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Abstract
We have used a self-consistent Skyrme–Hartree–Fock plus continuum-RPA
model to study the low-multipole response of stable and neutron/proton-rich
Ni and Sn isotopes. We focus on the momentum-transfer dependence of the
strength distribution, as it provides information on the structure of excited
nuclear states and in particular on the variations of the transition form factor
(TFF) with the energy. Our results show, among other things, that the TFF
may show significant energy dependence in the region of the isoscalar giant
monopole resonance and that the TFF corresponding to the threshold strength
in the case of neutron-rich nuclei is different compared to that corresponding to
the respective giant resonance. Perspectives are given for more detailed future
investigations.

1. Introduction

The multipole response of nuclei at energies below the quasielastic regime is characterized by
various collective excitations. Among these, giant resonances (GRs) of stable nuclei have been
investigated for decades, both theoretically and experimentally [1–3]. Macroscopically, they
are interpreted as small-amplitude excitations corresponding to the propagation of zero sound
in the nuclear medium. Collective modes of excitation at energies below GRs include surface
vibrations and rotations of the nuclear body. Transverse modes of excitation, corresponding
to oscillations of the current distribution, also exist—a well-known example being the twist
mode [4] and perhaps the toroidal mode [5]. At energies higher than GRs, overtones of GRs
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are examined [6–9]. Despite the long-time effort devoted to the understanding of nuclear
collective motion, several issues remain open; as far as the electric response of spherical stable
nuclei is concerned, we may mention as examples the fine structure of GRs, the experimental
energy-weighted sum rule (EWSR) of compression modes (isoscalar monopole and dipole
resonances), the relation between the energy of the latter and the value of nuclear matter
incompressibility, the identification of isovector quadrupole GRs and the nature of low-lying
collective modes [2, 3].

Nowadays, it is feasible in addition to study experimentally the properties of unstable
nuclei, in radioactive ion beam facilities. Access to their multipole response appears possible
using inverse kinematics or double storage rings. The physics of nuclei far from stability is
rich in new phenomena, owing to the presence of very weakly bound nucleons, the unusual
ratio N/Z (for given mass number) and the large difference between the proton and neutron
Fermi energies. The structure of the particle continuum and the nature of low-lying strength in
unstable nuclei are of particular importance, as they provide information on decay properties,
polarizabilities, shell structure etc. At present, limited experimental information is available.
The giant dipole resonance of neutron-rich oxygen isotopes has been under study, as well as
the dipole response of various light unstable nuclei (e.g., neutron-rich He, Li, Be, C isotopes
and proton-rich 8Be and 13O) [10]. Information is available on the low-lying quadrupole
strength of various unstable nuclei [11]. Theory has been anticipating experiment to some
extent, and has by now provided interesting predictions regarding the low-energy response
and GRs of nuclei far from stability. For example, a considerable mixing of isoscalar and
isovector transitions and an increased fragmentation of GRs are expected. A special feature of
the response of very neutron-rich nuclei is the so-called threshold strength, namely the
significant amount of isoscalar and non-collective strength predicted to occur just above the
neutron threshold. In the case of open-shell nuclei, the shell model [12] and the quasiparticle
RPA (QRPA) [13–16] have been applied. Relativistic RPA (RRPA) has been used as well
[17, 18]. Results on doubly magic nuclei have been obtained with standard RPA (with or
without inclusion of higher-order configurations) or continuum RPA (CRPA) methods; in
particular, the self-consistent Skyrme–Hartree–Fock + continuum RPA (SHF+CRPA) has
been used for a systematic study of the response of nuclei far from stability by the group of
Hamamoto [19–23] and recently by our group [24, 25]. For more information on the relevant
theoretical and experimental activity, one can refer, for example, to the contributions in [3].

The RPA method describes satisfactorily the transition densities of collective states in
stable nuclei. In the past the RPA has also been used to study transition densities and currents
of individual excitations in the case of unstable nuclei and to compare with the behaviour
of stable nuclei [19–28]. In this work we focus on the transition densities and form factors
corresponding to electric excitations of stable and unstable nuclei, adopting an approach
which allows a systematic study. Using the SHF+CRPA method, we will examine how the
transition strength distribution of selected Sn and Ni isotopes, and for low multipolarities,
varies with the momentum q transferred to the system. For this we will consider an external
field of the form jL(qr). The momentum dependence of the nuclear response can be studied
experimentally using inelastic electron scattering. Further information accessible in inelastic
electron-scattering experiments concerns the transition current density, which has been the
subject of a separate work [25].

The purpose of the present pursuit is twofold. First of all, it is important to have a reliable
microscopic description of the transition density characterizing a nuclear excitation—either of
a stable or an unstable nucleus—not only to gain insight into the nature of the excitation, but
also because theoretical transition densities enter the analysis of electron- or hadron-scattering
experiments aiming at identifying GRs. Theoretically, the transition density associated with
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a particular type of excitation approaches hydrodynamical behaviour in the case of very
collective states, such as GRs, but in general it is expected to be energy dependent. Therefore,
macroscopic descriptions may be inadequate in certain cases. Our approach will help us to
pinpoint cases where the transition density varies significantly with excitation energy. Possible
candidates are resonances with large fragmentation width. Second, we wish to contribute to
the theoretical understanding, currently being formed, of the response of unstable nuclei,
as a guidance to future experimental activity. Inevitably, some of the results obtained using
conventional models and interaction parametrizations (fitted to describe the properties of stable
nuclei) will be proven inaccurate by the future experimental research, but there is much to be
learned in the process.

In section 2 the quantities of interest are defined and our method of calculation is presented.
Results for spherical, closed-shell Sn and Ni isotopes are presented and discussed in section 3.
Conclusions and perspectives are given in section 4.

2. Definitions and method of calculation

We consider the response of spherical, closed-(sub)shell nuclei to an external field of the type

V =
A∑

i=1

VL(ri, τi)YL0(θi, φi),

where the variable τi = p or n labels the isospin character—proton or neutron—of the ith
particle. For an isoscalar (IS) field, VL(r, p) = VL(r, n) ≡ VL(r) and for an isovector (IV)
one VL(r, p) = −VL(r, n) ≡ VL(r). For L = 1 we use an effective charge equal to N

A
for

protons and −Z
A

for neutrons. In the following, the isospin label will be suppressed for the
sake of simplicity.

We set

VL(r) = [4π(2L + 1)]1/2jL(qr),

where jL is a spherical Bessel function. In the long-wavelength limit qR → 0 (R is the nuclear
radius), we obtain the usual multipole operator of the form rK , where K = L for L > 0 and
K = 2 for L = 0. The transition density δρL0(�r, E), characterizing the excited natural-parity
state |L0〉 of energy E, is determined by its radial component δρL(r, E), where

δρL0(�r, E) = (2L + 1)−1/2δρL(r, E)YL0(θ, φ)/r2. (1)

For IS (IV) transitions, this is the sum (difference) of the proton- and neutron-transition
densities. The strength distribution

S(E, q) =
∑
f

|〈0|V |f 〉|2δ(E − Ef )

(where |f 〉 are the final states, excited by the q-dependent external field V and Ef their
excitation energies) is related to the transition form factor FL(q2, E), i.e. to the Fourier
transform of δρL0(�r, E). In particular, since we are dealing with continuous distributions, we
write the strength in a small energy interval of width �E at energy E as

S(E, q) = 4π(2L + 1)

�E

∣∣∣∣
∫ ∞

0
dr δρL(r, E)jL(qr)

∣∣∣∣
2

= (2L + 1)

�E

∣∣∣∣
∫

d3r δρL0(�r, E) ei�q·�r
∣∣∣∣
2

∝ |FL(q2, E)|2. (2)
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As long as charge-current conservation is respected, the calculated S(E, q) may be
interpreted as the longitudinal response function entering the analysis of inelastic electron
scattering within the Born approximation [29].

Our aim is to search for variations of the transition density in the region of collective
excitations. By looking at the strength distribution S(E, q) corresponding to different values of
momentum q, we will ‘probe’ the various momentum (Fourier) components of δρL, according
to equation (2). In a scenario where the δρL (and FL) turns out to be the same, within a
proportionality factor f (E), for all transitions making up a strength distribution S(E, q), the
shape of the calculated S(E, q), determined by f 2(E), should not change with q. In realistic
cases there will be non-trivial variations of the δρL with the energy, revealing the different
microscopic structure of the various transitions.

Following the standard RPA method, we consider particle–hole (ph) excitations, built on
top of the Hartree–Fock (HF) nuclear ground state and subjected to the ph residual interaction
(HF+RPA method). In particular, the quantities introduced above are calculated using a
Skyrme–Hartree–Fock (SHF) plus continuum—RPA (CRPA) model. For the HF ground
state, the numerical code of Reinhard [30] is used. The calculation of the response function
(unperturbed HF, as well as RPA) is formulated in coordinate space, as described in [31–35].
The radial part of the unperturbed ph Green function, of multipolarity L and specified isospin
character, is given by

G0
L(r, r ′;E) =

∑
ph

{ 〈p‖OL‖h〉∗r 〈p‖O ′
L‖h〉r ′

εph − E
± 〈h‖O ′

L‖p〉∗r ′ 〈h‖OL‖p〉r
εph + E

}
, (3)

where OL (or O ′
L) is one of the operators YL, [YL ⊗ (∇2 + ∇′2)]L, [YL±1 ⊗ ( �∇ − �∇′)]L and

[YL±1 ⊗ ( �∇ + �∇′)]L. The sign of the second term depends on the symmetry properties of the
operators OL and O ′

L under parity and time-reversal transformations. Spin operators have
been omitted in the present calculation. With h (p) we denote the quantum numbers of the HF
hole (particle) state and εph = εp − εh is the energy of the unperturbed ph excitation. The
particle continuum is fully taken into account, as described in [31, 34, 36]. A small but finite
Im E ensures that bound transitions acquire a finite width [31].

The RPA ph Green function is given by the equation

GRPA
L = [

1 + G0
LVres

]−1
G0

L, (4)

which is solved as a matrix equation in coordinate space, isospin character and operators
OL. The ph residual interaction Vres is zero range, of the Skyrme type, derived self-
consistently from the Skyrme–HF energy functional [34, 37]. From the Green function
GRPA

L for OL = O ′
L = YL the strength distribution S(E, q) is obtained as

S(E, q) = 4(2L + 1) Im
∫

jL(qr)GRPA
L (r, r ′;E)jL(qr ′) dr dr ′. (5)

Within the RPA, giant resonances are generated as coherent ph excitations between
major n	 shells; for example, �N = 2 for the giant monopole and quadrupole resonances
(GMR and GQR) and �N = 1 for the isovector (IV) giant dipole resonance (GDR), where
N = 2n + 	 is the energy quantum number of a shell. Therefore, a GR lies energetically
in the neighbourhood of the �Nh̄ω region, where the energy quantum h̄ω ≈ 41A−1/3 MeV,
within the simple harmonic-oscillator model. Its precise position relative to this value (lower
or higher) is determined by the ph residual interaction (attractive or repulsive). ‘Overtones’
of GRs are generated as �N ′ = �N + 2 excitations. An example is the isoscalar GDR,
which lies energetically in the 3h̄ω region. The HF+RPA method can also describe low-lying
transitions with �N = 0 (2+, 4+ etc), provided that the nucleus considered is not n	 closed.
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3. Results and discussion

We have applied our method to six cases of spherical, closed-shell nuclei lying inside, close to
or far away from the valley of stability. In particular, we have examined the isotopes 56,78,110Ni
and 100,120,132Sn. 56Ni is the next heavier Z = N , doubly closed nucleus after 40Ca. It is
β-unstable, but lies very close to the stability line; being closed-shell, 56Ni is the most stable
Ni isotope where our model could be applied, since pairing is not included in the model. 78Ni
is a neutron-rich isotope, possibly doubly magic [38]. As was done before in [19, 25], we have
used the extremely neutron-rich configuration 110Ni as an academic example of a closed-shell
isotope in the vicinity of the neutron drip line. According to SHF results, the N = 82 closure
may still be valid in the Ni region [19], although not conclusively. Lying on the proton-rich
side of the nuclear chart and with a half life of the order of 1s [39, 40], 100Sn may be the
heaviest N = Z nucleus inside the proton drip line. 120Sn is a stable, doubly magic Sn isotope,
while 132Sn is a neutron-rich isotope with a half-life of 39.7s [41] and among the most magic
heavy nuclei, as no excited states of this nucleus have been detected below 4 MeV [42].

We have calculated the IS and IV monopole (ISM and IVM), IV dipole (IVD) and IS
and IV quadrupole (ISQ and IVQ) response of the nuclei 56,78,110Ni and 110,120,132Sn using the
RPA method described in the previous section, for q = 0.2, 0.4, 0.6, 0.8, 1.0 fm−1. We have
employed the Skyrme parametrization SkM* [43], tailored to describe GRs of stable nuclei and
used in previous studies of the response of exotic nuclei as well, e.g. in [19–25]. We have also
used the Skyrme force MSk7 [44], whose parameters were determined by fitting the values of
nuclear masses, calculated using the HF+BCS method, to the measured ones, for 1888 nuclei
with various values of |N − Z|/A. The two forces have similar nuclear-matter properties,
except for the effective mass m∗. The results obtained with the two Skyrme parametrizations
agree qualitatively. Therefore, we only show results obtained with SkM*.

Selected results are presented in figures 1–5. In figures 6–8 the radial part of the proton-
and neutron-transition density is plotted for some cases. We note that, in all examined cases,
as q increases, the strength distribution is shifted to higher energies, which can be interpreted
as the onset of the quasielastic peak. The continuum becomes increasingly important. Also,
overtones of giant resonances become visible. For instance, in the ISM response, figure 1,
strength is shifted from the 2h̄ω region (the IS GMR) to the 4h̄ω region. In the IVD response,
figure 4, strength is found in the 3h̄ω region as q increases. Excitations of single-particle
character, with density oscillations taking place in the interior of the nucleus, give rise to this
behaviour of the form factor—cf, for example, figure 8, right panel, where the IVM transition
density of 132Sn at 46 MeV is shown. In the medium-heavy nucleus 56Ni the shift takes place
more slowly as a function of q than in heavier nuclei, such as 120Sn, because a narrower density
distribution corresponds to a broader form factor.

Next we discuss our results in more detail.

3.1. Isoscalar monopole response and compression modes

In figure 1 the ISM response of 56Ni,110 Ni and 120Sn is presented. Observing the values of
the strength distribution of 120Sn for the various values of q, we note that the form factor of
the weak peaks on the high-energy tail of the GMR has a weaker q-dependence, between
q = 0.4–0.8 fm−1, compared to the GMR peak. The same holds for the other Sn isotopes and
for 78Ni (not shown). The GMR width of the medium-heavy nucleus 56Ni is large, compared
to the GMR width of heavier nuclei. In figure 1 (left panel) two distinct energy regions can be
recognized in the ISM strength distribution of 56Ni: the region P< below E0 ≈ 23 MeV, and the
region P> above E0. According to macroscopic models, the GMR is a uniform compression
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Figure 1. ISM strength distribution as a function of energy and momentum transfer.
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Figure 6. The transition density (in arbitrary units) for protons (full lines) and neutrons (dashed
lines), corresponding to ISM transitions of the nuclei 56Ni (left panel) and 110Ni (right panel) at
the indicated values of the energy.

mode whose transition density has a node at the nuclear surface. The node would then occur
at radius R ≈ 1.2A1/3 = 4.6 fm (or 4.3 fm, if we use our SHF result for the radius) in
56Ni. Therefore, the transition density would show maximal overlap with the function j0(qr)

(whose first root equals π ) for q = q01 = π/R = 0.68 (or 0.73) fm−1. It seems that the form
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Figure 7. The transition density (in arbitrary units) for protons (full lines) and neutrons (dashed
lines) corresponding to the first (collective) and second low-lying ISQ peaks and to the IS GQR,
for the nuclei 78Ni, 110Ni and 132Sn.
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Figure 8. The transition density (in arbitrary units) for protons (full lines) and neutrons (dashed
lines) corresponding to IVM transitions of the nucleus 132Sn at the indicated values of the energy.

factor in the region P< follows, at least approximately, this type of behaviour, since it reaches
a maximum between 0.6 and 0.8 fm−1. The form factor in P> is maximized at a larger value
of q and therefore it does not correspond to such a picture. Indeed, as we observe in figure 6,
the transition density in the regime P> has a node at a smaller radius than in P<, by about
0.5 fm, and one more node at a larger radius.

The fragmentation of the GMR is a typical feature of light and medium-heavy nuclei. It
seems therefore important, for an accurate evaluation of the EWSR and the centroid energy of
the GMR in those nuclei, to take into account the energy dependence of the transition density
in the analysis of the relevant α-scattering experiments—see also the analysis in [45]. The
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same may hold for the IS giant dipole resonance (GDR), which, in addition, appears to have
large width even for nuclei as heavy as 208Pb. Moreover, the amount and nature of the strength
detected below the main IS GDR peak (which is located at approximately 23 MeV for heavy
nuclei) has not been clarified. For a recent report on the issue see, e.g., the contribution of
Garg in [3]. Given that the properties of the IS GMR and GDR are used for determining the
value of nuclear-matter incompressibility, a detailed examination may be recommended. We
have not presented calculations of the IS GDR here, as our method lacks full self-consistency
(due to the omission of spin-dependent terms from the residual interaction) and therefore our
results would not be free of spurious components.

3.2. Isoscalar quadrupole response

The two peaks in the ISQ strength distribution of the nuclei considered here are the low-lying
collective 2+ transition (first peak) and the IS GQR (second peak). In the cases of 56Ni (see
figure 2), 78Ni (not shown) and 100,120Sn (not shown), the two peaks show similar behaviour
as a function of q up to q ≈ 0.8 fm−1. This is due to the fact that in these nuclei, the transition
density of both states is peaked close to the surface. It should be noted, however, that the nature
of the two peaks may be quite different, as the low-lying state is expected to be characterized
by non-negligible vorticity [24, 25]. We also find that the transition density corresponding
to the low-lying state has a node inside the nucleus. In the case of 132Sn (figure 2), the
form factor of the first peak does not follow the behaviour of the GQR form factor. In 110Ni
(figure 2), there is a clear difference. The low-energy peak loses its strength faster than the
GQR, as q increases, behaving like the threshold strength of other multipolarities—which we
discuss in section 3.4. Respective transition densities are plotted in figure 7. In 110Ni, a third
peak occurs between the low-lying state and the GQR, also showing different behaviour. Its
strength peaks at higher q than the GQR and the low-lying-state strength. It is a non-collective
state with a transition density localized in the interior of the nucleus. Such a peak occurs also
in the case of 78Ni (not shown) and 132Sn. Corresponding transition densities are also plotted
in figure 7. They indicate that these secondary peaks are not of pure IS character.

The experimental width and fragmentation of the IS GQR can be much larger than
accounted for by first-order RPA calculations. In order to reproduce the experimental width
of the GQR one has to take into account higher-order configurations than 1p1h [46, 47]. Then
one would be in a position to examine the energy dependence of the transition density in the
region of the GQR.

3.3. Isovector strength distributions

As shown in figure 3, the IVM response of neutron-rich nuclei is dominated by two structures,
namely the broad peak of the IV GMR above 25 MeV, higher than the IS GMR due to the
repulsive IV residual interaction and an amount of strength at the IS GMR region. The latter
is of IS character (see figure 8, left panel) and exemplifies the admixture between IS and
IV transitions in neutron-rich nuclei. A similar situation is observed in the IVQ response
(figure 5); most of the IVQ strength, making up the IV GQR, lies above 20 MeV, but an
amount of strength remains in the IS GQR region. In all nuclei, the IV GMR and GQR have
a width of several MeV.

No significant energy dependence of the transition density is observed in the region of the
IV GMR and GQR for the low values of q examined here. With the exception of the threshold
strength in very-neutron-rich nuclei (see section 3.4), the IVM strength distributions in figure 3
for q = 0.2, 0.4 and 0.6 fm−1 are similar to each other. The same seems to hold for the IVQ
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Figure 9. The calculated particle threshold energy Et plotted versus the mass number A, for the
isotopes 56,78,110Ni and 100,120,132Sn and for L = 0, 1, 2. Lines connecting isotopes of the same
element are drawn to guide the eye.

distributions (figure 5), in the region of the IV GQR, in spite of the rich fine structure of the
latter. In the case of the IVD distributions in figure 4 this holds to a lesser extent.

The nature and systematics of the low-lying dipole strength is of particular importance in
connection to astrophysical processes. A detailed examination of the IV as well as IS dipole
strength distribution and also the corresponding vorticity strength distribution for various
nuclei, including the momentum dependence of these distributions, using a fully self-consistent
method, should be able to clarify—from a theoretical point of view—important issues such as
the admixture of IS and IV transitions at low energies, the existence of toroidal modes and the
energy dependence of the transition densities and currents in the region of the IS GDR.

3.4. Threshold strength

As mentioned in the introduction, the response of very neutron-rich nuclei is characterized by
the so-called threshold strength [19, 20, 22, 23, 27]. The effect is expected when the neutron
threshold lies much lower than the GR region—which begins typically at about 10 MeV. The
values of the particle threshold energy Et for the isotopes 56,78,110Ni and 100,120,132Sn and for
the multipolarilties considered here are presented in figure 9. According to our results, the
threshold strength vanishes as q increases. This is seen clearly in the case of 110Ni. As we
observe in figure 1 (middle panel), the ISM threshold strength, appearing as a ‘shoulder’ at
low energy, behaves differently than the peak at around 13.5 MeV; thus we have a way to
discriminate between the ‘threshold strength’ and the main peak—which represents the GMR.
The same holds for the IVM response of 132Sn (see figure 3, right panel) and similarly for the
IVD (see figure 4, middle panel). The distribution of loosely bound neutrons at large distances
from the nuclear centre results in form factors FL with maxima at low values of q, giving rise
to this type of behaviour of the threshold strength. The effect of the excess neutrons and the
origin of the threshold strength is demonstrated in figures 6 (110Ni, compare right-top panel
with the other panels) and 8 (132Sn, left panel), where typical examples of transition densities
corresponding to the threshold region are presented.

In [22] the ISM response of the neutron-rich nucleus 60Ca is examined—where a
significant amount of threshold strength appears as well. It was found that in the region
of the GMR the transition density compares rather well with the Tassie model prediction,
whereas in the threshold region it is extended at large distances and it originates mostly from
neutron excitations. A similar effect was predicted also in the case of the ISQ response of 28O
[20]. Our results are in concordance with these findings.
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4. Conclusion and perspectives

In this work we have used the SHF+CRPA method to study the low-multipolarity response of
selected Ni and Sn isotopes and to examine in particular variations of the transition density
and form factor in the region of collective excitations. According to our results, the transition
density may show considerable energy dependence in the region of the IS GMR. This should be
taken into account in the analysis of relevant hadron-scattering experiments. The form factor,
corresponding to the threshold strength in very-neutron-rich nuclei, is narrower compared
to the form factor of the respective giant resonance. This result, owing to the loosely
bound neutrons outside the core, is independent of L. In the region of IV GMR and GQR
resonances, no significant energy dependence is observed for q values below 1.0 fm−1. A
detailed examination of the IS and IV dipole strength distribution, as well as the corresponding
vorticity strength distribution, should be the subject of future work. Special care should be
taken of the spurious centre-of-mass motion. Important issues to be addressed include the
admixture of IS and IV transitions at low energies, the existence of toroidal modes and the
energy dependence of the transition densities and currents in the region of the IS GDR.
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