## Short note

# Microscopic analysis of a correlation between dipole transitions $1_{1}^{-} \rightarrow 0_{g . s .}^{+}$and $3_{1}^{-} \rightarrow 2_{1}^{+}$in spherical nuclei 

V.Yu. Ponomarev ${ }^{\text {a }}$<br>University of Gent, Department of Subatomic and Radiation Physics, Proeftuinstraat 86, 9000 Gent, Belgium

Received: 4 October 1999
Communicated by B. Povh


#### Abstract

Correlation between $\mathrm{B}\left(E 1,1_{1}^{-} \rightarrow 0_{\text {g.s. }}^{+}\right)$and $\mathrm{B}\left(E 1,3_{1}^{-} \rightarrow 2_{1}^{+}\right)$values are considered within microscopic QRPA approach. General arguments for a dependence of a ratio between these values on a collectivity of the $2_{1}^{+}$and $3_{1}^{-}$phonons and ground state correlations are provided.


PACS. 21.10.Re Collective levels - 21.60.-n Nuclear-structure models and methods - 23.20.Js Multipole matrix elements

Recently, an impressive correlation between $\mathrm{B}\left(E 1,1_{1}^{-} \rightarrow\right.$ $\left.0_{\text {g.s. }}^{+}\right)$and $\mathrm{B}\left(E 1,3_{1}^{-} \rightarrow 2_{1}^{+}\right)$values have been reported by Pietralla [1] from an experimental systematic. Although the measured $\mathrm{B}(E 1)$ values themselves vary within two orders of magnitude for different medium-heavy spherical nuclei, a ratio

$$
\begin{equation*}
R=\frac{\mathrm{B}\left(E 1,1_{1}^{-} \rightarrow 0_{\text {g.s. }}^{+}\right)}{\mathrm{B}\left(E 1,3_{1}^{-} \rightarrow 2_{1}^{+}\right)} \tag{1}
\end{equation*}
$$

keeps practically constant and is close to one. In the same paper it is shown that one expects $R$ equal $7 / 3$ if a simple bosonic phonon model is applied to describe the states involved. In this Short note we present a microscopic analysis of transition matrix elements under consideration and demonstrate that $0<R<7 / 3$ in any nuclear model based on a quasiparticle random phase approximation (QRPA) approach if an internal fermion structure of phonons is accounted for.

Let us introduce a phonon operator $Q_{\lambda \mu}^{+}$with a multipolarity $\lambda$ and projection $\mu$ to describe excited states in nuclei as a superposition of different two-quasiparticle configurations:

$$
\begin{align*}
Q_{\lambda \mu}^{+} & =\frac{1}{2} \sum_{\tau}^{n, p} \sum_{j j^{\prime}}\left\{C_{j m j^{\prime} m^{\prime}}^{\lambda \mu} X_{j j^{\prime}}^{\lambda} \alpha_{j m}^{+} \alpha_{j^{\prime} m^{\prime}}^{+}\right. \\
& \left.-(-1)^{\lambda-\mu} C_{j^{\prime} m^{\prime} j m}^{\lambda-\mu} Y_{j j^{\prime}}^{\lambda} \alpha_{j^{\prime} m^{\prime}} \alpha_{j m}\right\} . \tag{2}
\end{align*}
$$

[^0]The quantity $j m \equiv \mid n l j m>$ denotes a single-particle level of an average field and $C$ is a Clebsh-Gordon coefficient. Quasiparticle operators, $\alpha_{j m}^{+}$, are obtained from a linear Bogoliubov transformation from the particle creation $a_{j m}^{+}$ and annihilation $a_{j m}$ operators:

$$
\begin{aligned}
a_{j m}^{+} & =u_{j} \alpha_{j m}^{+}+(-1)^{j-m} v_{j} \alpha_{j-m} \\
a_{j m} & =u_{j} \alpha_{j m}+(-1)^{j-m} v_{j} \alpha_{j-m}^{+}
\end{aligned}
$$

where $u_{j}^{2}$ and $v_{j}^{2}$ are occupation numbers.
The properties of phonons (2), i.e. their excitation energies, $E_{\lambda}$, and the values of forward, $X_{j j^{\prime}}^{\lambda}$, and backward, $Y_{j j^{\prime}}^{\lambda}$, amplitudes are obtained by solving QRPA equations. We are interested here only in the first collective QRPA solution, thus, the index $i$ which is often used to distinguish phonons with a different excitation energy, is dropped.

It is well-known that in spherical nuclei the lowest $2^{+}$ and $3^{-}$excited states have a practically pure one-phonon nature while the lowest $1^{-}$state is a two-phonon configuration which we describe by a wave function:

$$
\left|1_{1}^{-} \mu_{1}>=\sum_{\mu_{2} \mu_{3}} C_{2 \mu_{2} 3 \mu_{3}}^{1 \mu_{1}} Q_{2^{+} \mu_{2}}^{+} Q_{3-\mu_{3}}^{+}\right|>_{p h}
$$

where $\mid>_{p h}$ is a wave function of a ground state of an even-even nucleus, a phonon vacuum.

In terms of quasiparticles and phonons, a one-body operator of an electromagnetic $E \lambda$ transition has the form:

$$
\begin{align*}
& \mathcal{M}(E \lambda \mu)=\sum_{\tau}^{n, p} e_{\tau}^{(\lambda)} \sum_{j j^{\prime}} \frac{<j\|E \lambda\| j^{\prime}>}{\sqrt{2 \lambda+1}} \\
& \times\left\{\frac{\left(u_{j} v_{j^{\prime}}+v_{j} u_{j^{\prime}}\right)}{2}\left(X_{j j^{\prime}}^{\lambda}+Y_{j j^{\prime}}^{\lambda}\right)\left(Q_{\lambda \mu}^{+}+(-)^{\lambda-\mu} Q_{\lambda-\mu}\right)\right. \\
& \left.+\left(u_{j} u_{j^{\prime}}-v_{j} v_{j^{\prime}}\right) \sum_{m m^{\prime}} C_{j m j^{\prime} m^{\prime}}^{\lambda \mu}(-)^{j^{\prime}+m^{\prime}} \alpha_{j m}^{+} \alpha_{j^{\prime}-m^{\prime}}\right\} \tag{3}
\end{align*}
$$

where $<j\|\mathrm{E} \lambda\| j^{\prime}>\equiv<j\left\|i^{\lambda} Y_{\lambda} r^{\lambda}\right\| j^{\prime}>$ is a single particle transition matrix element and $e_{\tau}^{(\lambda)}$ are effective charges for neutrons and protons. The first term of (3) corresponds to an one-phonon exchange and it does not contribute to transitions between the one-phonon $3_{1}^{-}$and $2_{1}^{+}$excited states and to a decay of the two-phonon $1_{1}^{-}$state into the ground state.

Applying exact commutation relations between phonon and quasiparticle operators:

$$
\begin{aligned}
{\left[\alpha_{j m}, Q_{\lambda \mu}^{+}\right]_{-} } & =\sum_{j^{\prime} m^{\prime}} X_{j j^{\prime}}^{\lambda} C_{j m j^{\prime} m^{\prime}}^{\lambda \mu} \alpha_{j^{\prime} m^{\prime}}^{+} \\
{\left[\alpha_{j m}^{+}, Q_{\lambda \mu}^{+}\right]_{-} } & =(-1)^{\lambda-\mu} \sum_{j^{\prime} m^{\prime}} Y_{j j^{\prime}}^{\lambda} C_{j m j^{\prime} m^{\prime}}^{\lambda-\mu} \alpha_{j^{\prime} m^{\prime}}
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \mathrm{B}\left(E \lambda_{1} ;\left[\lambda_{2} \times \lambda_{3}\right]_{\lambda_{1}} \rightarrow 0_{g . s .}^{+}\right)=\frac{\left(2 \lambda_{2}+1\right)\left(2 \lambda_{3}+1\right)}{\left(2 \lambda_{1}+1\right)} \\
\times & \left|\sum_{\tau}^{n, p} e_{\tau}^{\left(\lambda_{1}\right)} \sum_{j_{1} j_{2} j_{3}}\left(u_{j_{1}} u_{j_{2}}-v_{j_{1}} v_{j_{2}}\right)<j_{1}\right| \mid \mathrm{E} \lambda_{1} \| j_{2}> \\
\times & \left.\left\{\begin{array}{ccc}
\lambda_{3} & \lambda_{2} & \lambda_{1} \\
j_{1} & j_{2} & j_{3}
\end{array}\right\}\left(X_{j_{2} j_{3}}^{\lambda_{3}} Y_{j_{3} j_{1}}^{\lambda_{2}}+Y_{j_{2} j_{3}}^{\lambda_{3}} X_{j_{3} j_{1}}^{\lambda_{2}}\right)\right|^{2} \tag{4}
\end{align*}
$$

for the $E 1$-decay $1_{1}^{-} \rightarrow 0_{g . s .}^{+}$and

$$
\begin{align*}
& \mathrm{B}\left(E \lambda_{1}, \lambda_{3} \rightarrow \lambda_{2}\right)=\left(2 \lambda_{2}+1\right) \\
\times & \mid \sum_{\tau}^{n, p} e_{\tau}^{\left(\lambda_{1}\right)} \sum_{j_{1} j_{2} j_{3}}\left(u_{j_{1}} u_{j_{2}}-v_{j_{1}} v_{j_{2}}\right)<j_{1}\left\|\mathrm{E} \lambda_{1}\right\| j_{2}> \\
\times & \left.\left\{\begin{array}{cc}
\lambda_{3} & \lambda_{2} \\
j_{1} & \lambda_{1} \\
j_{2} & j_{3}
\end{array}\right\}\left(X_{j_{2} j_{3}}^{\lambda_{3}} X_{j_{3} j_{1}}^{\lambda_{2}}+Y_{j_{2} j_{3}}^{\lambda_{3}} Y_{j_{3} j_{1}}^{\lambda_{2}}\right)\right|^{2} \tag{5}
\end{align*}
$$

for the $E 1$-decay $3_{1}^{-} \rightarrow 2_{1}^{+}$, where $\lambda_{1}=1, \lambda_{2}^{\pi}=2^{+}$and $\lambda_{3}^{\pi}=3^{-}$.

Assuming $X_{j j^{\prime}}^{\lambda} \equiv Y_{j j^{\prime}}^{\lambda}$ and equal effective charges, $e_{\tau}^{(\lambda)}$, for both $E 1$ transitions under consideration, equations $(4,5)$ yield the value $R=7 / 3$, the same as in a simple bosonic phonon model [1]. In fact, the amplitudes $X_{j j^{\prime}}^{\lambda}$ are always larger than the $Y_{j j^{\prime}}^{\lambda}$ amplitudes. For example, if a separable form of a residual interaction is used, they have the following analytical expressions:

$$
\begin{equation*}
\binom{X}{Y}_{j j^{\prime}}^{\lambda}(\tau)=\frac{1}{\sqrt{\mathcal{Y}_{\tau}^{\lambda}}} \cdot \frac{f_{\lambda j^{\prime}}^{\lambda}(\tau)\left(u_{j} v_{j^{\prime}}+u_{j^{\prime}} v_{j}\right)}{\varepsilon_{j j^{\prime}} \mp E_{\lambda}} \tag{6}
\end{equation*}
$$

where $\varepsilon_{j j^{\prime}}$ is an energy of a two-quasiparticle configuration $\left(\alpha_{j}^{+} \alpha_{j^{\prime}}^{+}\right), f_{j j^{\prime}}^{\lambda}$ is a reduced single-particle matrix element of residual forces, and the value $\mathcal{Y}_{\tau}^{\lambda}$ is determined from a normalization condition for phonon operators.

As we notice from (6), $X_{j j^{\prime}}^{\lambda}$ and $Y_{j j^{\prime}}^{\lambda}$ amplitudes always have the same sign for the first collective phonon because $E_{\lambda}<\varepsilon_{j j^{\prime}}$. An approximation $X_{j j^{\prime}}^{\lambda} \approx Y_{j j^{\prime}}^{\lambda}$ is valid only when a phonon energy is very small as compared to two-quasiparticle energies, i.e. $E_{\lambda} \ll \varepsilon_{j j^{\prime}}$, and corresponds to extremely collective vibrations. Thus, the value $7 / 3$ should be considered as an upper unreachable limit for the quantity $R$ of (1).

Since it is always true that $X_{j j^{\prime}}^{\lambda}>Y_{j j^{\prime}}^{\lambda}$, all elements of the sum in (4) are systematically smaller than the corresponding ones in (5) reducing the value of $R$ from the upper $7 / 3$ limit. In spherical nuclei the excitation energies of the lowest vibrational $2^{+}$and $3^{-}$states approximately equal to $2 / 3$ of an energy of a lowest two-quasiparticle configuration, $\varepsilon_{\left(j j^{\prime}\right)_{l}}$. Keeping only the main term in the sums $(4,5)$, we obtain the value $R \approx 0.9$. In fact, the quantity $R$ should be somewhat larger because the ra-


Fig. 1. (a) $\mathrm{B}\left(E 1,1_{1}^{-} \rightarrow 0_{\text {g.s. }}^{+}\right)$(dashed line) and $\mathrm{B}\left(E 1,3_{1}^{-} \rightarrow\right.$ $2_{1}^{+}$) (solid line) values, and b) $R$ value (1) as a function of $r$ which is a ratio between a phonon energy and an energy of a lowest two-quasiparticle configuration. $R=7 / 3$ upper limit is shown by dashed line in (b)
tios $X_{j j^{\prime}}^{2(3)} / Y_{j j^{\prime}}^{2(3)}$ for omitted terms are smaller than for the main, $X_{\left(j j^{\prime}\right)_{l}}^{2(3)} / Y_{\left(j j^{\prime}\right)_{l}}^{2(3)}$, ones.

While $R=7 / 3$ should be taken as an upper extreme limit as discussed above, another extreme limit is $R=0$. The last is approached in a case of non-collective excitations when $E_{\lambda} \approx \epsilon_{\left(j j^{\prime}\right)_{l}}$ which leads to $X(Y)_{\left(j j^{\prime}\right) \neq\left(j j^{\prime}\right)_{l}} \approx 0$ and $X_{\left(j j^{\prime}\right)_{l}} \gg Y_{\left(j j^{\prime}\right)_{l}}$.

In Fig. 1a) we present by dashed line $\mathrm{B}\left(E 1,1_{1}^{-} \rightarrow 0_{\text {g.s. }}^{+}\right)$ and by solid line $\mathrm{B}\left(E 1,3_{1}^{-} \rightarrow 2_{1}^{+}\right)$values as a function of $r=E_{\lambda} / \epsilon_{\left(j j^{\prime}\right)_{l}}$ in ${ }^{120} \mathrm{Sn}$. Note a logarithmic scale. Calculations have been performed with a separable form of residual forces and a strength parameter has been varied to obtain an RPA solution at different $r$ values. A smooth evolution of the $R$ value on $r$ from the $7 / 3$ upper limit is shown in Fig. 1b). The curve drops sharply to the 0 lower limit at $r$ very close to 1 .

The value $R$ also equals zero when the ground state of a nucleus is considered as a non-correlated vacuum in respect to phonon excitations. It takes place within a TammDankoff approximation (TDA) approach. In the TDA the nucleus ground state is assumed to be a quasiparticle vacuum and the coefficients $Y_{j j^{\prime}}^{\lambda} \equiv 0$. It means that a direct transition $\left[2_{1}^{+} \times 3_{1}^{-}\right]_{1^{-}} \rightarrow 0_{\text {g.s. }}^{+}$is totally forbidden (see,
(4)). It is different in the QRPA approach because a direct decay of a two-phonon state into the ground state by means of one-body operator of an electromagnetic transition takes place by a simultaneous annihilation of a twoquasiparticle configuration of an excited state and a virtual excitation of another two-quasiparticle configuration in the correlated phonon vacuum. As for the $3_{1}^{-} \rightarrow 2_{1}^{+}$decay between one-phonon states, one quasiparticle in the $3^{-}$ phonon simply re-scatters into the $2^{+}$phonon by means of the $E 1$ operator. It means that the last transition is allowed in second order perturbation theory in both the TDA and QRPA approaches.

Thus, the experimental systematic in [1] for the value of $R \approx 1$ provides an additional good evidence that in spherical nuclei the lowest $2^{+}$and $3^{-}$states are good collective vibrators built on top of a correlated vacuum.

The present paper was partly supported by the Research Council of the University of Gent.

## References

1. N. Pietralla, Phys. Rev. C 59, 2941 (1999)

[^0]:    ${ }^{a}$ NATO fellow. Permanent address: Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Moscow region, Dubna, Russia, E-mail: vlad@thsun1.jinr.ru

