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Abstract. We review the phenomenon of fine structure of nuclear giant resonances and its relation to
different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative
information on the fine structure in terms of characteristic scales. A comparable analysis of resonance
strength distributions from microscopic approaches incorporating one or several of the resonance decay
mechanisms allows conclusions on the source of the fine structure. For the isoscalar giant quadrupole res-
onance (ISGQR), spreading through the first step of the doorway mechanism, i.e. coupling between one
particle-one hole (1p1h) and two particle-two hole (2p2h) states is identified as the relevant mechanism. In
heavy nuclei it is dominated by coupling to low-lying surface vibrations, while in lighter nuclei stochastic
coupling becomes increasingly important. The fine structure observed for the isovector giant dipole reso-
nance (IVGDR) arises mainly from the fragmentation of the 1p1h strength (Landau damping), although
some indications for the relevance of the spreading width are also found.

1 Introduction

Electric and magnetic nuclear giant resonances (GR) are
well-known examples of the striking behavior of an inter-
acting system of fermions to form collective modes [1, 2].
Over the years, much experimental work has gone into
establishing an understanding of the global behavior of
their gross features, such as centroid energies and widths.
It is generally accepted that the total width Γ of the res-
onance is mainly caused by three mechanisms illustrated
in fig. 1: fragmentation of the elementary one particle-
one hole (1p1h) excitations (Landau damping ΔΓ ), direct
particle emission from 1p1h configurations leading to an
escape width Γ ↑, and the evolution of 1p1h configurations
into more complicated two-particle two-hole (2p2h) and
finally to many particle-many hole (npnh) states giving
rise to a spreading width Γ ↓

Γ = ΔΓ + Γ ↑ + Γ ↓. (1)
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Fig. 1. Contributions to the decay width of a giant resonance.
For details see text. Figure taken from ref. [3].

A powerful approach to investigate the role of the dif-
ferent components are coincidence experiments, where di-
rect decay can be identified by the population of 1h and
1p2h states in the daughter nucleus and the spreading
width contribution can be estimated by comparison with
statistical model calculations (see, e.g., refs. [4–7]). How-
ever, the scheme outlined above also implies a hierarchy
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Fig. 2. Doorway state scheme. For details see text.

of widths and timescales (an assumption underlying all
transport theories [8–10]) resulting in a fragmentation of
the giant resonance strength in a hierarchical manner [11].
Such a doorway state picture is illustrated in fig. 2 start-
ing from the direct excitation of simple 1p1h states. The
coupling to 2p2h states leads to a fragmentation into
states acting as “doorways” for the damping of the initial
strength across the many complex states until the com-
pound nucleus is reached. Such a scheme connected to the
explanation of intermediate structure has a long history
(see, e.g., ref. [12] and references therein). It implies the
existence of lifetimes characteristic for each coupling step
with corresponding energy scales ranging from the total
width of the order of MeV to the width of compound nu-
clear states of the order of eV in heavy nuclei.

A challenging theoretical problem is to explain the na-
ture of couplings between the levels in this hierarchy and
to predict the scales of the fragmentation of the strength
which thus arise from it. Pier Francesco Bortignon and his
collaborators Angela Bracco and Ricardo Broglia at the
University of Milano have made important contributions
to a solution of this problem [11].

Experimentally, it is expected that the coupling
scheme leads to fine structure of the giant resonance. As
illustrated schematically in fig. 2 for the mixing of 1p1h
and 2p2h states, this can be described by characteristic
underlying widths (indicated by the thick dashed line),
respectively characteristic fragmentation patterns. While
the observation in heavy nuclei has been under debate
for a long time [13], systematic studies in the past 15
years have established GR fine structure as a global phe-
nomenon for all types of resonances and across the nu-
clear chart (see sect. 2.1). GR experiments are typically
performed using particle beams with energies of several
hundred MeV requiring magnetic spectrometers for the
detection of scattered particles. Utilizing beam dispersion
matching techniques, energy resolutions of the order of a
few tens of keV can be achieved. Thus, present-day exper-
imental techniques (see, e.g., ref. [3]) are capable of iden-
tifying characteristic scales that occur between the limits
set by the experimental resolution and the broad enve-
lope of the resonances of the order of several MeV. By
comparison with the scales indicated in fig. 2 it becomes
evident that these experiments should be sensitive to the
first coupling step between 1p1h and 2p2h states.

A variety of methods was proposed to extract quanti-
tative information on scales characterizing the fine struc-
ture. Early on, an attempt was made to analyze the first
high-resolution data on the ISGQR in 208Pb [14, 15] in
terms of a doorway-state model [16]. It could be shown
that in this case the spreading width dominates over the
escape width but the deduced scales depended strongly on
the assumptions about the (unknown) number of doorway
states. Later, new methods were proposed for the extrac-
tion of such scales based an a local scaling dimension ap-
proach [17–19], an entropy index method [20,21], and the
use of wavelet techniques [22, 23]. A comprehensive dis-
cussion of the advantages and limitations of the various
methods concluded that wavelet analysis is most promis-
ing [24].

2 Fine structure of giant resonances

2.1 Experimental evidence

The ISGQR was the first case where the fine structure
phenomenon was systematically investigated across the
nuclear chart [22, 25–27]. Interestingly, the fine structure
prevails in well-deformed heavy nuclei, where one might
expect that the spectral fluctuations are damped by the
extremely high level densities in the ISGQR excitation re-
gion. Indeed, it was recently shown that rather the fine
than the gross structure provides direct evidence for K
splitting of the ISGQR in deformed nuclei [28].

The impact of high energy-resolution measurements is
illustrated in fig. 3, in which an early study of the ISGQR
in 90Zr using 200MeV inelastic proton scattering at TRI-
UMF [29] is compared to results from a recent measure-
ment at iThemba LABS [25], both at a scattering angle
where quadrupole transitions are enhanced. In ref. [29],
the ISGQR was observed as a broad, smooth, roughly
Lorentzian-shaped “bump” at about 14MeV with a reso-
lution of about 1MeV (FWHM). At the high energy reso-
lution (40 keV FWHM) of the iThemba LABS experiment
considerable fine structure is visible. In addition, the res-
onance reveals a double-humped structure deviating from
the typical assumption of a single Lorentzian made for the
decomposition of hadron scattering spectra as illustrated
in the upper part of fig. 3.

Figure 4 demonstrates that the observed fluctuations
are indeed of genuine physical origin. The bottom panel
shows a high-resolution 208Pb(p,p′) spectrum measured
at iThemba LABS at Θp = 8◦ in the excitation energy
region Ex = 8–12MeV, where the ISGQR is located. The
middle panel presents a measurement of the same reaction
with the same kinematics and comparable energy resolu-
tion from IUCF [13]. The proton scattering data show ex-
cellent agreement between the two spectra on a peak-by-
peak basis. This is also true for high-resolution electron
scattering data from the DALINAC [15] (top panel), at
least up to Ex ≃ 10.5MeV. At higher excitation energies
some differences between the fine structure in the (e, e′)
and (p,p′) spectra are visible due to the different selectiv-
ity of both reactions. In the electron scattering experiment
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Fig. 3. Comparison of an older study of the ISGQR in 90Zr
with the (p, p′) reaction at TRIUMF [29] with high-resolution
data obtained at iThemba LABS under similar kinematics. The
broad bump in the upper spectrum around 14 MeV is inter-
preted as the ISGQR. The resolution of ≈ 1 MeV (FWHM) is
insufficient to observe any detailed structure. When measured
with a resolution ≈ 40 keV (FWHM), the energy region of the
ISGQR expanded in the lower part exhibits fine structure and a
double-hump structure deviating from the typical assumption
of a single Lorentzian. Figure taken from ref. [25].

Fig. 4. Similarity of the structures observed in the three
experimental studies of the ISGQR in 208Pb carried out in
Darmstadt (top panel) [15], at IUCF (middle panel) [13], and
at iThemba LABS (bottom panel) [25]. Figure taken from
ref. [25].

an excitation of E1 transitions from the low-energy tail of
the IVGDR is expected while such transitions are only
weakly excited in proton scattering.

Fig. 5. Spectrum of the 208Pb(p, p′) reaction at E0 = 295 MeV
and Θ = 0◦–0.94◦. The crosss sections reflect E1 excitations
induced by relativistic Coulomb excitation. The background
from non-E1 excitations (full line) is determined by a MDA
with contributions from excitation of E2 strength (dotted line)
and a phenomenological component (dashed line) [30]. Figure
taken from ref. [31].

In the last years, the fine structure phenomenon
has been experimentally established for the IVGDR as
well [32–37]. This has been facilitated by the realization of
inelastic proton scattering experiments at energies of a few
hundred MeV under extreme forward angles including 0◦

combined with high energy resolution achieved by disper-
sion matching techniques [3]. In these kinematics the cross
sections are dominated by relativistic Coulomb excitation
populating the IVGDR. Figure 5 shows a spectrum of the
208Pb(p,p′) reaction at E0 = 295MeV and covering an an-
gular range Θ = 0◦–0.94◦. The full (red) line indicates the
background from other contributions to the spectrum de-
duced by a multipole decomposition analysis (MDA) [30,
32]. The main contributions are from excitation of the IS-
GQR and to a lesser extent from the ISGMR (dotted line)
and a phenomenological part (dashed line) dominated by
quasifree reactions. In any case, the contributions under
the IVGDR peak are small justifying the assumption that
they do not influence the fluctuations visible in the data.
The cross section fluctuations are particularly pronounced
on the lower side of the IVGDR and are damped on the
upper side, most likely due to the strong increase of the
level density of Jπ = 1− states across the resonance.

Figure 6 presents results from a recent survey per-
formed at E0 = 200MeV at iThemba LABS [37]. The
maximum of the prominent bump visible in all data fol-
lows the systematics of the IVGDR [2]

EC = 31.2A−1/3 + 20.6A−1/6, (2)

except for 27Al. However, the IVGDR in light-mass nuclei
is known to be extremely fragmented and to extend to
very high energies [38] such that part of the E1 strength
is likely to be outside the momentum acceptance of the
spectrometer. Pronounced fine structure is visible over the
excitation energy region of the IVGDR in all nuclei inves-
tigated, thus confirming the global character of this phe-
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Fig. 6. Experimental double differential cross sections for the
spectra (from top to bottom) of the 208Pb, 58Ni, 56Fe, 40Ca and
27Al(p, p′) reactions at Ep = 200MeV and scattering angles
θlab = 0◦–1.91◦. The red arrows show the centroids of the
IVGDR expected from systematics. Figure taken from ref. [37].

nomenon. The overall cross sections decrease considerably
with atomic number indicating that they are dominated
by Coulomb excitation.

Finally, we note that fine structure has also been estab-
lished in magnetic and spinflip resonances. High-resolution
electron scattering studies in Darmstadt demonstrate
the fragmentation of magnetic dipole [39, 40] and
quadrupole [41–45] modes. The Gamow-Teller resonance
in heavy nuclei studied with high resolution utilizing the
(3He, t) reaction at RCNP again shows pronounced fine
structure [46,47].

2.2 Quantitative analysis of the spectra using wavelet
techniques

As pointed out in the introduction, a variety of methods
have been proposed for a quantitative analysis of the fine
structure in the spectra. These have been compared with
each other in ref. [24] and the method of wavelet analysis
has been identified as the most promising approach. The
wavelet analysis of the measured spectra is illustrated by
the example of ISGQR data from the 208Pb(e, e′) reaction
(fig. 7). It proceeds via the calculation of a wavelet coeffi-
cient C from the measured cross sections σ(E) (expressed

Fig. 7. Top right: spectrum of the 208Pb(e, e′) reaction [15].
Bottom right: squares of the wavelet coefficients, eq. (3), as a
function of excitation energy from a CWT. Bottom left: pro-
jection of the wavelet coefficients on the scale axis (power spec-
trum). The arrows indicate characteristic scales.

here in counts/channel) shown in the top right part

Ci(δE) ≡ C(δE,Ei) =
1√
δE

∫

σ(E)Ψ∗

(

Ei − E

δE

)

dE,

(3)
where Ei is the excitation energy of channel i, δE the
wavelet scale, and Ψ the wavelet function. Here, the com-
plex Morlet wavelet

Ψ(x) = π−1/4 eik0x e−x2/2, (4)

with k0 = 5 is employed, which provides optimum bal-
ance between resolution of excitation energy and energy
scale for the present application (see, e.g., ref. [27]). The
wavelet decomposition is done over the whole spectrum
with reflective boundary conditions to avoid finite-range-
of-data errors. The analysis of the fine structure of gi-
ant resonances is performed using the continuous wavelet
transform (CWT), where the fit procedure can be adjusted
freely to the required precision. Further details can be
found e.g. in refs. [24, 26,27,31,36].

The squares of the wavelet coefficients, representing
a measure of the strength of structures resolved by the
wavelets, are displayed in the bottom-right part of fig. 7.
The colour code indicates their magnitude from red (large)
to blue (small). At certain wavelet scale values maxima are
observed across the ISGQR excitation region. The struc-
ture of neighboring maxima/minima along these lines re-
sults from the oscillating form of the wavelet function. It
is convenient to project the two-dimensional distribution
on the scale axis. The resulting power spectrum

Pw(δE) =
1

N

i2
∑

i=i1

|Ci(δE)C∗
i (δE)|, (5)

where i1 and i2 indicate the boundaries of the region
of interest, is shown in the bottom left part of fig. 7.
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Peaks of strength in this power spectrum are associated
with characteristic scales of the structures in the energy
region of the ISGQR. The power spectrum is normalized
to the spectral variance in order to facilitate comparison
between different nuclei and with theoretical results. The
analysis of the fluctuations, if represented as a power,
characterizes the variance of the series under considera-
tion. The Fourier transform preserves the variance of the
signal and the CWT does as well (at least approximately)
since it is a convolution. Thus, a normalization to the vari-
ance facilitates a comparison of powers deduced from the
various spectra despite the absence of an absolute scale.

3 Theoretical approaches

While the wavelet analysis described in sect. 2.2 provides
a quantitative measure of the fine structure, there is no di-
rect way to relate these characteristic scales to the decay
mechanisms illustrated in fig. 1. The wavelet coefficients
depend on underlying widths as indicated in the doorway
scheme of fig. 2, but also expected from the escape width.
However, they are also influenced by characteristic energy
differences between peaks of the fine structure, which can
be induced by Landau damping or by the coupling to
complex states, and there is no way to decompose these
different contributions to the wavelet coefficients. Thus,
any interpretation of the characteristic scales requires a
corresponding analysis of theoretical spectra from models
which include some or all of the giant resonance decay
mechanisms.

3.1 General considerations

Many-body methods for describing collective modes of
medium and heavy nuclei are based on the notion of a
common mean field (spherical or deformed) in which —in
the absence of pair correlations— nucleons move indepen-
dently in shells that are filled up to the respective Fermi
levels for protons and neutrons. The nuclear Hamiltonian
for A nucleons, ĤA, can therefore be expressed in sec-
ond quantized form in terms of fermionic creation and

annihilation operators, a†
i and ai, involving the quantum

numbers of the i-th orbital,

ĤA =
∑

i

ǫia
†
iai +

1

4

∑

ijkl

vijlka†
ia

†
jalak. (6)

Here, εi denotes the single-particle energies in the mean
field and vijkl the antisymmetrized matrix elemenents
of an effective two-body interaction ignoring three- and
higher-body interactions. The mean field is either taken
phenomenologically or determined selfconsistently from
the effective two-body interaction in the Hartree-Fock
(HF) approximation. In principle, the effective inter-
action has to be obtained from the underlying bare
nucleon-nucleon interaction but in applications is often
parametrized.

Given the exact eigenstates |ν〉 of the many-body
Schrödinger equation

Ĥa|ν〉 = Eν |ν〉, (7)

where ν denotes states of total angular momentum (J,M)
and parity π, the nuclear excitation spectrum in response
to a weak external perturbation

F̂ (t) = F̂ eiωt + F̂ †e−iωt (8)

is given by the strength function SF (ω)

SF (ω) =
∑

ν

|〈ν|F̂ |0〉|2δ(ω − Eν), (9)

which is of second order in the perturbation.
Sum rules are energy-weighted moments of the

strength function SF (ω),

mk
F =

∫

dωωkSF (ω), k = 0 ± 1,±2, · · · , (10)

that can be evaluated as ground-state expectation val-
ues and allow for a simplified treatment of the average
propetries of collective motion. They are also related to
bulk constants of the system, such as static polarizabili-
ties and susceptibilities. One may define a set of energies

Ek
F = (mk

F /mk−2

F )1/2, (11)

which characterize the strength distribution. If it is
sharply peaked at a certain energy, then all Ek

F essen-
tially coincide. The degree to which they differ reflects
the width, asymmetry etc. of the distribution.

For medium-heavy and heavy nuclei the exact solu-
tion of the many-body Schrödinger equation (7) is numer-
ically prohibitive and appropriate approximation schemes
have to be developed. These are based on the fact that
the elementary excitations on a mean-field groundstate
are of particle-hole nature and a expansion of the many-
body wavefunctions in terms of p-h operators, or in the
case of superfluidity pairs of BCS quasiparticle operators,
is the natural starting point. To lowest order this leads
to the Random-Phase-Approximation (RPA or QRPA)
which can be formulated both non-relativistically and rel-
ativistically. Higher orders in the expansion lead to ex-
tended RPA models such as the Second Random-Phase-
Approximation (SRPA) or (Quasi)Particle-Phonon Cou-
pling models.

The equations for extended RPA models start from a
formal creation operator Q̂†

ν of an exact eigenstates of the
many-body Schrödinger equation (7) defined through

|ν〉 = Q̂†
ν |0〉, Q̂ν |0〉 = 0 for all ν (12)

[ĤA, Q̂†
ν ]|0〉 = (Eν − E0)|0〉. (13)

Here |0〉 and E0 denote the exact ground state vector and

its energy, respectively. The operator Q̂†
ν is now expanded
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in a set of bosonic operators {Ô†
i } composed of a set {b̂†j}

and its Hermitian conjugate {b̂j} as

Q̂†
ν =

∑

i

P ν
i Ô†

i =
∑

j

(

Xν
j b̂†j − Y ν

j b̂j

)

. (14)

Multiplying from the left by an arbitrary variation 〈0|δÔ
on the exited-state vector 〈ν| and setting E0 = 0 yields

〈0|[δÔ, [ĤA, Q̂†
ν ]]|0〉 = Eν〈0|[δÔ, Q̂†

ν ]|0〉, (15)

whose solutions are equivalent to those of the original
Schrödinger equation.

3.2 Random-Phase-Approximation (RPA)

As the exact problem cannot be solved in practice the

operator set {b̂j} and{bj} has to be restricted. As noted
above the mean-field picture of independent particle mo-

tion suggests to start by approximating {b̂†j} and {b̂j} by
fermion pair operators for 1p1h excitations,

b̂†1 ≡ a†
pah; b̂1 ≡ a†

hap (16)

such that

Q̂†
ν =

∑

1

(

Xν
1 b̂†1 − Y ν

1 b̂1

)

=
∑

ph

(

Xν
pha†

pah − Y ν
pha†

hap

)

.

(17)
Restricting the variation δO to the p-h subspace and
replacing the expectation values of the commutators in
eq. (15) by a Slater determinant of independent parti-
cles (HF-groundstate), the equations of motion lead to
the RPA equations

(

A11′ B11′

−B∗
11′ −A∗

11′

) (

Xν
1′

Y ν
1′

)

= Eν
1

(

Xν
1

Y ν
1

)

, (18)

where

A11′ = εphδpp′δhh′ + vph′hp′ ; B1,1′ = vpp′hh′ (19)

and Eν
1 are the RPA values for the excitation energies.

For external perturbations of one-body type

F̂ =
∑

ij

fija
†
iaj , (20)

i.e. the external probe (electromagnetic, hadronic or
weak) couples to a single nucleon the strength function
SF (ω) can be recast in the following form:

SF (ω) = − 1

π

∑

11′

f∗
1 R11′(ω)f1′ , (21)

where R11′ denotes the ph propagator and thus the indices
1 and 1′ are either of p-h or h-p type. In terms of the RPA-
matrices A11′ and A11′ R11′ is given by

R11′(ω) =

(

ω + iη − A11′ B11′

−B∗
11′ −ω + iη − A∗

11′

)−1

. (22)

The coherent sum (17) leads to collective modes in the
excitation spectrum, most prominently Giant Resonances,
which exhaust a large part of the energy-weighted sum rule
m1

F .The energy-weighted sum rule (f -sum rule) for oscil-
lations associated with a conserved current is the same
as that for non-interacting fermions. This is a crucial test
of the consistency of a given approximation with general
conservation laws imposed by symmetry. The RPA obeys
the f -sum rule. The RPA also describes the fragmentation
of collective strength into individual p-h excitations ΔΓ
which is commonly referred to as “Landau damping” and
the escape of single nucleons Γ ↑ by a proper treatment of
the continuum.

The mean-field approach, underlying eq. (6), forms the
basis for several improvements beyond the (Q)RPA. Since
they are referred to in comparisons with experiment be-
low, we mention the Extended Theory of Finite Fermi
Systems (ETFFS) [48] and the Relativistic Quasiparti-
cle Time-Blocking Approximation (RQTBA) [49] in which
simple 1p1h configurations are coupled to complex config-
urations of the type: 1p1h ⊗ phonon or 2qp ⊗ phonon for
open shell nuclei. Low-energy phonons of several multi-
polarities are usually involved. Their energies and ampli-
tudes are obtained by solving the QRPA equations. The
Wood-Saxon potential for the mean-field and the residual
Landau-Migdal interaction are used in the ETFFS (see
also [50] for a self-consistent treatment). The RQTBA
is a self-consistent approach and is based on covariant
energy-density functionals. Another method we will refer
to is based on extensions of the time-dependent Hartree-
Fock (ETDHF) theory [51]. Here one divides the space
of complex configurations into two sub-spaces: the sub-
space of 2p2h configurations which represents the inco-
herent dissipation mechanism due to nucleon-nucleon col-
lisions and the sub-space of 1p1h ⊗ phonon configura-
tions responsible for the coherent dissipation mechanism.
Effective Skyrme forces are used in calculations by this
model.

More explicitly we present in the following two ap-
proaches. One is the second RPA (SRPA) whose deriva-
tion, in line with the previous formal discussions is partic-
ularly transparent. The other is the Quasiparticle-Phonon
Model (QPM) [52, 53], which is used extensively in com-
parisons with experiment as described below.

3.3 Second Random-Phase-Approximation (SRPA)

As an obvious improvement of the RPA one may enlarge

the operator space {Ô†
i } in eq. (14) to include also 2p2h

excitations with

b̂†2 ≡ a†
p1

a†
p2

ah1
ah2

;

b̂2 ≡ a†
h1

a†
h2

ap2
ap1

(23)

such that

Q̂†
ν =

∑

1

(

Xν
1 b̂†1 − Y ν

1 b̂1

)

+
∑

2

(

Xν
2 b̂†2 − Y ν

2 b̂2

)

. (24)
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Following steps similar to those for deriving the RPA equa-
tions from eq. (15) one arrives at the SRPA equations

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A11′ B11′ A12′ 0

−B∗
11′ −A∗

11′ 0 −A∗
12′

A21′ 0 A22′ 0

0 −A∗
21′ 0 −A∗

22′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Xν
1′

Y ν
1′

Xν
2′

Y ν
2′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= Eν
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Xν
1

Y ν
1

Xν
2′

Y ν
2′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(25)
which now involve 1p1h as well as 2p2h excitations and
their couplings. The explicit form of the matrix elements
A12′ and A22′ can be found e.g. in ref. [54]. On its diagonal
A22′ contains the unperturbed 2p2h energies εp1h1

+ εp1h1

Obviously the matrix dimension is much larger than that
of the RPA and, for heavy nuclei, requires major compu-
tational efforts for their solutions.

Restricting oneself to the external perturbations F̂ of
one-body type (20) the SRPA strength function SF again
takes the form of eq. (21), but now includes the coupling
to 2p2h states

R11′(ω) =

(

ω + iη − Ã11′(ω) B11′

−B∗
11′ −ω + iη − Ã∗

11′(−ω)

)−1

.

(26)
The A-matrix is now frequency dependent and acquires a
complex contribution to the coupling to 2p2h excitations

Ã11′(ω) = A11′ +
∑

22′

A12 (ω + iη − A22′)
−1

A2′1′ . (27)

Physically this corresponds to the “spreading width” Γ ↓

Γ ↓
11′(ω) = −2 Im Ã11′(ω) (28)

which is a matrix in 1p1h space.
It can be shown that the non-energy weighted and the

energy-weighted sum rules m0
F and m1

F are the same in
RPA and SRPA. This implies that 2p2h states redistribute
the strength without creating additional strength as com-
pared to the RPA1. It is particularly satisfying to see that
the SRPA also fulfils the f -sum rule as required by sym-
metry arguments.

In passing we note that in ref. [55] a systematic study
of the ISGQR has been performed with a so-called sub-
tracted SRPA (SSRPA) model in the framework of an
energy density functional approach.

3.4 Quasiparticle-Phonon model (QPM)

The SRPA involves the diagonalization of the nuclear
Hamiltonian in the basis of 1p1h and 2p2h states, which
poses severe numerical limitations for heavy nuclei. In-
stead the Quasiparticle-Phonon model is based on the

1 This is a consequence of the one-body nature of the exter-
nal field F . If it involves two-body operators arising e.g. from
“exchange currents” this is no longer the case.

doorway concept as discussed in detail in ref. [11]. In heavy
nuclei it is numerically much more tractable and, in partic-
ular, allows to also include 3p3h excitations. In the QPM,
the information on physical observables is carried by sim-
ple doorway states of the 1p1h (two-quasiparticle) nature
which are embedded in a high density of background states
that have more complex structure and cannot be easily
excited from the ground state in nuclear reactions. The
interaction between the doorway and background states
leads to a fragmentation of the physical strength over
many states of a mixed (1p1h + 2p2h + . . .) nature as
presented in fig. 2.

The QPM is implemented by means of the step-by-step
diagonalization of a given model Hamiltonian (eq. (6)).
From the onset, pair-correlations of a possible super-
fluid ground state in open-shell nuclei are included. Thus
in a first step, the BCS equations are solved includ-
ing monopole pairing interactions in the second term of

eq. (6). In BCS theory a set of quasiparticle operators α†
i

is introduced as a linear combination of fermion creation
and annihilation operators a†

i and ai as

α†
i = uia

†
i + viai, (29)

where ui and vi are the coefficient of the Bogoliubov trans-
formation.

Then, the QRPA equations, similar to (18), are
solved, i.e. the Hamiltonian is diagonalized on the ba-
sis of two-quasiparticle states. In terms of the quasi-
particle operators (29) it involves parts of the resid-

ual interaction in eq. (6) proportional to α†
iα

†
jα

†
l α

†
k,

α†
iα

†
jαlαk and αiαjαlαk. The solutions of the QRPA

equations provide a set “phonon” states in the way
similar to eq. (17) for different values (Jπ) and
thus yield a set i = 1, 2, . . . of natural-parity
(1−i , 2+

i , . . .) and unnatural-parity (1+
i , 2−i , . . .) phonons.

The QRPA one-phonon states, with their 1p1h struc-
ture, are strongly excited from the ground state (the
phonon vacuum or 0p0h state) by the one-body ex-
ternal field (20) and thus, have features of doorway
states.

In a next step the wavefunctions of the excited states
|ν〉 ≡ |Jπ, i〉 are expanded in QRPA one-phonon states.
Up to third order, which includes 1p1h, 2p2h and 3p3h
excitations, one has

|ν〉 =

⎧

⎨

⎩

∑

i

RJiQ̂†
J,i +

∑

J1i1,J2i2

P J2i2
J1i1

[Q̂†
J1i1

Q̂†
J2i2

]J

+
∑

J1i1,J2i2,J3i3

T J3i3
J1i1J2i2

[[Q̂†
J1i1

Q̂†
J2i2

]Q̂†
J3i3

]J

⎫

⎬

⎭

|0〉.

(30)

Notice, that complex configurations of the states ν of an-
gular momentum J may be built up of phonons of different
angular momenta J1, J2, J3 �= J .
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To obtain the expansion coefficients Rν , P ν and T ν

one has to solve

⎛

⎜

⎜

⎜

⎝

E1ph V 2ph
1ph 0

V 2ph
1ph E2ph V 3ph

2ph

0 V 3ph
2ph E3ph

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎝

Rν

P ν

T ν

⎞

⎟

⎠
= Eν

⎛

⎜

⎝

Rν

P ν

T ν

⎞

⎟

⎠
, (31)

which accounts for the interaction between doorway

and background states and involves the α†
iα

†
jα

†
l αk and

α†
iαjαlαk terms of the residual interaction in eq. (6). The

matrix E1ph contains the energies of one-phonon states,
E2ph, the energies of two-phonon states, etc., and the ma-

trix V 2ph
1ph comprises the matrix elements of the interaction

between one- and two-phonon configurations, etc.
The matrix E1ph has a diagonal form because the QPM

Hamiltonian is already pre-diagonalized in the QRPA.
The matrices E2ph and E3ph are also diagonal when
phonons are considered as bosons. Accounting for the in-
ternal fermionic structure of the phonons leads to inter-
action between two- and two- (three- and three-, etc.)
phonon configurations; then the matrices E2ph and E3ph

are completely filled and the diagonal matrix elements
slightly deviate from the sum of energies of one-phonon
components from which the complex configurations are
built. The latter procedure is referred to as the Pauli prin-
ciple correction. It leads to substantial increase of the com-
putational time but its influence on the final results is usu-
ally marginal, especially in the case of giant resonances.
The values of matrix elements of interaction between one-
and three-phonon configurations are on the level of the
Pauli principle corrections and they are neglected in cal-
culation presented in the following.

The advantage of the QPM approach with its pre-
diagonalization of the model Hamiltonian on the QRPA
level in comparison to the SRPA is that it allows for an
easier truncation of huge numbers of complex configura-
tions before the matrix (31) diagonalization. Indeed, the
QRPA equations yield collective, weakly collective, and
almost pure 1p1h solutions. The complex configurations
which contain collective phonons couple to doorway states
much stronger then the ones made of only non-collective
phonons. In another words, the pre-diagonalization yields

a limited number of matrix elements V 2ph
1ph which are sub-

stantially larger than vijlk in eq. (6) and, accordingly, play
the most important role in the damping mechanism. This
will be discussed in detail below.

4 Characteristic scales and giant resonance
decay mechanisms

4.1 The ISGQR case: Coupling to low-lying surface
vibrations

As explained above, the interpretation of characteristic
scales of the giant resonance fine structure requires a
model comparison with microscopic calculations. This is

Fig. 8. Same as fig. 7, but for RPA (top) and SRPA (bottom)
calculations of the E2 response in 208Pb.

illustrated in fig. 8, which presents a wavelet analysis of
calculations of the ISGQR strength function in 208Pb anal-
ogous to the experimental data (fig. 7). Within the RPA
models, where only 1p1h transitions are treated, the IS-
GQR strength in heavy nuclei is concentrated in a sin-
gle state. Accordingly, as the upper part of fig. 8 demon-
strates, the wavelet analysis does not detect any charac-
teristic scales except a trivial scale from folding with a
Gaussian of width of 50 keV (FWHM), put in to mimic
the experimental resolution.

If one goes beyond the mean field approximation and
includes the coupling to 2p2h configurations, the ISGQR
strength distribution in 208Pb shown in the lower part
of fig. 8 fragments into many states and fine structure ap-
pears. By way of example, the SRPA calculation of ref. [21]
is shown here. The wavelet transform and the power spec-
trum exhibit several characteristic scales. This fact is a
demonstration of the significance of coupling to 2p2h con-
figurations for the formation of fine structure and related
characteristic scales, as found in the experimental spectra.
We remark that the maximum scale shown in fig. 8 is re-
stricted to 1MeV, as for the experimental data in figs. 7,
to achieve better visibility at small scales. A larger char-
acteristic scale at 2.1MeV representing the total width of
the resonance is also found.
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Fig. 9. Left: experimental spectrum of the 120Sn(p, p′) reac-
tion at the maximum of the ISGQR cross section versus QPM
and ETDHF predictions for the ISGQR. Right: corresponding
wavelet power spectra. Figure taken from ref. [25].

Because the models including 2p2h states work with
different truncation schemes and based on different inter-
actions, the characteristic scales obtained in the wavelet
analysis also differ. This has been discussed in detail for
the case of 208Pb in ref. [25]. Figure 9 presents 120Sn as
another example, where on the left side the experimen-
tal spectrum (top) is compared with QPM (middle) and
ETDHF (bottom) ISGQR strength distributions, and the
right side contains the corresponding CWT power spectra.
The QPM reproduces the experimental centroid energy
while it is shifted to higher excitation energy by several
MeV in the ETDHF results (however, this does not have
an impact on the wavelet power). Both models fall short of
describing the experimental widths. Correspondingly, the
spectra contain little wavelet power at scales of several
MeV in contrast to the data. The wavelet scale axes are
again restricted to 1MeV. Thus, a strong scale observed
at several MeV in the experimental power spectrum is not
visible. Overall, the QPM power spectra are closer to the
data but show deviations from the experimental result.

The systematic investigation of the ISGQR fine struc-
ture from light to heavy nuclei led to the following conclu-
sions: i) in spherical medium-mass and heavy nuclei the
appearance of fine structure results from the coupling of
1p1h to 2p2h states, i.e. the doorway mechanism [22, 25].
ii) The models provide a semi-quantitative description of
the experimental scales, where the number of scales in
a certain scale energy region is reproduced rather than
the exact values. iii) One always finds a large scale corre-
sponding to the total width of the resonance. The models
typically find smaller widths, either due to the neglect of
coupling to the continuum or due to the truncation of 2p2h
model spaces. iv) In lighter nuclei Landau fragmentation
might become relevant. For 40Ca, calculations with a mod-
ern realistic interaction derived from the unitary correla-
tion operator method (UCOM) interaction find that the
scales characterizing the fine structure are largely present
already on the mean-field level. This finding is in contrast
to many previous calculations of the ISGQR strength dis-
tribution in 40Ca, which all attribute the fragmentation to
the spreading width (see ref. [26] and references therein).
v) Deformation amplifies the role of Landau fragmenta-
tion for light [27] and heavy [28] nuclei. vi) Small scales
are experimentally identified in light nuclei which cannot
be explained by any of the calculations [26,27]. These may

Fig. 10. Collective vs. non-collective damping mechanisms.
The term ‘collective’ corresponds to coupling to low-lying sur-
face vibrations [56]. The non-collective contribution results
from the mixing of initial 1p1h states with the large back-
ground of states with more complex wave functions. Figure
taken from ref. [25].
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Fig. 11. Distribution of the coupling matrix elements V
2p2h
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between 1p1h to 2p2h states in the QPM calculation for the
ISGQR response in 120Sn. Figure taken from ref. [25].

result either from the coupling between 2p2h states ne-
glected in the SRPA calculations or they may originate
from Ericson fluctuations [57].

While the quantitative results of the models differ, the
success in reproducing at least qualitative features of the
characteristic experimental scales motivated attempts to
extract their underlying physical nature from the model
predictions. In the framework of the QPM calculations
described in sect. 3.4 a decomposition of the full model
space into subspaces, corresponding approximately to
different damping mechanisms, is possible. One such
important mechanism contributing to the damping of the
single-particle [58] as well as the collective response [56]
in heavy nuclei is the coupling to low-lying surface vibra-
tions. The importance of this mechanism for the damping
of giant resonances (in the following called collective
damping) was first discussed by Bertsch, Bortignon and
Broglia [59–61]. Another significant contribution may
come from mixing of the initial 1p1h states with the
large background of incoherent 2p2h states, hitherto
called non-collective damping. These two mechanisms are
depicted diagrammatically in fig. 10.

The two contributions can be approximately disentan-
gled by investigating the properties of the coupling matrix
elements between the 1p1h and 2p2h, respectively 1- and
2-phonon configurations (in the language of the QPM).
The probability P of finding a certain value of the cou-

pling matrix V 2ph
1ph in the QPM is displayed as a histogram

in fig. 11 for the case of 120Sn as an example. The solid line
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Fig. 12. Left: experimental spectrum of 120Sn as compared
to the QPM prediction for E2 strength and its decomposition
into the collective and non-collective damping contributions.
Right: corresponding wavelet power spectra. Figure taken from
ref. [25].

shows a Gaussian distribution expected for fully chaotic
systems from the Gaussian orthogonal ensemble (GOE)
as predicted by Random-Matrix-Theory (RMT) [62]. The
value of the Gaussian width is adopted to match the data.
The distribution deviates appreciably from the Gaussian
form: one finds a strong overshoot of very small matrix
elements and some enhancement at large values. Simi-
lar features have been reported from the analysis of off-
diagonal interaction matrix elements in shell-model calcu-
lations [63]. The excess of small matrix elements indicates
that many of the two-phonon configurations contribute lit-
tle to the fragmentation process. On the other hand, the
large matrix elements have an appreciable effect and are
due to the presence of soft collective modes. An approx-
imate separation of transitions contributing to collective
and non-collective damping can be achieved by assigning
subspaces and repeating the diagonalization within these
subspaces. This is indicated in fig. 11 as (i) and (ii) for
non-collective and collective damping, respectively.

The resulting total (cf. fig. 9), collective and non-
collective ISGQR strength functions are displayed in the
left panel of fig. 12. In both cases it is obvious that the
fragmentation is dominated by the collective mechanism.
However, one should be aware that the full calculation
is not just the sum of the two contributions, and inter-
ference terms may play a role. The corresponding wavelet
power spectra displayed in the right panel of fig. 12 clearly
demonstrate that all scales are already present in the col-
lective part. The non-collective part shows a wavelet power
distribution broadly distributed over the range of scales.
Similar results are found for other nuclei and models [25].

The absence of pronounced scales in the non-collective
part suggests a generic origin, i.e., a stochastic coupling
to the background of complex states. Then, the level spac-
ings and coupling matrix element distributions should be
given by the GOE. In order to test this assumption, we
have generated a GOE with the same Gaussian distribu-
tion of the matrix elements as found in the QPM calcu-
lation of 120Sn. After averaging over a sufficient ensem-
ble of random copies one obtains the strength function

Fig. 13. Strength function and wavelet power from a stochas-
tic coupling model for the ISGQR in 120Sn. Figure taken from
ref. [25].

shown in the left part of fig. 13. Wavelet analysis leads to
the power spectrum displayed in the right part of fig. 13
as the dashed line. Indeed, the stochastic coupling model
produces a large variety of scales which manifests itself
in a broad distribution, exactly what is seen in the QPM
results in fig. 11 for the non-collective subspace (i). The
slight shift of the maximum compared to the stochastic
model can probably be traced back to the decomposition
procedure. Rather than taking all matrix elements exceed-
ing the Gaussian distribution at a given strength, one has
to define a cut-off value indicted by the dashed lines in
fig. 11 below which all matrix elements are assumed to
belong to subspace (i). As demonstrated in ref. [25], col-
lective coupling dominates the spreading for heavy nuclei,
but the non-collective coupling mechanism becomes in-
creasingly important for lighter nuclei.

4.2 The IVGDR case: Landau damping

Although fine structure of the IVGDR is now systemat-
ically established on a level comparable to the ISGQR,
we focus in the discussion on the 208Pb and 120Sn studied
in more detail in sect. 4.1. Some general conclusions are
discussed at the end.

The pronounced fine structure found in 208Pb (cf.
fig. 5) has been analyzed by QPM [64] and RTBA [65]
calculations, the latter based on a relativistic mean-field
approach. The comparison of the experimental spectrum
(left side) and the wavelet power spectrum (right side) re-
sulting from the CWT analysis with those of the model
calculations for the B(E1) strength distributions is shown
in fig. 14. It should be noted that the experimental spec-
trum, (a), does not represent the B(E1) strength but
rather the Coulomb excitation cross section, which is mod-
ified by the excitation-energy dependent virtual photon
number [3]. Extraction of the experimental B(E1) distri-
bution is possible [32,66–68]. However, the need to disen-
tangle the E1 cross section from other contributions can
only be achieved for larger energy bins, where the infor-
mation on the fine structure is partially lost. Such a con-
version of the experimental data to B(E1) strength would
lead to a slight energy shift (< 5%) of the characteristic
scales and an increase of relative power towards higher
excitation energies.

A QPM calculation on the 1-phonon level (b) re-
sults in a B(E1) strength distribution dominated by five
transitions distributed between 11 and 15MeV with a cen-
troid energy of 13.25MeV (defined as m1/m0, where mi
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Fig. 14. (a) Experimental spectrum of the IVGDR studied
with the 208Pb(p, p′) reaction in comparison with theoretical
predictions of the B(E1) strength distribution in 208Pb (left
side) and the resulting power spectra from a CWT analysis
(right side). Theoretical results are shown for the QPM with
1-phonon (b) and (1 + 2)-phonon (c) model spaces, RRPA (d)
and RTBA (e). Characteristic scales are marked by arrows.
Figure taken from ref. [31].

denotes the i-th moment of the distribution). The exper-
imental centroid energy of 13.43MeV is fairly well re-
produced. Inclusion of 2-phonon configurations, fig. 14(c),
leads to fragmentation but the dominant 1p1h transitions
remain and the centroid energy is unaffected. A similar
comparison of the RRPA and RTBA results, fig. 14(d)
and (e), shows somewhat larger differences of the distri-
butions although the centroid energy is hardly affected.

Since there is no absolute scale, the corresponding
CWT power spectra shown on the right side of fig. 14 are
normalized relative to each other. Overall, both models
broadly reproduce the variation of power with scale value.
A power peak at small scales around 100 to 200 keV is
followed by a minimum of power at a few hundred keV
and another rise towards larger values. The scale values of
power maxima and minima are better reproduced by the
QPM. However, the relative ratio of maxima at smaller
and larger scales is predicted to decrease in the QPM while
experiment shows an increase. In the RTBA the ratio is
closer to the data.

The comparison of figs. 14(b), (c) and (d), (e) pro-
vides information on the damping mechanism responsi-
ble for the fine structure. Clearly, the QPM results show
structure already at the 1-phonon level. The appearance
of scales > 1MeV can be easily understood by the spacing
of the five dominant transitions, but the wavelet analysis
of the 1-phonon result also finds the characteristic scales
with smaller values < 1MeV. The similarity between the
power spectra and scales deduced from the QPM calcula-
tion for 1-phonon (b) and (1 + 2)-phonon (c) states sug-
gests that the fragmentation of 1p1h transitions (i.e., Lan-
dau damping) is the most important mechanism leading
to fine structure of the IVGDR in 208Pb. The coupling
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Fig. 15. Same as fig. 11, but for the IVGDR response in 120Sn.

to complex configurations and, in particular, to low-lying
collective vibrations identified as dominant mechanism for
the ISGQR seems to play a minor role only for the gen-
eration of the fine structure. While the relative weight
changes, major scales are also found at about the same
energies in the CWT analysis of the RRPA (d) and RTBA
(e) results. The observation of characteristic scales in the
RRPA calculation again supports the above conclusion.

We have also performed an analysis of the coupling ma-

trix elements V 2ph
1ph in analogy to the ISGQR case, again

for 120Sn as a representative example. The probability dis-
tribution in the case of the IVGDR is depicted in fig. 15.
A similar excess of small coupling matrix elements com-
pared to the RMT prediction (solid line) as in the case of
the ISGQR is observed. However, these do not contribute
to the fragmentation process. At large coupling strength
the QPM result is much closer to the RMT limit.

The E1 strength distribution of 120Sn resulting from
the full QPM calculations is displayed in the top part of
fig. 16. When the QPM model space is artificially divided

into subspaces corresponding to the value of V 2ph
1ph as indi-

cated by the dashed lines in fig. 11, strength distributions
from the larger (collective) and smaller (non-collective)
matrix elements shown in the middle and bottom part
of fig. 16, respectively, exhibit comparable fragmentation.
Thus, the relevance of damping through the coupling to
low-lying surface vibrations for the case of the IVGDR
cannot be discovered by such an analysis.

The findings on the fine structure of the IVGDR can be
summarized as follows: i) the systematic investigation of
medium-mass to heavy nuclei corroborates the importance
of Landau damping as the main source of the IVGDR fine
structure [37]. ii) The quantitative description of the ex-
perimental scales by the different models is comparable
to the ISGQR case, i.e. the models reproduce the num-
ber of scales in a certain scale energy region rather than
exact values. iii) In some cases small characteristic scales
have been found, which could not be explained by calcu-
lations on the RPA level [36,37]. These are likely to result
from the spreading width although at present we cannot
distinguish whether these are generated by the collective
or the non-collective mechanism discussed above. iv) Fine
structure is also observed in heavy deformed nuclei [35]
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despite the extremely high level densities. v) In light de-
formed nuclei, the comparison between the experimental
data and RPA calculations based on modern realistic in-
teractions suggest that fine structure at the level of a few
hundred keV results mainly from the deformation of the
nuclei driven by clustering [36]. These data also show in
all nuclei studied a small scale not explained by any calcu-
lation. Since the values are consistent with expectations
of the average width due to Ericson fluctuations in this
energy region [57,69], we tentatively follow this identifica-
tion.

5 Conclusions and outlook

In recent years fine structure has been observed as a global
phenomenon in spectra of high-resolution experiments for
all types of giant resonances. In particular, the ISGQR
and IVGDR have been studied systematically across the
nuclear chart and with respect to the role of deforma-
tion. Wavelet analysis has been developed as a method to
extract quantitative information on the fine structure in
terms of characteristic scales. The corresponding analysis
of strength distributions from theoretical approaches in-
corporating one or several mechanisms of giant resonance
decay permits to identify the origin of the observed fine
structure.

By way of example, we discussed in detail two ap-
proaches, SRPA and QPM, widely used for such an anal-
ysis which represent different approximations to the in-
clusion of the doorway state mechanism. Indeed, spread-
ing through the first step of the doorway mechanism, i.e.

coupling between 1p1h and 2p2h states is identified as
generator of the fine structure of the ISGQR. In heavy
nuclei it is dominated by coupling to low-lying surface vi-
brations, a mechanism first investigated by Bertsch, Bor-
tignon, Broglia and Dasso [59]. In lighter nuclei stochas-
tic coupling becomes increasingly important. In contrast,
the fine structure observed for the IVGDR arises mainly
from the fragmentation of the 1p1h strength, i.e. Landau
damping, although some indications for the relevance of
the spreading width are also found.

Concerning future work, the systematic observation
of fine structure of the ISGQR and the IVGDR imme-
diately raises the question about similar observations for
the isoscalar giant monopole resonance (ISGMR). An ex-
tensive study at iThemba LABS using 0◦ α scattering
indeed confirms the fine structure phenomenon for the
ISGMR as well [3] and a comprehensive analysis is un-
derway. Finally, we would like to mention recent initia-
tives to utilize giant resonance γ decay as an alternative
probe. Although a weak branch, it carries unique informa-
tion as discussed by Bortignon and coworkers [70,71]. Pio-
neering experiments reported the extraction of total decay
branching ratios from the IVGDR and the ISGQR to low-
lying states [72–75]. With the advent of new large-volume
LaBr detectors with much improved γ and time resolu-
tion [76] and in combination with high-resolution spec-
trometers one can hope in future experiments to “scan”
the γ decay across the resonances [3].
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M. Csatlos, L. Csige, B. Davids, U. Garg, J. Gulyas,
M.N. Harakeh, M.A. de Huu, B.C. Junk, A. Kraszna-
horkay, S. Rakers, D. Sohler, H.J. Wörtche, Phys. Lett.
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Spamer, O. Titze, W. Knüpfer, Nucl. Phys. A 349, 309
(1980).

43. D. Meuer, G. Kühner, S. Müller, A. Richter, E. Spamer,
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nahorkay, S. Lodetti, B. Million, A. Owens, F. Quarati, L.
Stuhl, O. Wieland, Nucl. Instrum. Methods A 729, 910
(2013).


