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Abstract
Despite a great success of the Skyrme mean-field approach in the exploration
of nuclear dynamics, it seems to fail in the description of the spin-flip M1 giant
resonance. The results for different Skyrme parameterizations are contradictory
and poorly agree with experiment. In particular, there is no parameterization
which simultaneously describes the one-peak gross structure of M1 strength
in doubly magic nuclei and two-peak structure in heavy deformed nuclei.
The reason of this mismatch could lie in an unsatisfactory treatment of spin
correlations and spin–orbit interaction. We discuss the present status of the
problem and possible ways of its solution. In particular, we inspect (i) the
interplay of the collective shift and spin–orbit splitting, (ii) the isovector
M1 response versus isospin-mixed responses and (iii) the role of tensor and
isovector spin–orbit interaction.

1. Introduction

The spin-flip M1 giant resonance (M1GR) has been a subject of intensive theoretical and
experimental studies during the past decades [1–3]. The resonance is known to be a major
source of knowledge on spin correlations. Besides, it strongly depends on the spin–orbit
splitting and so can serve as a robust test of the spin–orbit interaction. The M1GR was
widely explored within various empirical microscopic models, see e.g. [4–7], which allowed
us to clarify its main features. Meanwhile, the nuclear density functional theory (DFT) has
been developed. It provided elaborate self-consistent methods (Skyrme, Gogny, relativistic)
with high descriptive power [8–10]. Hence, it is now desirable to study the M1GR in this
context. Until recently, most of the DFT applications to nuclear dynamics were concentrated
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on electric modes and Gamow–Teller (GT) resonance [8–10], while much less work was done
for magnetic excitations. At the same time, the exploration of magnetic modes in general
and spin-flip M1GR in particular could be extremely useful to clarify the spin and spin–
orbit correlations in the nuclear density functionals. This holds especially for the Skyrme
and Gogny functionals where, unlike the relativistic models, the spin–orbit interaction is an
independent part of the modeling. Further, magnetic modes allow us to explore the spin terms
in spin-saturated even–even nuclei, where they cannot be fitted by the ground state properties.
The M1GR can help to clarify still vague role of the tensor forces [11–15]. And, last but not
the least, the spin-flip M1GR is a counterpart of the GT resonance which is of great current
interest in connection with astrophysical problems [9, 10]. So, a satisfactory treatment of the
M1GR is relevant for the DFT description of the GT resonance as well.

In this paper, we will concentrate on the exploration of the spin-flip M1GR within the
Skyrme–Hartree–Fock (SHF) approach [16–18]. To the best of our knowledge, there are
only few early SHF studies of this resonance [19, 20] but even they are not fully consistent.
Indeed, the study [19] exploits a hybrid model with a partial implementation of SHF in the
Landau–Migdal formulation while the work [20] uses early Skyrme forces and, what is crucial,
omits the important spin–density correlations. Only recently the first fully self-consistent
systematic SHF investigation of the spin-flip M1GR was performed [15]. The calculations
were done within the separable random-phase-approximation (SRPA) model [22–24] extended
to magnetic excitations [15, 25]. The resonance was explored in spherical nuclei 48Ca and
208Pb and deformed nuclei 158Gd and 238U. Eight different Skyrme parameterizations were
considered and it was shown that none of them is able to describe simultaneously the one-peak
structure of the resonance in doubly magic nuclei together with the two-peak structure in
deformed nuclei. The main reason of the failure seems to lie in a poor description of the
interplay between the collective shifts (caused by spin–density correlations) and spin–orbit
splitting in the static mean field. Obviously, this failure of Skyrme forces is also an alarming
message for SHF investigations of the GT resonance.

It is also worth mentioning the very recent SHF study [14] where, in accordance with
results [15], a considerable influence of tensor forces on the spin-flip M1GR in spherical
nuclei was found. Hence, the tensor forces become indeed an important, though still not well
understood, factor in the exploration of this resonance.

Altogether, one may state that the M1GR is still a challenge for SHF and leaves very
serious open problems. A discussion of these problems is the main scope of the present paper.
We will also discuss the possibility of using the M1GR for testing the spin, spin–orbit and tensor
terms in the Skyrme functional. The interplay of these terms is rather involved and makes
the problem indeed demanding. We will discuss the present status of the studies, scrutinize
some particular important points (isovector character of the M1GR and its manifestation in
experiment, contributions of the tensor and isovector spin–orbit terms, etc) and sketch the
possible ways of the further progress.

The exploration is performed within the self-consistent separable random-phase-
approximation (SRPA) model [15, 21–23, 25] based on the Skyrme functional [16–18].
The model was shown to be an effective and accurate tool for the systematic study of
multipole electric giant resonances [22–24]. Recently, it was extended and applied to magnetic
excitations [15, 21, 25].

The paper is outlined as follows. In section 2, the SRPA model is sketched. In section 3,
the present status of the SHF description of the M1GR and related difficulties are summarized.
In section 4, the isospin character of the measured and computed M1GR responses is discussed
as a possible source of the discrepancies. In section 5, the possible important role of the tensor
and isovector spin–orbit terms is considered. In section 6, the conclusions are drawn.
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2. Model and calculation scheme

SRPA is a fully self-consistent DFT model where both the static mean field and residual
interaction are derived from the Skyrme functional [16–18]. The SRPA residual interaction
includes all contributions from the Skyrme functional as well as the Coulomb (direct and
exchange) and pairing (at BCS level) terms. The self-consistent factorization of the residual
interaction in SRPA considerably reduces the computational expense while maintaining a high
accuracy. This makes the model very suitable for systematic studies. The model was firstly
derived and widely used for electric excitations [22–24]. Recently it was extended to magnetic
modes [15, 21, 25].

The starting point is the Skyrme energy–density functional [8, 10]
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where bi, b′
i , b̃i , b̃′

i are the force parameters. The functional involves time-even (nucleon ρq ,
kinetic energy τq , spin–orbit Jq) and time-odd (current jq , spin sq , vector kinetic energy Tq)
densities where q denotes protons and neutrons. The total densities, like ρ = ρp + ρn, are
without the index. The contributions with bi and b′

i (i = 0, 1, 2, 3, 4) represent the standard
terms responsible for the ground state properties and electric excitations of even–even nuclei
[8, 10]. In traditional SHF functionals, the isovector spin–orbit interaction is linked to the
isoscalar one by b′

4 = b4. The tensor spin–orbit terms ∝ b̃1, b̃
′
1 are often omitted. In

equation (1) they can be switched by the parameter γT. The spin terms with b̃i , b̃
′
i become

relevant only for odd nuclei and magnetic modes in even–even nuclei. Though b̃i , b̃
′
i may be

uniquely determined as functions of bi, b
′
i [10], their values were not yet well tested by nuclear

data and so are usually considered as free parameters. Just these spin terms are of paramount
importance for the spin-flip M1GR.

SRPA is a fully self-consistent model as its residual interaction includes all the terms
following from the initial Skyrme functional. For magnetic modes, these terms are determined
through the second functional derivatives

δ2E

δjq ′δsq

,
δ2E

δsq ′δsq

,
δ2E

δJq ′δJq

,
δ2E

δTq ′δsq

. (2)

The pairing comes through the functional Vpair = 1/2
∑

q Gqχqχ
∗
q where χq is the pairing

density and Gq is the pairing strength [10]. In the present study, pairing is included at the BCS
level through the quasiparticle energies and Bogoliubov’s coefficients. Unlike the case of the
scissors mode, a possible violation of the particle number conservation is not critical for the
spin-flip M1GR with its rather high energy. Anyway, a better pairing description within SRPA
is in progress.
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The spectral distribution of the spin-flip M1 mode with Kπ = 1+ is given by the strength
function

S(M1;ω) =
∑
ν �=0

|〈�ν |M̂|�0〉|2ζ(ω − ων) (3)

where �0 is the ground state, and ν runs over the RPA Kπ = 1+ states with energies ων and
wavefunctions �ν . Further, ζ(ω−ων) = �/[2π [(ω−ων)

2 + �2

4 ]] is a Lorentz weight with the
averaging parameter � = 1 MeV. Such averaging serves to simulate broadening effects beyond
SRPA (escape widths, coupling with complex configurations) and the width � is chosen to be
optimal for the comparison with experiment. The strength function (3) is computed directly,
i.e. without calculation of RPA states ν, which reduces the computation expense even more.

The operator of the spin-flip M1 transition in (3) reads [3]
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where ŝi is the spin operator, g
p
s = 5.58ςp and gn

s = −3.82ςn are proton and neutron spin
g-factors, g0

s = g
p
s + gn

s = 1.35 and g1
s = g

p
s − gn

s = 6.24 are isoscalar (T = 0) and isovector
(T = 1) spin g-factors, the isospin τ3 is −1/2 for protons and 1/2 for neutrons. All the
g-factors are quenched by ςp = 0.68 and ςn = 0.64. Note that g1

s 	 g0
s which shows the

predominantly isovector character of the spin-flip M1 resonance. As we are interested in
the spin-flip transitions, the orbital part in (4) is omitted. Note that in the experimental data
[26, 27] used later for the comparison, the orbital contribution is strongly suppressed.

SRPA calculations employ a coordinate-space grid with a mesh size of 0.7 fm. For
deformed nuclei, cylindrical coordinates are used and the equilibrium quadrupole deformation
is found by minimization of the total energy [23, 24]. The single-particle states are taken
into account from the bottom of the potential well up to +20 MeV. In the heaviest nucleus
under consideration, 238U, this gives ∼17 000 two-quasiparticle (2qp) Kπ = 1+ pairs with the
excitation energies up to 50–70 MeV. More details of the SRPA formalism and calculation
scheme can be found in [15, 21, 25].

3. Present status of the problem

In the present study, the M1 strength is considered in spherical (208Pb) and deformed (158Gd
and 238U) nuclei. A representative set of eight SHF parameterizations is used: SkT6 [28],
SkO [29], SkO′ [29], SG2 [30], SkM* [31], SLy6 [32], SkI4 [33] and SV-bas [34]. They
exhibit a variety of effective masses (from m∗/m = 1 in SkT6 down to 0.65 in SkI4) and other
nuclear matter characteristics. Some of the forces (SLy6) were found best in the description
of E1(T = 1) GR [23, 24, 35]. Others were used in studies of the Gamow–Teller strength
(SG2, SkO′) [30, 36–38] or peculiarities of spin–orbit splitting (SkI4) [33]. The forces SkT6,
SG2 and SkO′ involve the tensor spin–orbit term added with (SkO′) and without (SkT6, SG2)
refitting the Skyrme parameters. SV-bas is one of the latest SHF parameterizations [34] where
the spin–orbit isovector interaction is varied freely by setting b′

4 �= b4.
In figure 1 the spin-flip M1 strength (3), calculated with the g-factors g

p
s = 5.58ςp and

gn
s = −3.82ςn, is presented in the deformed 158Gd and spherical 208Pb. Both SRPA and

unperturbed strengths are shown to demonstrate the collective shift caused by the residual
interaction. The forces SkO, SG2 and SV-bas are used as representative examples. The results
are compared with the experimental data which indicate a two-peak structure of the M1GR in
158Gd and one (isovector) peak in 208Pb.
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Figure 1. The unperturbed (short-dash curve) and SRPA (solid curve) M1 strength in 158Gd and
208Pb for the forces SkO, SG2 and SV-bas. The experimental data are given by boxes with bars
for 158Gd [26] and vertical arrows for 208Pb [27]. The strength is smoothed by the Lorentz weight
with � = 1 MeV.

The figure illustrates a typical situation already pointed out in the study [15], namely
that none of the considered Skyrme forces is able to describe the M1 strength simultaneously
in both deformed and doubly magic nuclei. Indeed, we see that SkO well reproduces the
one-peak structure of the M1GR in 208Pb but fails in offering two peaks in 158Gd. In contrast,
SG2 and especially SV-bas succeed in the two-peak structure in 158Gd but deliver a wrong
resonance shape in 208Pb.

These results may be understood in terms of two key factors: (i) the proton and neutron
spin–orbit splittings, Ep

so and En
so, which set the proton and neutron branches of the unperturbed

resonance, and (ii) the residual interaction which produces a collective shift Ecoll (defined as
a difference between SRPA and unperturbed resonance centroids). Figure 1 shows that, for
the forces SG2 and SV-bas, the proton and neutron unperturbed branches appear as separated
peaks in 208Pb and as one single peak with a right shoulder in 158Gd. In both cases the proton
low-energy peak is higher since g

p
s > gn

s . The residual interaction upshifts the strength by
1–2 MeV, redistributes it in favor of the upper peak and somewhat enlarges the splitting. As
a result, a distinctive two-peak structure is formed. Instead for SkO, the relative spin–orbit
splitting Eso = En

so −E
p
so is very small and the proton and neutron branches actually form one

peak which is then upshifted by the residual interaction.
This analysis illustrates the well-known fact [1–3, 15, 19] that the quality of the description

of the M1GR is mainly determined by the ratio Ecoll/Eso between the collective shift and
relative spin–orbit splitting. If the initial Eso is large, then a strong residual interaction with
Ecoll > Eso is necessary to mix the proton and neutron branches, redistribute the strength
to a higher energy and thus produce a one-peak resonance. Otherwise, a two-peak structure
persists. If instead Eso is small, then the unperturbed resonance already has one peak which
is then merely upshifted by the residual interaction.
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Figure 2. The relative spin–orbit splittings Eso = En
so − E

p
so (full squares) and M1 collective

shifts Ecoll (full circles) in 158Gd and 208Pb for eight Skyrme forces. For a better view, the symbols
are connected by lines. The horizontal line E=0 is drawn for convenience of the comparison.

In figure 2, the key ingredients of the M1GR description, Ecoll and Eso, are compared for
eight Skyrme forces. One sees that Ecoll < Eso for most of the forces (SkM*, SLy6, SkT6,
SG2, SV-bas) which should result in a double-peak M1GR. And indeed, figure 1 demonstrates
this for SG2 and SV-bas in 158Gd and 208Pb. Instead, for the forces SkI4, SkO and SkO′, we
have Ecoll > Eso and hence the one-peak M1GR. The results of figure 2 for 158Gd and 208Pb
remind those for 238U [15]. So the similar results may be expected for other medium and
heavy nuclei as well. This means that the M1GR structure is mainly determined by the Skyrme
force rather than by the particular nucleus. In other words, the forces of the first (second)
group should always yield a two-peak (one-peak) structure. As a result, we have a failure in
the simultaneous description of the M1 strength in nuclei like 158Gd and 208Pb by one and the
same force. This is a very serious drawback of the present-day Skyrme parameterizations.
Besides, this is an alarming message for the SHF description of the GT resonance which,
being a counterpart of the M1GR, is determined by the same factors. The possible ways of
curing this problem will be discussed in the next sections.

4. Isovector spin-flip M1(T = 1) response

In the above discussion and [15], we analyzed the spin-flip M1 strength including both isovector
(T = 1) and isoscalar (T = 0) contributions. This strength was calculated with the g-factors
g

p
s = 5.58ςp and gn

s = −3.82ςn. As was mentioned in section 2, the isovector g-factor is
much larger than the isoscalar one, g1

s 	 g0
s , and so the M1 strength should be predominantly

isovector. In other words, the M1 and purely isovector M1(T = 1) responses are to be about
the same. However, these arguments consider the M1GR as one entity and do not take into
account possible local differences (i.e. features at particular energies) in M1 and M1(T = 1)

strengths. As is shown below, these local differences can be essential and considerably change
the appearance of the M1GR.

In this connection, it is worth to compare with experiment the spin-flip M1(T = 1)

response calculated with g0
s = 0 (similar calculations were recently performed for 208Pb

in [14]). This differs from most of the previous calculations [4–7, 19] where the common
M1 strength was considered. However, the isovector separation is reasonable because the
experiment [26, 27] treats the M1GR as the isovector mode.
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Figure 3. Isovector M1(T = 1) strength in 208Pb, calculated with eight Skyrme forces as indicated.
The 2qp (short-dash curve) and SRPA (solid curve) results are presented. The vertical dash line
marks the average experimental resonance energy 7.3 MeV. The strength is smoothed by the
Lorentz weight with � = 0.2 MeV.

In figure 3, the isovector M1(T = 1) strength in 208Pb computed with eight different
Skyrme forces is presented. To discriminate the details, a small width of � = 0.2 MeV is used
in the Lorentz smoothing. In this doubly magic nucleus the RPA spectrum is dilute and so the
small smoothing does not cause an excessive complication of the strength. Figure 3 shows
that the results depend strongly on the force. However, unlike the M1 case, the M1(T = 1)

strength already exhibits mainly a one-peak structure provided by the dominant right peak.
This structure is obvious even for the forces SG2, SkM*, SkT6 and SV-bas, which show two
peaks in the M1 strength. Only SLy6 maintains the structure of the M1 result.

Such a difference between M1 and M1(T = 1) responses may be explained in terms of
spin g-factors. The M1 transitions deal with g

p
s = 5.58ςp and gn

s = −3.82ςn and so, as was

mentioned above, the unperturbed M1 strength exhibits the left proton peak ∝ (
g

p
s

)2
about

twice higher than the right neutron peak ∝ (gn
s )

2. The residual interaction recasts the M1
strength in favor of the right peak, which finally yields the two-peak structure with comparable
peak heights. Instead, in M1(T = 1) transitions we use g

p
s = −gn

s = g1
s

/
2 = 3.12 and so,

unlike the M1 case, the unperturbed proton and neutron peaks already have about the same
heights (with a bit higher neutron peak). Then the further collective upshift of the strength
results in a strict dominance (more than in M1 case) of the right peak, hence mainly a one-peak
structure.

As a result, some forces provide an acceptable description of the experimental data for
the M1(T = 1) case. The forces SG2, SkO and SV-bas give a dominant peak at the energies
6.8, 7.2 and 8 MeV, i.e. close to the experimental average value 7.3 MeV. For other forces the
disagreement is larger than 1 MeV.

However, as already observed in the case of mere M1 strength, an acceptable agreement
for spherical nuclei does not mean the same for deformed ones. Figure 4 for 158Gd and 238U
shows that SkO does not reproduce the two-peak structure at all while SG2 and SV-bas suggest
it, but with strongly attenuated left peak. Though in general the M1(T = 1) response better
agrees with the experiment for 208Pb than the M1 response, a simultaneous description of the
experimental data in spherical and deformed nuclei still fails.
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Figure 4. The isovector M1(T = 1) strength in 158Gd and 238U for the forces SkO (left), SG2
(middle) and SV-bas (right). The experimental data [26] are given by the gray boxes and bars. The
strength is smoothed by the Lorentz weight with � = 1 MeV.

The comparison of figures 1 and 4 shows that for SV-bas the computed M1 strength is
closer to the experiment than the M1(T = 1) one. Then the natural question arises, to which
extent the experimental data [26] from the (p, p′) reaction and [27] from the (γ, γ ′) reaction
with tagged photons give just the isovector M1GR? Both experimental studies claim this.
However this claim, being based on the general reaction conditions, is actually not supported
by thorough estimations and checks. Moreover, these reactions should actually involve both
T = 0 and T = 1 channels. Thus, the computation of the reaction cross-sections are called
for more adequate comparison with the experiment. This uncertainty also could be one of the
reasons of the disagreement between SHF and experimental results for the M1GR.

5. Tensor and isovector spin–orbital forces

Another point to be discussed in connection with the M1GR problems is the influence of the
tensor and T = 1 spin–orbit interactions. Both interactions come to the Skyrme functional
through the terms with spin–orbit densities [8]. As shown in our recent study [15], these
interactions can affect the M1GR through the spin–orbit splittings E

p
so and En

so. The tensor
interaction changes E

p
so and En

so likewise, thus producing a total M1GR shift without a
noticeable variation of the relative splitting Eso. Instead the T = 1 spin–orbit interaction
changes E

p
so and En

so on scale and so affects Eso.
Here, we take into account both static mean field and collective impacts of the tensor and

T = 1 spin–orbit interactions. The results are demonstrated in figure 5. It is worth recalling
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Figure 5. The spin-flip M1 (left) and M1(T = 1) (right) strengths in 208Pb and 158Gd for the
force SV-bas in the standard version (solid curve), with tensor contribution (bold curve) and with
b′

4 = b4 (short-dash curve). The experimental data are given by boxes with bars for 158Gd
[26] and vertical arrows for 208Pb [27]. The strength is smoothed by the Lorentz weight with
� = 1 MeV.

that the spin–orbit term in the Skyrme functional (1) reads

−b4(ρ∇J + (∇ × j) · s) − b′
4

∑
q

(ρq∇Jq + (∇ × jq) · sq). (5)

The standard SHF calculations use b′
4 = b4, i.e. only the isoscalar (T = 0) contribution. At

the same time, the relativistic models employ b′
4 = 0 [8–10]. So, it is worth to decouple the

coefficients b′
4 and b4, and thus introduce the isovector (T = 1) spin–orbit interaction, as was

done e.g. in [33]. Such decoupling is natural since a similar separation is already used for
other Skyrme coefficients, bi and b′

i , with i = 0, 1, 2, 3. Actually, the force SV-bas already
follows this track and uses b4 = 34.117 and b′

4 = 0.547b4. The effect is demonstrated in
figure 5 for M1 and M1(T = 1) responses, where the SV-bas result is compared with b′

4 = b4

variant (after refitting). It is seen that the effect is not large. However, any final conclusions
on its scale can be done only after thorough checks involving various Skyrme forces and
nuclei.

We now consider the impact of tensor interaction. It is often omitted in the standard
effective two-body Skyrme interaction. If included, it adds to the functional (1) the term

γT

(
b̃1(s · T − J2) + b̃′

1

∑
q

(
sq · Tq − J2

q

))
(6)

where the squared spin–orbit densities J2 and J2
q represent the tensor contribution while the

s · T and sq · Tq terms serve to restore in (6) the Galilean invariance. The exchange part of
the zero-range Skyrme interaction also leads to similar spin–orbit terms, see e.g. [12]. To
be accurate, the tensor and central exchange contributions should be treated separately and
their parameters are to be determined from the initial effective two-body interaction [12, 14].
However, from the point of view of a zero-range Skyrme interaction, it is reasonable not to
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distinguish the tensor and central exchange terms and use for both of them the same fitting
parameters b̃1 and b̃′

1. We use here just such common practice. For simplicity, the tensor and
central exchange contributions will be further called tensor terms. Note that these tensor terms
influence both ground state properties and dynamics. In the results shown in figures 1–4, the
forces SkO and SV-bas have no tensor terms. However, these terms are added in SG2 as they
noticeably improve the description of the ground state for this particular parameterization.

As an example, we will now compare the SV-bas results with and without tensor terms.
They are fully switched on by γT = 1. As shown in [15], the refitting of other Skyrme
parameters may considerably decrease the tensor effect. So, we use for γT = 1 the refitted SV-
bas parameters. The tensor contributions to both ground state and SRPA residual interaction
are taken into account. The results of the calculations are shown in figure 5. It is seen that the
tensor effect is indeed dramatic (a large tensor impact on the M1GR was also found in [14]).
Moreover, it considerably improves agreement with the experimental data in this particular
case. Hence the tensor forces can indeed be an important factor in the description of the
M1GR.

It is also worth noting that tensor forces significantly influence the Landau–Migdal
parameters g0 and g′

0 in the spin and spin–isospin channels and affect the estimation of
spin instability of nuclear matter for Skyrme forces [13, 36]. Eight Skyrme parameterizations
used in the present study have g′

0 > −1 and so are spin-stable at the equilibrium density
in the spin–isospin channel. Only this channel determines the isovector spin-flip M1 and
Gamow–Teller GR. Anyway, our knowledge on the interplay between tensor forces and spin
correlations is still rather poor and the M1GR could be used here as a robust and important
test in clarification of this interplay.

6. Conclusions

The open problem of the description of the spin-flip M1 giant resonance (M1GR) within
the Skyrme–Hartree–Fock (SHF) approach is analyzed. It is shown that presently available
Skyrme parameterizations poorly reproduce the experimental data and, in particular, cannot
provide a simultaneous description of the M1GR gross structure in deformed and spherical
(doubly magic) nuclei. The two main factors responsible for the M1GR properties, spin–orbit
splittings and spin correlations, are inspected for eight different Skyrme parameterizations.

Some critical aspects are worked out. One point is the essential difference between M1 and
M1(T = 1) responses which leads to the open question: How much is the observed strength
of the isovector nature and which of the responses should be compared with it? Furthermore,
the essential influence of the tensor force was demonstrated, which can have really dramatic
effects. So the tensor interaction can be a key element in the further development of a better
M1GR description. An appropriate T = 1 part of the spin–orbit interaction could also be an
important ingredient.

Altogether, the SHF description of the M1GR remains yet open as a quite complicated
problem where many contributions are entangled. The problem may have general
consequences for the SHF description of nuclear dynamics in the spin–isospin channel. More
development is needed to establish SHF as a reliable model also for spin properties.
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Wörtche H L 1994 PhD Thesis Technischen Hochschule Darmstadt, Germany
[27] Laszewski R M, Alarcon R, Dale D S and Hoblit S D 1988 Phys. Rev. Lett. 61 1710
[28] Tondeur F, Brack M, Farine M and Pearson J M 1984 Nucl. Phys. A 420 297
[29] Reinhard P-G, Dean D J, Nazarewicz W, Dobaczewski J, Maruhn J A and Strayer M R 1999 Phys. Rev.

C 60 014316
[30] Van Giai N and Sagawa H 1981 Phys. Lett. B 106 379
[31] Bartel J, Quentin P, Brack M, Guet C and Håakansson H-B 1982 Nucl. Phys. A 386 79
[32] Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1997 Nucl. Phys. A 627 710
[33] Reinhard P-G and Flocard H 1995 Nucl. Phys. A 584 467
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