and I$,, matrix e’iements. 

The method used in the analysis of electron-scattering data is instead quite 
different. In principle, to compare the (p, p’) and (d, d’) with (e, e’) data, one can 
use the first relation in eq. (2). However, the difference (3Gdd - 2fir,) has too large 
error to allow a s~~~~~~ant comparison. For this reason, we consider instead the 
ratio i%&J M,, _ Tf-te dashed curves again bruit the region predicted by QPM evafu- 
ations. The points given in this figure have been obtained ~ons~der~~g 6~ transitions, 
with h =2-r 6, for which (e, e’) and (d, d’) CFOSS sechms have been measured, fn 
the centrrt$ part of fig. 2 the mean experimental ratios (fuU points) are dispIayed as 
a f~~~t~~~ of the mass number, whik in the lower part the same ratios are shown 
as a function of the transferred angular momentum (averaging the data belonging 
to final states with the same Jw value over the five nuclei). Again the agreement 
with model predictions is rather satisfactory. Also in this case the variance in the 
experimental ratios is similar to the variance of QPM evaluations. The indication 
is that the ex~e~~rne~ta~ errors and the uncertainties in the analysis do not give any 
clearly observable disagreement between (p, p’)> id, d”) and (e, e’) data and that the 
observed digresses are probably due to the isovector ~o~t~b~f~~~s. 

The lower part of fig. 2 does not display soy ~-de~e~den~e of the ratio of the 
~~(~~) obtained from h~dron scattering and e~~ctrornag~~t~~ data. This is an 
interesting result since it differs from those of tu-scattering e~~~~~~~e~ts “), which 
implies the absence of a ~-~~~~nd~n~e in the ratios ofp, ~~)~~~~(E~) and 
rrjd, d’)J &JEh ). The different behaviour of proton- or deuteron-scattering data 
with respect to n-scattering data could be due to a different sensnivity to the tail 
of the nuclear potential. 

Nuclear-resonance fluorescence experiments ‘I) have been performed on the 
nuclei *427’46*14x~‘5”Nd. Among other low-lying J = 1 states the level at 3.42 MeV in 
IJ2Nd and the 1;‘ states in the other Md isotopes have been observed to be retativety 
strongly excited, with B&El) vafues rather constant: 0.016,0.005,0.0t4 and 0.016 
e’ fm", respeaivety. Photon scattering probes the isovector strength_ These EI 
strengths could be due, therefore, to small but still a~~re~~ab~~ Fragments of the 
giant dipole isovector resonance in the I- tow-tying states. As noted in sect. 3.4, 
the same states are excited by electrons and protons as welt as by an isoscalar probe 
as a deuteron. Such resuit is a cfear indication that electron and hadron scattering 

are probing the isoscalar strength. Furthermore, other phenomenalogical evidences 
indicate that the main structure of these 1- states is due to isoscalar configurations 
built on the coupling of the octupole to the quadrupole degree of freedom. The 
excitation energy of these states is rather wet1 correlated to the energies of the 2: 
and the 3; states. For the strongest I- state irr the five Nd isotopes the ratio 
~(~-~/r~~2~)~ E(3;)f- results to be: 0.93, 0.9Ys OX%, a.79 and 0.79, respective&. 
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The transition probability, Bdd(El) increases with the isotope mass: 0.59, 1.4, 2.6, 

3.6 and 3.0 W.U. for A = 142, 144, 146, 148 and 150, respectively. This increase is 

similar to that predicted by the collective model for an E2-E3 two-phonon state. 

Considering /3;, the coupling amplitude of second-order contributions obtained in 

the analysis discussed in sect. 3.4, and the quadrupole and octupole coupling 

amplitudes, pz and p3, the ratio (/?‘//PJ~~)‘, averaged over (d, d’) and (p, p’) data, 

turns out in fact to be rather constant: 0.17, 0.21, 0.17, 0.15 and 0.14 for the five 

isotopes, respectively. 

The coupling of E3 and E2 phonons (in spherical nuclei) and of roto-vibrations 

in 15”Nd, may lead to a displacement of the charge and induce isovector dipole 

transitions. In this model the isoscalar and the isovector strengths should be propor- 

tional. This, however, does not seem to be the case in the Nd isotopes, considering 

the rather constant B(E1) values found in (y, y’) experiments. This point will be 

discussed also in sect. 6.4. 

4.2. RELEVANT FEATURES OF THE STRENGTH DISTRIBUTIONS 

The most frequent and prominent peaks in the energy spectra belong to transitions 

to 2+, 3- and 4+ states. A large part of the E2 strength is concentrated in the 2: 

state, with Bs(E2) values increasing from 14 W.U. for ‘42Nd to 115 W.U. for ““Nd. 

If the same strength is expressed in terms of the percentage of the energy-weighted 

sum rule (EWSR), the mass dependence is strongly reduced. In fact in all Nd 

isotopes the 2: state exhausts 6-7% of the EWSR and the other 2+ states at excitation 

energies below EL 4-S% of the EWSR. To evidence the systematic features of the 

data, the strength is summed over an equivalent energy range in the different nuclei 

up to an excitation energy: El = E(37)+2.1 MeV, i.e. 4.184, 3.610, 3.290, 3.098 and 

3.034 MeV for ‘42~‘44~‘46~‘48~‘s0Nd, respectively. As shown in fig. 3 the total E2 strength 

below E,, exhausts a nearly constant fraction of the EWSR of lo-11%. 

Also the E3 strength distribution is dominated by the first 3- state, with transition 

probabilities between 22 W.U. (““Nd) and 42 W.U. (14’Nd). The fraction of the 

EWSR exhausted by the 3, state decreases from 7% for 14*Nd to 2.2% for 15”Nd, 

and that by the other 3- states up to Ex increases from 1.2 to 5%. This behaviour 

confirms the results of a previous study: by increasing the number of valence particles 

the nucleus acquires collectivity and a substantial fraction of the octupole strength 

is transferred from the first to the other 3 states. This interplay concerns the first 

and the neighbouring octupole states and not higher states, as, for instance, the 

low-energy octupole resonance. The comparison with model calculations gives a 

simple explanation of this result, at least in spherical nuclei. The E3 strength 

distribution at low excitation energies is fully explained as due to the fragmentation 

of a single f-boson (in IBM) or of the lowest E3 phonon (in QPM). 

The E4 strength distributions have a more complex structure. The 4: state is the 

strongest E4 transition in ‘42Nd and “‘Nd and has a strength comparable to that 
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Fig. 3. fsoscalar ELI, E3 and ES strengths given as the fkctian of the EWSR exhausted by the first state 

of each multipolarity (crosses), by the states up to the excitation energy, &. given in the text (triangles) 
and in total (fuli points). 

of the second or third @’ state in ‘?Vd and 148Nd_ fn ‘%d it is weaker than the 

second state by a factor of 2. This behaviour is connected to the evolution of the 

mixing of ane- and two-phonon components (or sg- and dd-boson configurations 

in IBM). The total E4 strength exhausted below & is about 2% of the EWSR. The 

fragmentation is very high. In all nuclei, in fact, hexadecapole transitions are those 

most frequently excited in inelastic scattering below 4 MeV. Among the about 300 
transitions studied in the present experiment 75 lead to 4’ states. 
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5. Model calculations 
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5.1. THE INTERACTING BOSON MODEL 

The current versions of the phenomenological IBM calculations assume s- and 

d-bosons as building blocks. These calculations aim to describe the low-lying 

even-parity states in vibrational, rotational and -y-unstable nuclei, as well as in 

transitional nuclei. In the intermediate cases of transitional nuclei the system is 

described using parameters adjusted to obtain the observed excitation energies and 

transition probabilities of the lowest states. If some observed states are not repro- 

duced, the model space can be extended to include g-bosons (A = 4), other bosons 

with X = 0 and 2 (s’- and d’-bosons) and also the negative-parity bosons, p and f 

(A = 1 and 3). It should be mentioned that the IBM transition operators contain 

terms able to transform one type of boson into another. Predicted transition rates 

between different states with the same number of bosons may be strong under some 

specific choice of model parameters. 

The main drawback of the model is that it aims to describe the low-lying states 

with the inclusion of a very limited part of the shell-model fermion space, since the 

collective subspace is supposed to be entirely decoupled from the non-collective 

subspace of quasi-particle states. Other shortcomings are not intrinsic to the model, 

but are due to the approximations introduced to simplify the calcuiations. The 

model space of the present IBM analysis has been limited to valence particles 

outside the shell closures at Z = 50 and N = 82. Within this space we cannot describe 

the closed-shell nucleus 14?Nd. In order to describe octupole and hexadecapole 

states, the sd-boson model space has to be extended to include f- and g-bosons. 

With the introduction of these types of bosons, the hamiltonian gets very complicated. 

For this reason we have used the IBM-l version of the model. This latter approxima- 

tion does not distinguish between proton and neutron degrees of freedom, but is 

the simplest version of the IBM. One of the aims of the present study is to probe 

to which extent and up to which excitation energies the El, E2, E3 and E4 strength 

distributions can be reproduced by IBM calculations. 

The parameters of the sd-hamiltonian have been taken from the IBM-2 analysis 

performed by Scholten 22) on the Sm, Gd and the heavier Nd isotopes (A = 146-152). 

These parameters can be extrapolated to ‘44Nd with quite good results. We refer to 

previous papers 6.22) for the IBM-2-sd hamiltonian and operators. To evaluate the 

quadrupole transition probabilities it is also necessary to use effective charges, eg 

and e;, for proton and neutron transition matrix elements. The data considered in 

ref. *‘) are not very sensitive to the strength of the Majorana force. The parameters 

of this force and the effective charges have been determined to reproduce at the 

best the isoscalar and isovector matrix elements, it is to say the Gd, and 2( tip, - cd,) 

values. 
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Since the IBM-l space can be regarded as a subspace of IBM-%, there is a unique 

way to project the operators of IBM-2 onto those of the IBM-l. The parameters of 

ref. 22) projected into IBM-l space, written as input parameters of the IBM-l code 

PHINT23), are given in table 7. EPS is the d-boson energy. ELL, QQ, OCT and 

HEX are the parameters that weigh the dipole, quadrupole, octupole and 

hexadecapole terms, respectively. The parameter x0 weighs the d-boson recoupling 

term in the quadrupole operator: Q”‘= [(s+d”+d’s)‘2’+*,(d’d”)‘2’]. We refer to 

recent papers 5324) f or a detailed description of IBM-1-sdf hamiltonian and operators. 

TABLE 7 

Parameters used in the different IBM calculations for the various Nd isotopes 

Hamiltonian 
Parameter ‘@Nd 14hNd 14’Nd ‘5”Nd 

or operator 
- 

IBM-2 “) 

H,‘, 

T(E2) 

IBM-I-sd 

H,, 

IBM-1-sdf 

H, 
V \df 

T(El) 

T(E3) 

IBM-I-sdg 

H, 
V \G 
T(E4) 

E (MeV) 0.95 0.90 0.70 0.47 

K (MeV) -0.20 -0.15 -0.10 -0.07 

X” 0.6 0.0 -0.8 -1.0 

a (MeV) 0.08 0.11 0.14 0.17 

e4 (e fm’) 16.0 16.0 17.5 17.0 

e; (e fm’) 15.0 17.0 16.5 20.0 

EPS (keV) 

ELL (keV) 

QQ ReVI 
OCT (keV) 

HEX (keV) 

X0 

F, (keV) 1743 1448 1285 1239 

FELL (keV) 15.0 10.0 4.0 0.0 

FQQ (kev) -53.0 -45.0 -37.0 -30.0 

FEX (keV) -1.0 0.0 0.0 6.0 

e, (e fm’) 5.2 4.9 4.7 4.5 

XI 0.5 0.5 0.5 0.5 

e3 (e fm’) 256 248 240 232 

X\d = Xdd 0.118 0.158 0.197 0.230 

Xdf -2.15 -2.00 -1.85 -1.70 

eg (MeV) 1.95 1.65 1.53 1.20 

i (MeV) 0.3 0.3 0.1 0.1 

ei” (e fm4) 1920 1480 970 1200 

e>& (e fm4) 180 210 240 120 

ep (e fm”) 610 610 610 610 

efg (e fm4) 40 000 40 000 40 000 240 000 

774 683 540 353 

2.6 1.3 -0.3 -0.5 

-90.0 -71.4 -53.6 -38.9 

-0.6 1.0 1.5 1.5 

7.1 8.4 5.6 6.0 

-0.830 - 1.342 -2.236 -2.460 

‘I) The other IBM-2 parameters have been fixed, for all the isotopes, to the values: X, = -1.2, Cl = 0.4, 

cy=o.2, c;=c;=c;=c:=o. 
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In ref. 5, the E3 strength distributions in ‘46*‘50Nd were successfully described, using 

f-boson parameters that can be extrapolated to the other Nd isotopes. The parameters 

necessary to describe the octupole degree of freedom are the f-boson energy (or), 

the parameters that define the two-body interaction of the f-boson with the sd-bosons 

(FELL, FQQ and FEX: dipole, quadrupole and exchange interactions) and the 

effective charges entering into the T(E3) transition operator: 

T(E3) = e3{(s+j’+fs)‘“‘+~df(di~+fd)“3’ 

+f&&i-a”+ d’s)‘2’+Xdd(d’d)‘*‘][(si~+fSS)(3)]). (8) 

To reduce the ambiguities of the best-fit procedure all these parameters, as shown 

in table 7, have been taken with a smooth mass dependence. The effective charges 

have been restricted to the values obtained from semiempirical rules: xrd = xdd = p2 

and e3 = 128(Z/A)[(G - A$,)/fi]“‘. Where A$, is the number of bosons considered 

for each nucleus and $2 is the maximum number of bosom in the valence orbitals 

considered “). 

The El strength distributions are analyzed assuming that the low-lying l- states 

are due to the recoupling of the f-boson with the sd-bosons. The p-boson is not 

considered and no further adjustments of the sdf-hamiltonian have been performed 

to better reproduce l- states data. We have assumed a dipole operator, T(El), with 

the following form: 

T(E1) = e,{(d+~+fd)“‘+~,[(s~d”+d+s)‘~‘+~~(d-~d’)’~~] 

To limit the number of parameters we have taken ,x, = 0.5 and x2 = xo. 

The E4 strength predicted by the IBM model in the basic sd-approximation is 

mostly concentrated in one 4+ state, usually located at an excitation energy near to 

that observed for the 4: state. This strength is due to the d-boson recoupling. The 

inclusion of the g-boson (sdg-expansion) allows new A =4 configurations due to 

sg, dg and gg pairs and thus facilitates the interpretation of a further part of the 

experimental E4 strength distribution. A previous study on vibrational nuclei with 

masses A = 94-l 12, has evidenced the clustering of the hexadecapole strength into 

groups that have been tentatively identified with those predicted by the IBM-1-sdg 

model “). Among the several additional parameters connected to the g-boson, we 

have used the g-boson energy, eg, and the parameters y, 5 and 17 that define the 

interaction between the g- and the sd-bosons. More specifically the additional terms 

in the sdg hamiltonian have been limited to the following terms: 

&&g+~](“)+ r[(g’g”)‘“‘(d’d)“‘]‘0’ 

+ {[ (g+s+)‘4’( &Q’J’+ (~+~+)‘4’(~;)‘4’]‘“’ 

-I- 7fr(d+d)(4)(S+d+g+5)(4)](o). 
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The transition operator, T(E4), can be parametrized by 4 polarization charges 

(eid, e?, e,dp, efg), that weigh, respectively, the contributions coming from the dd, 

sg, dg and gg terms (DD, SG, DG and GG configurations). 

These parameters were adjusted to reproduce the experimental strength distribu- 

tions. The parameter &g shifts the excitation energy of the 4+ states belonging to the 

SG, DG and GG configurations. The parameter y influences the relative energies 

of the different g-boson configurations. The best agreement with the experiment is 

obtained with y = 0. The parameters 5 and n have a weak influence in the level 

energies, but generate both mixing and splitting of g- and sd-boson configurations. 

Since these two parameters give equivalent effects, we kept n =0 and adjusted the 

l-values. The resulting parametrization of the g-boson part of the hamiltonian is 

given in table 7 and turns out to have a smooth mass dependence. However, the 

choice of the effective charges to be used in the transition operator T(E4) is still 

an open question. To estimate these parameters in the E4 operator one can use a 

microscopic model for the g-boson. As discussed in ref. *‘), at the zeroth-order of 

very simple models (single j-shell model or harmonic oscillator), the four g-boson 

effective charges should be of the same order. This result is coming out only in part 

from a best-fit procedure of the experimental E4 strength distributions. The values 

of eid and e? are in fact of the same order of magnitude, but the experiment clearly 

requires eig values much smaller than eid (by a factor of 4-10). Moreover some 

improvement at high excitations is obtained using very large and probably unphysical 

e:g values. The comparison with the experiment is discussed in sect. 6. 

5.2. THE QUASI-PARTICLE PHONON MODEL 

Excited vibrational states of even-even nuclei are treated by the QPM in terms 

of phonon creation operators built upon the wave function of the ground state 

which is considered as a phonon vacuum. Phonons Q’ are introduced as a linear 

combination of pairs of quasi-particle creation CX+ and annihilation LY operators as 

follows: 

(10) 

for spherical nuclei, where jm = In, 1, j, m) are the shell quantum numbers of a 

spherically symmetric average field, and 

(11) 

for deformed nuclei. Single-particle states of an axially symmetric average field for 

deformed nuclei are characterized by the quantum numbers q and a, where u = *l 

and q equals the angular-momentum projection onto the symmetry axis of the 
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nucleus K, parity ?r and asymptotic quantum numbers NnzAr at K = A i$ and 

Nn&& at K = A4 -$. In eq. (11) we have used the following notations: 

all K 5 0. Quasi-particle operators result from the canonical Bogoliubov transforma- 

tion of particle and hole creation operators. For the accupation numbers and position 

of the Fermi surface we solve the BCS equations for protons and neutrons. 

The phonon spectrum and the structure coefficients I+% and & in eqs. (IO), (11) 

are obtained from RPA calculations with an effective nuclear hamiltonian which 

includes an average Geld for neutrons and protons, a pairing interaction and a 

muhipole residual interaction of separable form with the Bohr-Mott~lson radial 

dependence, i.e. the derivative of the central part of the average field. 

fn the present paper the excited states of the deformed isotope “‘Nd are treated 

within the one-phonon approximation. The states with I”K = 2+2, 4+2 and the 

corresponding 13(E2) and B(E4) values are calculated with quadrupole and 

hexadecapole interactions. The parameters of the axially symmetric Woods-Saxon 

potential for the average field have been taken from ref. 26). We have used monopole 

and quadrupole pairing, isoscalar and isovector particle-hole and particle-particle 

channels of the residual interaction. Parameters of the residual interaction have 

been adjusted to reproduce the properties of the lowest state for each EC =. The 

explicit expressions of the RPA equations and the parameters of the residual 

interaction used in the case of deformed nuclei can be found in ref. ‘)_ 

For the spherical isotopes t423144Nd and transitional ‘%d, which have been 

considered within this model in the spherical picture, we have used the results of 

structure calculations from a previous paper “) and from recent studies 4,27). In these 

papers transition charge densities of low-lying excited states of these isotopes 

extracted from the (e, e’) cross sections were compared to the ones of the QPM 

calculations. Excited states were described by wave functions that include one-, 

two- and a limited number of three-phonon configurations. The description of the 

proton part of nuclear excitations was rather successful in general. Thus, in the 

present calculations, we have kept the same scheme and the values of the adjusted 

parameters. We refer the reader to ref. ‘) for other details. The experimental data 

from the present experiments wilt serve as a good test of both proton and neutron 

parts of the nuclear wave functions. 

Effective charges have been used in the past to compare experimental and 

calculated transition probabilities. Their use compensates for the truncation of the 

basis states of the average field, namely in our case the neglect of unbound states. 

For quite heavy nuclei, like Nd isotopes, and for low-lying states we expect the role 

of the continuum to be not very strong and thus, the continuum can be substituted 

by a limited number of quasibound states. This was the motivation in ref. “) for not 

using effective charges in the analysis of transition densities in ‘42Nd. In the 
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calculations for ‘42*144,‘46Nd we have included all quasi-bound states with small 
widths as in previous calculations 2,4*27). This inclusion, however, could not be 
sufficient to avoid the use of effective charges since not all the continuum space is 
included exactly. Test calculations for ‘4ZNd on the role of parameters such as those 
of the neutron potential well or the form of the effective residual interaction gave 
practically the same results and confirmed that the main reason for the effective 
charges resides in the incompleteness of the single-particle levels due to the replace- 
ment of the full continuum with only the quasi-bound states. 

Calculations with single-particie spectrum from the bottom of the average field 
up to -60 MeV with effective charges equal to ep= l.Oe and en= 0 give almost the 
same B(E2) and B(E3) values as the calculations with the truncation of levels above 
$5 MeV and er = 1.2~ and e, = 0.2~ Equivalent effective charges, to compare with 
isoscalar mass transition matrix elements, should be ep = e, = 1.2e. Some small 
variations of effective charges for proton and neutron excitations are possible since 
we cannot expect the same role of the continuum for both type of excitations. 

To avoid the use of different effective charge values for each single isotope, that 
is to say to avoid the use of the effective charges as additional adjustable parameters, 
one can take the same charge values for a chain of isotopes. As shown below 
evidence of a mass dependence of the effective charges is obtained only in the case 
of the transitions to the 2: and to the 3; states. Finaffy the effective charges have 
been fixed, for alt the nuclei considered in QPM calculations, to er== Lfe and 
e, = 1.3e. This choice will be discussed in sect. 6.6. 

The nucleus ld8Nd is out of the scope of this approach. In fact in transitional 
nuclei it must be taken into account that the shape of the average field is unstable 
and varies, in principle, with each nuclear state. In our approach the average field, 
spherical or deformed, is fixed. Also all the correlations mentioned above are 
extremely strong and can be hardly included very accurately. 

In the comparisons of the QPM calculations with the experimental data, monopole 
and dipole transitions will not be considered; the former because their description 
in spherical nuclei is expected to be incomplete since pa~i~~e-pa~i~l~ correlations 
were not taken into account in the residual interaction and the latter because of 
dihiculties connected mainly with the complex structure of the final states. The 
low-lying I- states of spherical Nd isotopes have in fact a two-phonon nature like 
[2: x 3J’“‘, [4: x 3;1”‘, [41” x 5J”‘, etc. A good description of El strength distribu- 
tions requires then an increase of the three-phonon basis, since, in contrast with 
the angular-momentum transfers with h z 2, the leading configurations are no more 
the one- and two-phonon configurations but the two- and three-phonon ones. 

The low-lying 1- states in deformed nuclei, contrary to spherical nuclei, have a 
one-phonon nature and are generated mainly by the isoscalar octupole residual 
interaction, The El transition probabilities to J” = 1~ and K = 0,l vibrational states 
in strongly deformed nuclei have been calculated within the QPM, taking into 
account isoscalar and isovector octupofe and isovector dipole residual interaction “). 
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In the case of “‘Nd we have concentrated the efforts on the description of the 2’, 

3- and 4” vibrational states. Nevertheless the QPM should, in principle, be able to 

describe also other muhipolarities. 

In this section the experimental strength distributions are compared with theoreti- 

cal evaluations. QPM evaluations have been performed for the transitions with A = 2 

(0 6 in ‘JZ.‘J’.t4hNd and those with h = 2,3 and 4 in ‘““Nd. The results of IRM 

catculations concern transitions with h = 1 to 4 in 144.14h.t‘%8S9$d. -j-he ,.esujts of 

these calculations are shown in figs. 4-15. In aIt the figures the experimental strengths 

are given as full points and the calculated values are displayed as vertical dashed 

lines. To better appreciate the agreement in the gross structure of each strength 

distribution, both experimental and calculated values are also represented as over- 

lapping peaks after smearing with a gaussian function of 200 keV f.w.h.tn. 

Several 2’ states have been found: from a minimum of S states in ‘J”Nd to a 

maximum of 16 in 14’Nd. In fig. 4 the results of IBM-2 calculations are compared 

with the experiment. The strength of the first and in some cases of the second state 

is well reproduced, but not the strengths of transitions to higher-lying 2’ states that 

are generaliy underestir~~ted. The IBM states, in the bi~h-energy region, are of 

mixed-symmetry type and have a dominant isovector component since the proton 

and neutron matrix elements are similar in absolute value but with opposite sign. 

Their location in excitation energy depends strongty on the Majorana force, while 

their isoscalar transition probability is not negfigible only assuming proton and 

neutron effective charges with quite different values. With the parameters of the 

Majorana force of ref. “3 (6, = & = & = a = 0.06) these states are located at excitation 

energies around 2 MeV. To improve the agreement with the experiment one can 

assume a stronger Majorana force for the heaviest isotopes (a = 0.08 + 0.17 for 
WNd -, r.so Ndf. However, clear improvements are obtained in level positions but 

not in strength values. It should be noticed that further adjustments in the model 

parameters are limited by the overall behaviaur of the experimental isoscalar and 

isovector matrix elements (figs. 4 and 5). A larger difference between proton and 

neutron eftective charges would improve the agreement with the isoscalar transition 

strengths but would be in contrast with the isovector matrix elements. In spite of 

their poor quality, the experimental data on the isovector components are of some 

irnpo~a~c~ in the corn~~~ison with model predictions” 

The results of QPM evaluations are shown in fig. 6. The experimental distribution 

is quite wel! reproduced in “‘Nd and 140Nd. The agreement is less satisfactory, but 

still acceptable in fJhNd. This Iess satisfactory agreement could be due to the 



difkulties connected with the strmg coupling between ane-, two- afld three-phonon 

configurations. This strong couplimg requires the inclusion of as many configurations 

as possible, but, to limit computing time, a truncation of the phunon basis was 

necessary. This includes all the one-phonon configurations with ex~ilation energy 

b&w 3.2 h&b’, tw@mnons below S.5 MeV and the three-phonons from onty the 

fit”& 2”, Y-, T and SP ~n~-~~~~~~ terms. Such a basis t~~cat~~~ might &-nir the 

~a~~~it~ of the caksfatinn. 
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Fig. 5. Same as fig. 4 for E2 isovector matrix elements. 

In the present QPM calculations the parameters of the quadrupole residual 

interaction have been fixed to reproduce the experimental excitation energy of the 

first 2.+ state. This prescription results in a weaker increase of the B(E2) value 

through the chain than that observed in the experiment. As shown below, a similar 

result is obtained in the case of other strong collective transitions as those to the 

3; levels or to some 4+ state. 

In ‘42Nd the first four 2+ states have a quite pure one-phonon configuration. The 

first two-phonon state [2, x 2,J’“’ is located at 3.195 MeV. The group of states, located 

between 4 and 5 MeV, contains several two-phonon configurations: [2, x4,]‘*‘, 

[2, x 4JC2’, [2, x 2J’*‘, [3, x 3, JC2), etc. Even in IJ4Nd the first four one-phonon 
configurations generate rather pure 2’ states (2:, 2:) 24t, 2:). The two-phonon 

[2, X 2,]“’ state can be identified with the experimental 2: state. The structure of 

the 2’ states in ‘46Nd is in general more complex, with a strong mixing of different 

multi-phonon configurations. For instance the wave function of the 2: state has 

73% of one-phonon components and 22% and 4% of two- and three-phonon 

components, respectively. For the 2: state the percentages of the same configurations 

are 8%, 56% and ?3%, respectively. 
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Fig. 6. Experimental E2 strengths (full points and curves) compared wtih QPM evaluations. 

In “‘Nd the first 2+ is a rotational state and is not described by the model. QPM 

predicts one-phonon states with position and strength in agreement with a part of 

the observed transitions. Two levels located around 1 MeV have K” values equal 

to 2+ and Of and can be identified with the second and third experimental 2+ states. 

Several other 2+ states are predicted below 4 MeV; those with an observable strength 

have K TT = 2+ and are located at excitation energies of about 2.4 and 3.1-3.2 MeV. 

The E2 strength distributions predicted by QPM are due to, at least, six quadrupole 

phonons. Their strength is modified and in some cases split by the mixing with 

two-phonon configurations in spherical nuclei and by the deformation in ‘*‘Nd. 

These six one-phonon configurations are located at excitation energies below 
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3.2 MeV. The failure of IBM-2 calculations at excitation energies above the second 

2+ state is evidently due to the fact that only one type of d-boson is considered. 

This points out the necessity of other, higher-lying, A = 2 bosons. 

6.2. OCTUPOLE TRANSITIONS 

Figs. 7 and 8 give the comparison between experimental and calculated E3 

strengths. The number of 3- states predicted by IBM-1-sdf and QPM calculations, 

with an observable strength, is not as high as in the experiment, however the gross 

structure of the distribution is fully reproduced. The better agreement found with 

1. 2. 

Ex &I 
4. 

Fig. 7. Experimental E3 strengths (full points and curves) compared with IBM-1-sdf evaluations (dashed 
lines and dash-dotted curves). 
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Fig. 8. Experimental E3 strengths (full points and curves) compared with QPM evaluations (dashed 

lines and dash-dotted curves). 

IBM calculations should not be emphasized because of the Iarger number of 

adjustable parameters in the sdf-version of IBM-l than in QPM. The most evident 

failure of the QPM concerns the strength of the first 3- states, which is in general 

predicted too low. Moreover, it should be remarked (fig. 8) that the QPM progress- 

ively underestimates the strength of these states along the isotopic chain. The main 

reason for this tendency is the same as for the 2: states, but there is some further 

feature specific of the octupole strength in the N = 82 region. The shell closure at 

N = 82 is affecting more the E3 excitations since they cannot be obtained by inner 

shell transitions. The set of parameters used in the present analysis cannot be easily 
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improved. In fact it is possible to increase the collectivity of the first E3 one-phonon 

configuration and this improves the agreement with the experimental B(E3) values 

but this would create problems resulting in a too low location of the first 2+ and 

4+ states. This result is due to the coupling of the first 2+ one-phonon configuration 

with the E3-E3 two-phonon configuration, [3; x 371 (‘) This coupling is very strong . 

and depends sensitively on the collectivity of both one- and two-phonon configur- 

ations. The same is found for the 4+ states generated by the first E4 one-phonon 

configuration. 

The fact that IBM and QPM give equivalent descriptions to the experiment can 

be easily understood, at least in the lighter isotopes. IBM-1-sdf describes the 

low-lying 3- states as the fragmentation of the strength of only one f-boson through 

the df or sd . sf operators. Similarly, in spherical nuclei, QPM describes the same 

states as the fragmentation of the first E3 one-phonon state due to the mixing with 

the lowest two-phonon states: [2, x 3,]“‘, [2, x 5,1C3’, [3, x 4,1C3’, [3, x 6,]“‘, etc. It 

is to say, the similarity of the QPM results with those of the IBM is due, in spherical 

nuclei, to the fact that the contributions coming from the second and higher E3 

one-phonon states are negligible below 3.2-3.5 MeV excitation energy. 

In “‘Nd the fragmentation of the E3-phonon strength is instead due to the 

deformation and involves not only the lowest one-phonon configuration. The 

strength distribution in “‘Nd is determined by the positions of the different K” 
bands, that can be mixed. As shown in fig. 8, the gross structure of octupole strength 

in this nucleus displays 4 different bumps located around 0.8, 1.45,2.4 and 3.1 MeV. 

These bumps are due to one or more states that in the QPM calculations have K T 
values equal to: O-, (ll, 2-), (3-, l-, O-, ll, 2-), (3-, 2-, l-, 3-, O-, 2-, 3-), 

respectively. It can be remarked that, in deformed nuclei, IBM-1-sdf and QPM 

calculations give similar strength distributions, but with a different description of 

the octupole states. This difference lies in the fact that in IBM-1-sdf the octupole 

strength is strongly fragmented but still belongs to the unique f-boson, in the QPM 

the octupole strength is due to a large number of one-phonon states with a different 

quasi-particle structure. This different quasi-particle structure could be tested in 

principle by one-nucleon transfer reactions and P-decay measurements. 

6.3. HEXADECAPOLE TRANSITIONS 

The comparison between calculations and experimental data is given in figs. 9 

and 10. IBM-1-sdg reproduces the strength of the low-lying 4+ states. The strength 

of the states lying above 2.2 MeV is less satisfactorily reproduced. The overall 

agreement with the experiment is better in the case of QPM calculations. In QPM 

the E4 strength distribution below 4 MeV is due to six E4 one-phonon states. This 

is similar to the situation in the E2 strength distribution and suggests the inclusion 

in IBM-l calculations of other d- and g-bosons, lying higher in excitation energy. 

The first 4+ state predicted by IBM-1-sdg is mainly due to the d-boson recoupling 
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Fig. 9. ~x~~ri~~~~~a~ E4 strengths (full points and eurvesf compared with i~~-~-sdg cvatuatioas {dashed 

lines and dash-dotted curves). The dash-dotted curves, without a vertical dashed line, indicate transitiuns 

with a daminant GG cmtrihution (see text). 

and can be identified with the 4; ex~rime~tal state. The other prominent transitjons 
are due to the SG con~gurat~on and can he ~de~t~~ed with the second state in 
1443146Nd, with the third state in 14%d and the fourth in ‘50Nd. Other 4’ states have 
a more complex structure and are due to the mixing of DD, DC and GG configur- 
ations. In fig. 9, the dash-dotted curves without a vertical dashed line indicate 
transitions with n dominant GG contrjb~t~o~~ that is obtained using a very large 
e$j8 effective charge. The need for so large effective charges could be due to the use 
of a too limited model space+ it is to say to the need of introducing more g-bosons, 
This probably sets a limit in the excitation energy at which the hexadecapole strength 
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Fig. 10. Experimental E4 strengths (full points and curves) compared with QPM evaluations (dashed 
lines and dash-dotted curves). 

can be reproduced with only one g-boson to 3.6 MeV in 14*Nd and to only 1.7 MeV 

in 15’Nd. 

It is worth noting that the QPM distributions are due to several one-phonon 

configurations with large effects arising from the mixing between one- and two- 

phonon configurations. For instance, the 44’ and the 4: states in ‘42Nd are due to 

the splitting of the fourth E4 phonon caused by the mixing with the [2, x2,1C4) 

two-phonon state. The 4: and the 4: states in ‘44Nd are due to the splitting of the 

first E4 phonon due to mixing with the same two-phonon state. In 146Nd again the 

first E4 phonon is split, but as a result of the mixing with the [2, x 4,1C4’ two-phonon 
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state and should correspond to the second and fourth experimental 4+ states. The 

weak 4: state found in the experiment is missed in QPM. The three-phonon 

configurations play a role strongly increasing with the mass. The three-phonon 

component in the wave functions of the different 4+ states is always below the 10% 

level in ‘42Nd, is of the order of lo-20% in several 4+ states in ‘44Nd and reaches 

31%, 21% and 22% in the 4:, 4:, 4: states in ‘46Nd, respectively. 

The large and increasing complexity of the 4+ states in ‘42Nd, ‘44Nd and 14’Nd 

has two main reasons: the increasing collectivity of the first E4 one-phonon configur- 

ation and the decreasing gap between one- and two-phonon configurations. In fact 

the first E4 one-phonon in these nuclei has its energy very close to the two-phonon 

configuration [2: x 2:]. A different situation, with a larger gap, is found in the case 

of the E2 and E3 one-phonon and the respective two-phonon configurations. This 

is the reason of the larger mixing observed between one- and two-phonon configur- 

ations in the case of 4+ states in comparison to the 2+ and 3- states. 

In “‘Nd the first 4+ state is rotational in character and is not described by the 

model. The intrinsic, vibrational states, with a sizeable strength are located at the 

beginning (-1.3 MeV) and at the end (3-4 MeV) of the observed strength distribu- 

tion. Both groups include K r = 2+, 3+ and 4+ states. 

6.4. DIPOLE TRANSITIONS 

Recently the El y-ray transitions between low-lying states in rare-earth nuclei 

(Sm, Gd, Dy isotopes) have been compared with IBM-sdf calculations 2y,30). To 

reproduce the experimental results, two-body terms have been included in the 

transition operator, T(E1). The second term in eq. (9) is one of the possible forms 

of these two-body operators. The leading contributions to the El strength are coming 

from the first and second terms in eq. (9), due to df and sd . sf coupling, respectively 

(one- and two-body terms in the formalism used by Von Brentano ef al. 19,“). These 

two terms give very similar strengths distributions and, therefore, equivalent results 

are obtained using different xi and e, values. The calculated curves given in fig. 11 

have been obtained assuming x, = 0.5. This value is consistent with solution 1 given 

in table 2 of ref. 29). A second solution is used in refs. 29,3o), with a small and negative 

value of x, , of the order of -0.05. This solution seems less appropriate to the data 

considered here since it leads to a nearly complete destructive addition of the two 

main terms in the calculated strength for the 1; state, which, as a result, will have 

a transition strength too weak in comparison with the experiment. The IBM-1-sdf, 

with the simple parametrization given in table 7, seems able to reproduce the position 

and the intensity of the transition, leading to the first l- state. Also the second l- 

state is reproduced, at least as far as the excitation energy is concerned. It can be 

remarked that the strong mass dependence of the transition probability g&El) is 

reproduced by IBM-1-sdf calculations with a constant (actually slightly decreasing) 

dipole effective charge, e, . 
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Fig. 11. Experimental El strengths (full points and curves) compared with IBM-1-sdfevaluations (dashed 

lines and dash-dotted curves). 

As discussed in sect. 4.2 the El strength detected in the present experiment is 

proportional to (p2/33)2 and is of isoscalar type. With respect to the other experiments 

here cited, we have two opposite evidences. The fact that y-decay experiments are 

well described by a model which does not distinguish between proton and neutron 

degrees of freedom (IBM-1-sdf) and with parameters similar to those obtained in 

the present analysis, suggests that the excited states considered (with different spins 

and parities) have large quadrupole-octupole configurations with isovector El 

transition strengths proportional to the isoscalar strengths predicted by the model. 

The fact that the El strength, obtained from the (y, y’) excitation of the low-lying 
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l- states in Nd isotopes, does not depend on (p&)‘, suggests instead the presence 

of isovector components, connected to shell effects 3’). 

6.5. OTHER MULTIPOLARITIES 

The E5 strengths in 142,‘44,‘46Nd are shown in fig. 12, where they are compared 

with QPM predictions. The agreement is quite satisfactory and somehow unexpected. 

In fact for the 5- and higher-multipolarity states the QPM has some shortcomings. 

The approximation used to treat the continuum is even more crude for these states. 

Other difficulties are found in the procedure used to fix the parameters of the 

effective residual interaction. These parameters are adjusted to reproduce the excita- 

tion energy and the collectivity of the lowest state of each multipolarity, which is 

Ex (MeW 
Fig. 12. Experimental ES strengths (full points and curves) compared with QPM evaluations (dashed 

lines and dash-dotted curves). 
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mainly built from a single one-phonon configuration. However, the high muttipoIar- 

ity states are fess collective and contain significant admixtures of two- and three- 

phonon components, thus making their excitation energy more sensitive to the 

quasi-particle level scheme and less to the parameters of the force. Hence, a priori, 

one should expect only a schematic agreement with the experiment. Nevertheless 

not only the E5, but also the E6 strength distributions are quite satisfactorily 

reproduced, with the exception of the 6+ states in ‘42Nd, as shown in fig. 13. 

The structure of the 5- and 6+ states, predicted by the QPM calculations, has a 

marked similarity with that for the 3- and 4+ states, respectively. The E5 strength 

distribution below 4 MeV is mainly due to the first ES one-phonon state and to its 

splitting due to the mixing with two-phonon configurations: [2, x 3,1C5’, [2, x 5,]‘“’ 

and [3, x 4,]“‘. At least four E6 one-phonon configurations are involved below 

4 MeV and most of the 6 states have a dominant one-phonon component. 

IO0 

Fig. 13. Experimental E6 strengths (full points and curves) compared with QPM evaluations (dashed 

lines and dash-dotted curves). 
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6.6. ISOVECTOR COMPONENTS 

As shown in eq. (5) the isovector matrix elements can be obtained from the 

difference between (p, p’) and (d, d’) matrix elements and allow an estimate of the 

difference (M, - M,,). Positive (negative) ii?, values indicate dominant neutron 

(proton) components in the transition amplitudes. Most of the states obtained from 

RPA calculations are due to rather pure proton (or neutron) configurations. Shell 

effects are clearly present in 14’Nd and ‘44Nd where the main component in the 

low-lying states is often due to a proton two-quasi-particle configuration. QPM 

states have a more complex structure with a larger mixing of proton and neutron 

configurations. As a consequence Mv values are frequently positive and the ratio 

M,/ MS, which is equal to (M, - M,)/( M, + M,), is usually ~1. This result is more 

in agreement with the collective mode1 predictions. 

To give examples of both absolute and relative values of the isovector components, 

the Mv(E3) matrix elements in the four nuclei, for which QPM calculations have 

been performed, are shown in fig. 14, while the ratios M,(E4)/Ms(E4) are shown 

in fig. 15. The QPM curves have been obtained using the same effective charges 

adopted for the calculations shown in the figs. 6, 8, 10, 12 and 13, i.e. ep = l.le and 

e, = 1.3e. This small difference between the two effective charges gives a small, but 

improvement in the agreement with the experimental data. This could rather clear 
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Fig. 14. Experimental E3 isovector matrix elements (full points and curves) compared with QPM 

evaluations (dash-dotted curves). 
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Fig. 15. Ratios of the isovector to the isoscalar E4 matrix elements in the isotopes indicated in the figures 

compared with QPM evaluations (dash-dotted curves). 

be an indication that the limited model space is affecting more the neutron than 

the proton part of the wave function. With these effective charges a satisfactory 

overall agreement is obtained. Practically the same results for the isoscalar com- 

ponents are obtained assuming e,, = e, = 1.2e. This is due to their much lower 

sensitivity to differences between the two effective charges. Finally it must be 

remarked that the same effective charges have been used for all the isotopes and 

all the multipolarities. A mass dependence of these parameters would, however, be 

useful to improve the agreement in a comparison limited to only the 2: and the 3; 

states. 
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Proton- and deuteron-scattering experiments have been performed on the stable, 
even-A Nd isotopes. The good energy resolution made it possible to identify many 
transitions of different multipolarities. Several new levels have been observed. B( EA ) 
values have been determined by assuming a surface-peaked transition potential. 
The collected data allow systematic investigation of the modes of excitation of these 
low-lying states. 

Special attention has been given in this respect to the interplay between the 
different degrees of freedom. To this end, the experimental results were compared 
with calculations in the framework of the interacting boson model (IBM) and of 
the quasi-panicle-phonon model (QPM). The latter is a microscopic model in which 
the basis states, called “phonons’“, are the collective and the non-collective solutions 
of the BCS quasi-particle RPA equations. The fact that the QPM is taking into 
account not only the strong collective configurations, but also states with a weaker 
collectivity down to quasi-particle states is of some interest in comparing with 
experimental results including also weak transitions. In a second step of the QPM 
evaluations, two- and three-phonon states are constructed and simultaneously 
coupled and mixed. The interplay between the different multi-photos configurations 
has an essential role in determining the gross structure of the different strength 
distributions. This is especially evident in the case of even-parity transitions (E2, 
E4 and Ed), in which several one- and two-phonon configurations are of some 
importance. The model describes reasonably well the isoscahtr and isovector strength 
distributions for the different multipolarities from A = 2 to h = 6. 

Even-parity transitions are not well described by the IBM evaluations except for 
the transitions to the lowest states. This has been interpreted as evidence of the 
need of introducing higher-lying even-parity bosons. Also the fact that the collective 
IBM subspace is completely decoupled from the quasi-particle subspace can play 
a certain role in this respect. IBM-sdf evaluations are quite successful in describing 
the octupole strength distribution, as due to the fragmentation of the f-boson strength. 
This result corresponds in the QPM description to the fact that the same strength 
distribution is described in spherical nuclei as the fragmentation of only une E3 
phonon, in contrast with the other multipolarities. IBM-sdf also gives a reasonable 
description of the isacalar transition strengths to the lowest dipole states. 

Part of this work was performed within the research program of the Stichting 
voor Fundamenteel Onderzoek der Materie (FOM) with financial support of the 
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). 
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