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Abstract. To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR)
obtained in various nuclear reactions, the excitation of the 1− states in 140Ce by (e, e′) scattering for
momentum transfers q = 0.1–1.2 fm−1 is calculated within the plane-wave and distorted-wave Born ap-
proximations. The excited states of the nucleus are described within the Quasiparticle Random Phase
Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the
coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states
in (e, e′) reactions is predominantly of transversal nature for scattering angles θe ≈ 90◦–180◦. Being thus
mediated by the convection and spin nuclear currents, the (e, e′) like the (γ, γ′) reaction, may provide
additional information to the one obtained from Coulomb and hadronic excitations of the PDR in (p, p′),
(α, α′), and heavy-ion scattering reactions. The calculations predict that the (e, e′) cross sections for the
strongest individual PDR states are in general about three orders of magnitude smaller as compared to
the one of the lowest 2+

1 state for the studied kinematics, but that they may become dominant at extreme
backward angles.

1 Introduction

A group of low-lying 1− states in neutron-rich heavy nu-
clei below the particle emission threshold is often referred
to as the Pygmy Dipole Resonance (PDR). The excita-
tion probability of the PDR by photons is about two
orders of magnitude smaller as compared to the Giant
Dipole Resonance (GDR). Nonetheless the high selectiv-
ity of the electromagnetic interaction to the excitation of
dipole states already allowed to observe the PDR in ex-
periments with tagged photons as a bump of unresolved
states with a width of about 2–3MeV [1,2]. Later, nuclear
resonance fluorescence (NRF) experiments with high reso-
lution in Darmstadt [3] and Gent [4] and follow-up studies
during the last 20 years also at the ELBE accelerator of
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Ricardo A. Broglia, Enrico Vigezzi.
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the Helmholtz-Zentrum Dresden-Rossendorf [5] and at the
High Intensity γ-ray Source (HIγS) operated by Triangle
University Nuclear Laboratory (TUNL) [6], identified the
PDR fine structure, i.e. hundreds of 1− states were ob-
served in spherical nuclei at the PDR excitation energy.

Recently, other probes were used to investigate the
PDR properties: 1− states which form the PDR, were
studied in (α, α′γ) [7], (p, p′) [8], (17O,17 O′γ) [9], and

(p, p′γ) [10] reactions, in which the detection of the γ de-
cay photon in coincidence with the scattered particle was
used to select the corresponding excitation of a 1− state.
For example, the spectrum of the 1− states in 208Pb ob-
tained in the (p, p′) reaction at very small scattering angles
(θlab < 1◦, where the excitation process is purely deter-
mined by the Coulomb interaction between projectile and
target [8]) resembles closely the NRF spectrum [11]. At
the same time, Coulomb and strong (NN) interactions
between projectile and nucleus play an important role in
the excitation of the PDR states in the other reactions
mentioned above. As a result of the different sensitivity
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of various reactions, some 1− states are observed in NRF
spectra but not in reactions with hadronic probes and vice
versa. Also, the relative excitation strengths of different in-
dividual states deviate appreciably. Contrary to the GDR
states where the E1-strength is concentrated merely in
a single collective level called 1p-1h doorway state and a
spreading over many states of 2p-2h, 3p-3h, . . . character
(see, e.g., [12]), the PDR is characterized by probably a
few doorway states. We will return to this point in some
detail below.

For a detailed account of the present status of studies
of the PDR properties we refer to a recent review arti-
cle [13].

In the present work we consider the possibility of
using electrons as a projectile to supply further infor-
mation on the properties of the 1− states belonging
to the PDR. As it will become clear from results pre-
sented below, the prerequisite for an experimental veri-
fication of them are the availability of i) low energy elec-
tron beams and ii) high-resolution and large acceptance
magnetic spectrometers. Both conditions are, e.g., ful-
filled at the S-DALINAC (Superconducting DArmstadt
electron LINear ACcelerator) and its spectrometers LIN-
TOTT and Q-CLAM [14]. Some selective excitations of
isoscalar and isovector electric dipole transitions below
the electric giant resonance region were, e.g., investi-
gated in 12C, 16O, 40Ca and 208Pb [15–18]. Furthermore,
some benchmark high-resolution (e, e′x) experiments with
x = p, n, α and the decay of the Giant Dipole Reso-
nance in the doubly magic nuclei 40Ca and 48Ca were
also performed at the S-DALINAC [19–23] but in general,
the information on the observation of detailed strength
distributions of 1− states in the (e, e′) reactions is very
sparse.

Concerning the physical origin of low energy electric
dipole strength and its particular distribution we note
in passing that there exists at present still no clear pic-
ture about the relevant excitation mechanism. Recent self-
consistent Random-Phase Approximation (RPA) calcula-
tions with various finite-range forces in 16O and 40Ca [24]
and also 48Ca [25] have shown that, e.g., nuclear surface
vibrations might mix with skin modes and thus influence
the pygmy dipole strength. It is stated clearly there that
an electroexcitation experiment of the (e, e′) type could
eventually help to “improve the different models aspir-
ing to describe reliably the low-energy dipole strength of
nuclei” [25]. This point has also been independently em-
phasized in [26]. To provide some estimates for the fea-
sibility of (e, e′) experiments is the main purpose of this
article.

The cross section for the excitation of natural parity
states in (e, e′) reactions has a longitudinal and transver-
sal component. It is expected that the longitudinal or
Coulomb term gives rise to a distribution of electric dipole
strength over energy quite similar to the one seen in NRF
experiments, at least at small momentum transfer. How-
ever, the transversal part is mediated by nuclear currents,
and thus provides an alternative mechanism to excite the
same set of PDR states in addition to the Coulomb and
NN excitations.

It is thus important

– to investigate at which kinematics the transversal
mechanism dominates over the longitudinal one in the
excitation of the PDR states, and to compare it to the
behaviour of the excitation of the collective GDR and

– to provide realistic estimates of the (e, e′) cross section
for the excitation of the PDR levels.

Electrons with incident kinetic energies from 30 to
120MeV will be considered. Such energies can be pro-
vided by the S-DALINAC in Darmstadt, where the de-
tector system allows for measurements in a wide range of
scattering angles, including backward scattered electrons
close to 180◦ which can be detected with high angular
resolution [14,27].

The calculations have been performed for 140Ce, a
semi-magic nucleus in which the PDR has already been
studied in (γ, γ′), (p, p′), and (α, α′) reactions [10].

2 Plane-wave Born approximation

The theory of inelastic scattering of electrons on nuclei
is well developed and may be found in textbooks (see,
e.g., [28]). The plane-wave Born approximation (PWBA)
is usually sufficient for simple estimates. In the PWBA,
the differential (e, e′) cross section for excitation of a nat-
ural parity state of multipolarity λ can be written as [29]

(

dσ

dΩ

)

λ

∝
{

VL(θe)
∣

∣FC
λ (q)

∣

∣

2
+ VT (θe)

∣

∣FE
λ (q)

∣

∣

2
}

, (1)

where VL(θe) and VT (θe) are the longitudinal and
transversal kinematic factors, respectively, and λ denotes
the multipolarity of the transition. Nuclear structure in-
formation on the excited state enters via the charge tran-
sition density ρλ(r) into the Coulomb form factor

FC
λ (q) ∝

∫ ∞

0

ρλ(r)jλ(qr)r2dr (2)

and via the transition current densities Jλ,λ±1(r) into the
electric form factor

FE
λ (q) = FE

λ,λ−1(q) + FE
λ,λ+1(q)

∝
√

λ + 1

∫ ∞
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Jλ,λ−1(r) jλ−1(qr)r
2dr

+
√

λ

∫ ∞

0

Jλ,λ+1(r) jλ+1(qr)r
2dr, (3)

where q denotes the three-momentum transfer and jλ(qr)
is the spherical Bessel function. Any interference between
Coulomb and electric form factors is neglected in the
PWBA.

At small q-values, Siegert’s theorem [30] may be ap-
plied, resulting in

FE
λ (q) ≈ Ex

q

√

λ + 1

λ
FC

λ (q), (4)
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Fig. 1. Kinematic factors VL(θe) and VT (θe) in eq. (1) and the
quantity R(θe) in eq. (5) as function of the scattering angle θe

for electrons with incident energy Ee = 70MeV. See text for
details.

where we have used relativistic units (� = c = 1). When
combining eqs. (1) and (4), the quantity

R(θe) =
V

1/2
L (θe)

Ex

q

√

λ+1
λ V

1/2
T (θe)

(5)

indicates whether the longitudinal or the transversal con-
tribution dominates in the nuclear excitation process. This
quantity is shown in fig. 1 by a solid line together with the
kinematic factors VL(θe) and VT (θe). The calculation was
performed for a hypothetical 1− state with an excitation
energy of Ex = 8MeV excited by Ee = 70MeV electrons.
Notice that the excitation via the Coulomb form factor
(R(θe) > 1) dominates in a wide range of scattering an-
gles θe, except for very forward (θe = 0◦–8◦) and backward
(170◦–180◦) angles.

When the momentum transfer q is small, it is also pos-
sible to perform a Taylor expansion of the Bessel function
jλ(qr) in eq. (2). Keeping only the first term, the square
of the Coulomb form factor is closely related to the re-
duced transition probability B(Eλ) of the excited state,
|FC

λ (q)|2 ∝ q2λ B(Eλ).
These simple estimates lead to the expectation that

the distribution of E1 strength of states in the region of
the PDR in (e, e′) experiments at small q-values is rather
similar to the one in (γ, γ′) measurements. Indeed, at fixed
kinematics, the (γ, γ′) excitation cross section is strictly
proportional to B(Eλ) (see, e.g., [31,32]). Some devia-
tions are possible only at very large scattering angles of
electrons.

The nuclear structure information on the states which
form the PDR is contained in transition charge and cur-
rent densities, which enter into eqs. (2) and (3). They
were calculated for 140Ce within the quasiparticle-phonon
model [33,34]. The model employs a nuclear Hamiltonian
which includes the mean field for protons and neutrons (a
phenomenological Woods-Saxon potential is usually used),
monopole pairing, and residual interactions in a separable
multipole form. Excitations of even-even nuclei are treated
as quasi-bosons (phonons), the excitation energies and in-
ternal fermion structure of which are obtained by solving
equations of motion of the quasiparticle random phase ap-
proximation (QRPA). This yields the eigenenergies and
wavefunctions the one-phonon states.
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discussion in the main text are marked by an asterisk.
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phonon 1− states in 140Ce.

The distribution of the B(E1) strength over the one-
phonon 1− states in 140Ce in the PDR energy region is
shown in fig. 2(top-left). The states with the largest B(E1)
values are marked with an asterisk. They will be discussed
in more detail below. Notice that their B(E1) values are
almost two orders of magnitude smaller as compared to
the one-phonon states which form the GDR in fig. 2(top-
right).

Transition charge density, ρ1(r), and current densities,
J1,0(r) and J1,2(r), of some selected one-phonon 1− states
are presented in fig. 3 with their excitation energies in-
dicated in the right-top corner of each panel. The ones
belonging to the PDR (GDR) are shown in the left (right)
column. The following effective charges for protons (Z)
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Fig. 4. Differential PWBA cross sections (dσ/dΩ) for the ex-
citation of one-phonon 1− states from the PDR (left column)
and the GDR (right column) energy region in 140Ce as a func-
tion of scattering angle θe. The incident energy is 70 MeV.
The longitudinal and transversal components are displayed as
dashed and dotted lines, respectively. The total cross sections
are shown by solid lines.

and neutrons (N) have been used: eZ(N) = N(−Z)/A for
the B(E1) values and charge densities, and the effective

g-factors: g
Z(N)
l = eZ(N) for the convection current, and

geff
s = 0.8 gfree

s for the magnetization current.
The charge transition densities of the 1− states, which

form the GDR, have a strong surface peaking, typical for
collective vibrations. Protons and neutrons oscillate out
of phase and due to different signs of the effective charges,
they add constructively. The interference of 1p1h compo-
nents in the wave function of one-phonon 1− states from
the PDR energy region has a destructive nature [35]. Their
charge transition densities are peaking in the interior of
the nucleus where their main 1p1h component is domi-
nating. Accordingly, the position of minima and maxima
varies from state to state.

The PWBA differential (e, e′) cross sections for the
excitation of three selected one-phonon 1− states, which
belong to the PDR (GDR) are presented in the left (right)
part of fig. 4 as a function of the angle of the scat-
tered electrons. They are calculated for an incident en-
ergy of 70MeV. The contribution of the longitudinal and
transversal components is shown separately by dashed and
dotted lines, respectively. Our conclusion about the longi-
tudinal and the transversal contributions based on eq. (5)
and fig. 1 remains valid for the GDR states. But for the
PDR states the transversal component determines the ex-
citation in a wide range of angles from 90◦ to 180◦.

For all three PDR states the differential cross section
has a very similar shape with deep minima between 40◦

and 50◦ and an almost flat behaviour for scattering angles
θe > 70◦. The interplay between two terms of the electric
form factor FE

1,0(q) and FE
1,2(q) in (3) is the source of those

minima. The tails of the PDR current densities J1,0(r) at
r > 7 fm lead to the sign change of the term FE

1,0(q) at low

q values creating the minima when FE
1,0(q) = −FE

1,2(q).

For the GDR states the term FE
1,0(q) always dominates

over FE
1,2(q).

3 Distorted-wave Born approximation

Within the distorted-wave Born approximation (DWBA),
one solves the Dirac equation for the incoming and outgo-
ing electrons in the Coulomb field of the nucleus in terms
of partial waves. Schematically, the differential cross sec-
tion has the form

(

dσ

dΩ

)

λ

∝
∑

ms,µ

|A(λµms)|2 , (6)

where ms and µ are the projections of the spin s of the in-
coming electron and of the angular momentum transfer λ,
respectively. The expression for the transition amplitudes
A(λµm) may, e.g., be found in [28,36]. An essential detail
is that A = AC + AE , where both Coulomb (AC) and
electric (AE) amplitudes are calculated by folding the nu-
clear charge and current transition densities, respectively,
with the partial waves of the incoming and outgoing elec-
tron and with the propagator of the virtual photon. This
implies that the DWBA accounts for the interference be-
tween two mechanisms for the excitation of natural parity
states, (longitudinal) Coulomb and (transversal) electric.

One of the DWBA problems is a poor convergence of
the radial integrals, particularly for dipole excitations at
backmost scattering angles. We employ here the complex-
plane rotation method developed in [37,38], to overcome
this problem. This allows us to cover all scattering an-
gles from 0◦ to 180◦. The computation time is sped up by
a multiple convergence acceleration in the sum over the
final-state partial waves [39]. However, such an accelera-
tion is not possible for angles θe � 10◦.

DWBA calculations have been performed for all one-
phonon 1− states of 140Ce with an excitation energy below
20MeV (42 states in total). We have considered incident
energies from 30 to 120MeV and scattering angles from
40◦ to 180◦. Special attention is paid to incident energies
of 40, 70, and 110MeV. They correspond roughly to the
energies which may be achieved with the present set-up
at the S-DALINAC after the beam passes the linac once,
twice, and four times. The main results of the calculations
are presented in figs. 5–8.

With figs. 5 and 6 we continue the discussion on the
role of the longitudinal and transversal mechanisms of ex-
citation which was started in connection with figs. 1 and 4.
One state at 6.51MeV belonging to the PDR (left col-
umn) and one at 15.50MeV belonging to the GDR (right
column) are considered in each of the figures. The depen-
dence of the differential cross sections on scattering angle
is presented in fig. 5 for the incident energies of 40, 70, and
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(middle row), and 110MeV (bottom row). The DWBA and
PWBA results are represented by solid thick and thin lines,
respectively. The results of the DWBA calculation in which
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110MeV. The dependence on incident energy is shown in
fig. 6 for the scattering angles 60◦, 120◦, and 175◦. The
DWBA cross sections are plotted by solid thick lines. By
artificially setting J1,L(r) = 0 or ρ1(r) = 0 one obtains the
excitation of the states by pure Coulomb (dashed line) or
electric (dotted line) mechanisms, respectively.

The analysis of the results in figs. 5 and 6 yields con-
clusions similar to the ones drawn from the PWBA pre-
dictions in the previous section: the electric term in the
excitation of the GDR plays the most important role only
for very backward scattering, while for the PDR it may
determine the cross section already at 90◦. However, for
some kinematics the interference between the Coulomb
and electric parts may be extremely important (see, e.g.,
right-top panel of fig. 5). In our examples this interference
has often a destructive nature.

The DWBA results in figs. 5 and 6 are also compared
to the PWBA predictions (thin solid lines). Basically, the
DWBA leads to a smoothing of the sharp structures in
PWBA due to the folding procedure. Although in some
cases (e.g., right-center panel of fig. 5) the agreement be-
tween the two approximations is rather good, in other
cases they may disagree by an order of magnitude or more
with each other.

Notice that summation over the partial waves in the
DWBA completely washes out the deep minima in the
transversal form factor of the PDR states at low q dis-
cussed in the previous section.
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Fig. 6. Differential cross sections (dσ/dΩ) for the excitation
of the one-phonon 1− states of energy 8.49 MeV (left column)
and 16.00MeV (right column) in 140Ce at a scattering angle
60◦ (top row), 120◦ (middle row), and 175◦ (bottom row) as
a function of kinetic energy Ee of the electrons. The definition
of the lines is the same as in fig. 5.

Cross sections for the states marked with an aster-
isk in fig. 2 are plotted as a function of scattering angle
(fig. 7) and as a function of bombarding energy (fig. 8).
The selected states have the largest B(E1) values in the
PDR (left column) and GDR (right column) energy re-
gions. The cross sections for other one-phonon 1− states
look rather similar except at the largest q-values in the
studied kinematical range.

Low incident energies and small or modestly large scat-
tering angles provide the biggest cross sections for the ex-
citation of the PDR in inelastic electron scattering experi-
ments. How large they are, can be seen from a comparison
with the excitation cross sections for the 2+

1 and 3−1 states
(with excitation energies 1.596MeV and 2.464MeV, re-
spectively) presented in the left panels of figs. 7 and 8 by
solid and dotted lines. One notices that the one-phonon
1− PDR states are about two orders of magnitude weaker
excited in (e, e′) reactions than the 2+

1 state in a wide
range of kinematics under consideration. An exception is
the backmost scattering. The main reason is that for the
excitation of the 2+

1 and 3−1 states the transversal part
plays a marginal role even at θe → 180◦. It is sizeable,
however, for the PDR states. But when changing the scat-
tering angle from 40◦ to 180◦, the PDR excitation cross
sections drop by one to three orders of magnitude, de-
pending on the incident electron energy.

4 Fine structure of the PDR

In order to discuss the absolute values of the (e, e′) exci-
tation cross sections for the 1− states in the PDR energy
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of the selected one-phonon 1− states from the PDR (left col-
umn) and GDR (right column) region in 140Ce as a function of
scattering angle θe. The incident energy is 40 MeV (top row),
70 MeV (middle row), and 110MeV (bottom row). Excitation
energies of the states are given in the inserts of the top row.
Cross sections for the excitation of the 2+

1 (solid line) and 3−

1

(thin dotted line) states are plotted for comparison.

region, which one expects to measure in an experiment, it
is necessary to account for the fact that the one-phonon
1− states, discussed in the previous sections, are embed-
ded in more complex two-, three-, etc. phonon states. The
excitation of the latter from the ground state is very weak
as compared to the excitation of the one-phonon states,
but their density increases rapidly with excitation energy.
The interaction between the one-phonon and more com-
plex states leads to a fragmentation of the strength car-
ried by the one-phonon excitations into components from
many states with more complex wave functions. In other
words, we are dealing with the decay of the doorway one-
phonon states owing to the interaction with more complex
background states in the spirit of ref. [12].

In the QPM this decay is implemented by describ-
ing excited states with a wave function which contains
one-phonon (first term), two-phonon (second term), and
higher components

|Ψν
λµ〉 =

{

∑

i

Ri(λν)Q+
λµi +

∑

λ1i1≤λ2i2

Pλ2i2
λ1i1

(λν)

×
[

Q+
λ1µ1i1

Q+
λ2µ2i2

]

λµ
+ · · ·

}

|Ψg.s.〉, (7)

where Q+
λµi is the creation operator of a phonon with mul-

tipolarity λ and its projection µ, and where i = 1, 2, 3 . . .
is the ordered number of the one-phonon states for a given
λ. The phonon operators act on |Ψg.s.〉 which is the wave
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Fig. 8. Differential cross sections (dσ/dΩ) for the excitation of
the selected one-phonon 1− states in 140Ce at scattering angles
60◦ (top row), 120◦ (middle row), and 175◦ (bottom row) as a
function of incident energy Ee of the electrons. The definition
of the lines is the same as in fig. 7.

function of the ground state of even-even nuclei, identified
with the phonon vacuum. Multiphonon configurations are
built up of phonons of different multipolarities (λ1, µ1),
(λ2, µ2), coupled to the same (λ, µ) as the one-phonon
term
[

Q+
λ1µ1i1

Q+
λ2µ2i2

]

λµ
=

∑

µ1µ2

〈λ1µ1λ2µ2|λµ〉Q+
λ1µ1i1

Q+
λ2µ2i2

.

The eigenenergies of the states described by the wave func-
tions (7), as well as the coefficients Ri(λν) and Pλ2i2

λ1i1
(λν),

are obtained by the diagonalization of the model Hamil-
tonian on the set of these wave functions. Since the model
Hamiltonian is already prediagonalized on the QRPA
level, one-phonon configurations do not interact with each
other, but they mix in the wave function (7) due to their
interaction with the same set of complex configurations.

The transition densities of the states (7) have the form
of (7) where phonon operators are replaced by transi-
tion densities of one-, two-, etc. configurations. Neglect-
ing the transition densities of the complex configurations,
the cross section for excitation of the ν-th (ν = 1, 2, 3, . . .)
state (7) in (e, e′) reactions can be written as

(

dσ

dΩ

)

λν

∝
∑

ms,µ

∣

∣

∣

∣

∣

∑

i

Ri(λν)Ai(λµms)

∣

∣

∣

∣

∣

2

, (8)

where Ai are the transition amplitudes for the i-th one-
phonon state.

The first QPM calculation with the wave function (7)
for the PDR states was performed for 140Ce in late 90-ies
(see fig. 2 in ref. [3]) and compared to the results of one
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of the first NRF experiment in which the fine structure of
the PDR was observed. The model Hamiltonian was di-
agonalized in the basis of interactive one-, and a limited
number of two-, and three-phonon configurations. The ba-
sis of complex configurations was extended later in [32]:
two- and three-phonon configurations were built up from
the phonons with multipolarities from 1± to 9± and were
cut above 8.5MeV. All 42 one-phonon 1− configurations
(discussed in the previous sections) were included in order
to account for the GDR contribution at low excitation en-
ergies. The diagonalization yields 1157 1− states ν below
8.5MeV. We will use this set of states in the discussion of
the PDR below.

The fragmentation process of the B(E1) strength of
the doorway one-phonon 1− states in the PDR energy
region is demonstrated in the left part of fig. 2. To guide
the eye, we also present in fig. 2(bottom) the strength
function

S(B(E1), Ex) ∝
∑

ν

Bν(E1)

(Ex − Eν)2 + (Γ/2)2
(9)

of the distribution where Eν are the eigenenergies of the
states (7) and Bν(E1) are their reduced transition proba-
bilities. The strength functions here are calculated with an
artificial width Γ = 0.1MeV and presented in arbitrary
units.

The strongest states described by eq. (7) in fig. 2 (bot-
tom) have B(E1) values which are almost one order of
magnitude smaller than the doorway ones in fig. 2(top).
For the predictive power of the present set of the QPM
wave functions we refer to fig. 2 in [10]. It combines in-
formation on excitation of the individual PDR levels in
140Ce as observed in (γ, γ′), (p, p′) and (α, α′) reactions
in comparison with the calculation of the corresponding
reaction cross sections performed with this set. Although
it is not possible to establish a one-to-one correspondence
between experiment and theory, a comparison of the cal-
culations for single excitations in three different reactions
with the experimental results on an absolute scale shows
good agreement [10]. Also, calculations and experimental
NRF data are found in good agreement concerning the
degree of fragmentation and on the integrated strength,
if the sensitivity limit of the experiments is taken into
account [32]. All together, it leads us to expect that em-
ploying the same set of wave functions in the calculation
of the (e, e′) cross sections will provide realistic values for
the excitation of the strongest levels in the experiment.

The results of the DWBA calculations with the QPM
wave functions eq. (7) are displayed in fig. 9 for an incident
energy of 70MeV and scattering angles 60◦, 120◦, and
180◦. The strength functions in fig. 9 are defined similar
to eq. (9) with the replacement of the Bν(E1) quantities
by the corresponding (e, e′) cross sections (dσ/dΩ)ν , and
are presented in arbitrary units which are different for
different panels. As in the case of the B(E1) quantities,
the largest cross sections of an individual ν-th state in
fig. 9(left) are about one order of magnitude smaller than
the cross sections of the doorway one-phonon states for
the same kinematics.
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Fig. 9. Differential cross sections (dσ/dΩ) for the excitation
of the 1− states in 140Ce by electrons with incident energy
of 70MeV at scattering angles 60◦, 120◦, and 180◦ (from top
to bottom). The calculations are performed with the QPM
wave functions (7) which account for the coupling to complex
configurations. Left column - the PDR, right column - the PDR
and GDR. The strength functions are given by the smooth
curves.

To discuss the relative (e, e′) cross sections in the exci-
tation of the PDR and GDR, an additional diagonalization
of the QPM Hamiltonian has been performed by extend-
ing the basis of two-phonon configurations up to 19MeV.
No three-phonon configurations have been accounted for
in this calculation. The fine structure of the GDR strength
is shown in fig. 2(right bottom) and fig. 9 for the B(E1)
values and (e, e′) cross sections, respectively.

Figure 9(left) demonstrates that, depending on the
kinematics, the shape of the PDR excitation in inelas-
tic electron scattering may vary dramatically and deviate
from the distribution of the B(E1) values which present
the q = 0 limit. For some kinematics the summed cross
sections of all PDR states from the (e, e′) reaction are
even larger as compared to the summed ones for the GDR
states. But the absolute values of the cross sections are
small under such kinematical conditions.

5 Conclusion

The excitation of the 1− states in 140Ce by inelasti-
cally scattered electrons with incident energies from 30
to 120MeV is investigated. The scattering angle is varied
from 40◦ to 180◦. This kinematical range covers a momen-
tum transfer q from 0.1 to 1.2 fm−1. We consider 1− states
which belong to the PDR and GDR. Their structure is
described within the one-phonon QRPA, and by account-
ing for the coupling to complex configurations within the
quasiparticle-phonon model.
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It is demonstrated that Coulomb scattering is the dom-
inant excitation mechanism for the GDR states in an
(e, e′) reaction in a wide range of scattering angles, except
for the very backward scattering. On the contrary, the
PDR states are predominantly excited by transverse elec-
tric scattering mediated by the nuclear current for scatter-
ing angles in a large angular region from 90◦ to 180◦. Also,
the interference between the longitudinal and transversal
components plays an important role for them. The latter
effect is a distinctive feature of the DWBA calculations,
while it is neglected in the PWBA.

The calculations show that the fine structure of the
PDR in (e, e′) reactions may change substantially, depend-
ing on the kinematics, especially at large scattering angles.
We predict that the (e, e′) excitation cross sections of the
strongest individual 1− states are about three orders of
magnitude lower than the respective cross section for the
2+
1 state, except for very large scattering angles where the

significant transversal contributions to the cross section
for the PDR dominates. However, the absolute values of
the cross section are rather small.

In this context we finally note that in earlier search for
M1 and M2 giant resonances in 140Ce at the DALINAC
the measured high-resolution spectra —∆E varied be-
tween 28 and 48 keV (FWHM)— at backward angles
showed no sign for excited 1− states between excitation
energies from 7.5 to 10MeV [40], however, well resolved
1− states in the region of interest have already been de-
tected in 208Pb with an energy resolution of ∆E = 38 keV
FWHM [18]. With the improved electron beams from the
S-DALINAC and its high-resolution spectrometers there
is now, however, founded hope to detect them.
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